首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We hypothesized that epidural spinal cord stimulation (ES) and quipazine (a serotonergic agonist) modulates the excitability of flexor and extensor related intraspinal neural networks in qualitatively unique, but complementary, ways to facilitate locomotion in spinal cord-injured rats. To test this hypothesis, we stimulated (40 Hz) the S(1) spinal segment before and after quipazine administration (0.3 mg/kg, ip) in bipedally step-trained and nontrained, adult, complete spinal (mid-thoracic) rats. The stepping pattern of these rats was compared with control rats. At the stimulation levels used, stepping was elicited only when the hindlimbs were placed on a moving treadmill. In nontrained rats, the stepping induced by ES and quipazine administration was non-weight bearing, and the cycle period was shorter than in controls. In contrast, the stepping induced by ES and quipazine in step-trained rats was highly coordinated with clear plantar foot placement and partial weight bearing. The effect of ES and quipazine on EMG burst amplitude and duration was greater in flexor than extensor motor pools. Using fast Fourier transformation analysis of EMG bursts during ES, we observed one dominant peak at 40 Hz in the medial gastrocnemius (ankle extensor), whereas there was less of dominant spectral peak in the tibialis anterior (ankle flexor). We suggest that these frequency distributions reflect amplitude modulation of predominantly monosynaptic potentials in the extensor and predominantly polysynaptic pathways in the flexor muscle. Quipazine potentiated the amplitude of these responses. The data suggest that there are fundamental differences in the circuitry that generates flexion and extension during locomotion.  相似文献   

2.
Acute experiments on decerebrate cats were performed to study the mechanism of formation of the locomotor pattern in conditions of epidural stimulation of the spinal cord. These studies showed that only segments L3–L5 contributed to generating the stepping pattern in the hindlimbs. At the optimum frequency (5–10 Hz) of stimulation of these segments, formation of electromyographic burst activity in the flexor muscles was mainly due to polysynaptic reflex responses with latencies of 80–110 msec. In the extensor muscles, this process involved the interaction of a monosynaptic reflex and polysynaptic activity. In epidural stimulation, the stepping pattern was specified by spinal structures, while peripheral feedback had modulatory influences.Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 89, No. 9, pp. 1046–1057, September, 2003.  相似文献   

3.
In order to investigate if inter-limb propriospinal reflexes participate in coordination of locomotive movements of fore- and hindlimbs, we examined the relations between fore- and hindlimbs during overground locomotion of adult cats with spinal cord lesions. In a group of cats (T-T preparations), the spinal cord was hemisected first at around Th12 and then at intervals of 37-126 days contralaterally at mid-thoracic level, propriospinal tracts being mostly severed in this group. In a second group of cats (C-T preparations), which received hemisections first at around C2 and then at intervals of 21-73 days at mid-thoracic level, propriospinal tracts were left intact at least on one side of the spinal cord. Control observations were also made in intact cats and those with single hemisections at C2 or Th12, or with double unilateral hemisections at Th6 and Th12. Thus, it was found that in both T-T and C-T preparations, step length of the forelimbs was shortened significantly, whereas that of the hindlimbs was significantly lengthened. Furthermore, phase relations between the fore- and hindlimbs were completely lost in these preparations, suggesting that the stepping generator for the forelimbs operates independently of that for the hindlimbs. In other single-hemisected or unilaterally double-hemisected preparations, by contrast, no such changes were observed. The close similarity of the results in T-T and C-T preparations, in spite of different degrees of impairment of propriospinal tracts in them, leads to a conclusion that inter-limb propriospinal reflexes play little role in coordination of locomotive movements of fore- and hindlimbs.  相似文献   

4.
Postmammillary decerebrated cats can generate stepping on a moving treadmill belt when the brain stem or spinal cord is stimulated tonically and the hindquarters are supported both vertically and laterally. While adequate propulsion seems to be generated by the hindlimbs under these conditions, the ability to sustain equilibrium during locomotion has not been examined extensively. We found that tonic epidural spinal cord stimulation (5 Hz at L5) of decerebrated cats initiated and sustained unrestrained weight-bearing hindlimb stepping for extended periods. Detailed analyses of the relationships among hindlimb muscle EMG activity and trunk and limb kinematics and kinetics indicated that the motor circuitries in decerebrated cats actively maintain equilibrium during walking, similar to that observed in intact animals. Because of the suppression of vestibular, visual, and head-neck-trunk sensory input, balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters. In addition to dynamic balance control during unperturbed locomotion, sustained stepping could be reestablished rapidly after a collapse or stumble when the hindquarters switched from a restrained to an unrestrained condition. Deflecting the body by pulling the tail laterally induced adaptive modulations in the EMG activity, step cycle features, and left-right ground reaction forces that were sufficient to maintain lateral stability. Thus the brain stem-spinal cord circuitry of decerebrated cats in response to tonic spinal cord stimulation can control dynamic balance during locomotion using only somatosensory input.  相似文献   

5.
Acute experiments on decerebrate and spinal cats were performed to study the role of the peripheral afferent input from hindlimb receptors in forming the locomotor pattern during epidural stimulation of the spinal cord. Evoked electromyographic activity in the muscles of the hindlimbs was analyzed, along with the kinematic parameters of stepping movements. Epidural stimulation (20–100 μA, 5 Hz) of segments L4–5 of the spinal cord was found to elicit well coordinated walking in the hindlimbs on a moving treadmill band. When the support conditions were changed (non-moving treadmill, unsupported position), epidural stimulation initiated walking with an unstable rhythm. This was associated with a change in the overall nature of the locomotor pattern and the internal structure of the stepping cycle. Alteration of the direction of movement of the treadmill band led to the appearance of backward walking. An increase in the speed of movement of the treadmill band increased the stepping frequency, mainly due to decreases in the extensor phase. Epidural stimulation applied 2–4 h after complete transection of the spinal cord at the T8–T9 level could elicit stepping movements, but only when the treadmill was moving. The role of peripheral feedback in generating the locomotor pattern in conditions of complete disconnection from supraspinal control increased significantly. These data show that peripheral feedback during epidural stimulation of the spinal cord can define the properties of the motor output. __________ Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 12, pp. 1407–1420, December, 2005.  相似文献   

6.
M Kato 《Neuroscience letters》1988,93(2-3):259-263
Phase relations between muscle activities of bilateral hindlimbs during walking were investigated in chronic cats whose spinal cord was longitudinally separated into halves in order to investigate if segmental commissural connections are essential for the coordination. EMGs were recorded from bilateral triceps brachii, bilateral vastus lateralis and one tibialis anterior muscles during overground locomotion. The results show that coordination between bilateral hindlimbs is well preserved after the longitudinal myelotomy of the lumbar cord, indicating structures located supra-lumbar cord are essentially important for the coordination.  相似文献   

7.
Summary The reflex regulation of stepping is an important factor in adapting the step cycle to changes in the environment. The present experiments have examined the influence of muscle proprioceptors on centrally generated rhythmic locomotor activity in decerebrate unanesthetized cats with a spinal transection at Th12. Fictive locomotion, recorded as alternating activity in hindlimb flexor and extensor nerves, was induced by administration of nialamide (a monoamine oxidase inhibitor) and L-DOPA. Brief electrical stimulation of group I afferents from knee and ankle extensors were effective in resetting fictive locomotion in a coordinated fashion. An extensor group I volley delivered during a flexor burst would abruptly terminate the flexor activity and initiate an extensor burst. The same stimulus given during an extensor burst prolonged the extensor activity while delaying the appearance of the following flexor burst. Intracellular recordings from motoneurones revealed that these actions were mediated at premotoneuronal levels resulting from a distribution of inhibition to centres generating flexor bursts and excitation of centres generating extensor bursts. These results indicate that extensor group I afferents have access to central rhythm generators and suggest that this may be of importance in the reflex regulation of stepping. Experiments utilizing natural stimulation of muscle receptors demonstrate that the group I input to the rhythm generators arises mainly from Golgi tendon organ Ib afferents. Thus an increased load of limb extensors during the stance phase would enhance and prolong extensor activity while simultaneously delaying the transition to the swing phase of the step cycle.  相似文献   

8.
The effects of the cutaneous input on the formation of the locomotor pattern in conditions of epidural stimulation of the spinal cord in decerebrate cats were studied. Locomotor activity was induced by rhythmic stimulation of the dorsal surface of spinal cord segments L4-L5 at a frequency of 3-5 Hz. Electromyograms (EMG) recorded from the antagonist muscles quadriceps, semitendinosus, tibialis anterior, and gastrocnemius lateralis were recorded, along with the kinematics of stepping movements during locomotion on a moving treadmill and reflex responses to single stimuli. Changes in the pattern of reactions observed before and after exclusion of cutaneous receptors (infiltration of lidocaine solution at the base of the paw or irrigation of the paw pads with chlorothane solution) were assessed. This treatment led to impairment of the locomotor cycle: the paw was placed with the rear surface downward and was dragged along in the swing phase, and the duration of the stance phase decreased. Exclusion of cutaneous afferents suppressed the polysynaptic activity of the extensor muscles and the distal flexor muscle of the ipsilateral hindlimb during locomotion evoked by epidural stimulation of the spinal cord. The effects of exclusion of cutaneous afferents on the monosynaptic component of the EMG response were insignificant.  相似文献   

9.
A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-centre rhythm generator (RG) and pattern formation (PF) networks has been developed from observations obtained during fictive locomotion in decerebrate cats. Sensory afferents have been incorporated in the model to study the effects of afferent stimulation on locomotor phase switching and step cycle period and on the firing patterns of flexor and extensor motoneurones. Here we show that this CPG structure can be integrated with reflex circuits to reproduce the reorganization of group I reflex pathways occurring during locomotion. During the extensor phase of fictive locomotion, activation of extensor muscle group I afferents increases extensor motoneurone activity and prolongs the extensor phase. This extensor phase prolongation may occur with or without a resetting of the locomotor cycle, which (according to the model) depends on the degree to which sensory input affects the RG and PF circuits, respectively. The same stimulation delivered during flexion produces a temporary resetting to extension without changing the timing of following locomotor cycles. The model reproduces this behaviour by suggesting that this sensory input influences the PF network without affecting the RG. The model also suggests that the different effects of flexor muscle nerve afferent stimulation observed experimentally (phase prolongation versus resetting) result from opposing influences of flexor group I and II afferents on the PF and RG circuits controlling the activity of flexor and extensor motoneurones. The results of modelling provide insights into proprioceptive control of locomotion.  相似文献   

10.
Several studies have shown that noradrenergic mechanisms are important for locomotion. For instance, L-dihydroxyphenylalanine (L-DOPA) can initiate "fictive" locomotion in immobilized acutely spinalized cats and alpha(2)-noradrenergic agonists, such as 2,6,-dichloro-N-2-imidazolidinylid-enebenzenamine (clonidine), can induce treadmill locomotion soon after spinalization. However, the activation of noradrenergic receptors may be not essential for the basic locomotor rhythmicity because chronic spinal cats can walk with the hindlimbs on a treadmill in the absence of noradrenergic stimulation because the descending pathways are completely severed. This suggests that locomotion, in intact and spinal conditions, is probably expressed and controlled through different neurotransmitter mechanisms. To test this hypothesis, we compared the effect of the alpha(2) agonist, clonidine, and the antagonist (16 alpha, 17 alpha)-17-hydroxy yohimbine-16-carboxylic acid methyl ester hydrochloride (yohimbine), injected intrathecally at L(3)--L(4) before and after spinalization in the same cats chronically implanted with electrodes to record electromyograms (EMGs). In intact cats, clonidine (50-150 microg/100 microl) modulated the locomotor pattern slightly causing a decrease in duration of the step cycle accompanied with some variation of EMG burst amplitude and duration. In the spinal state, clonidine could trigger robust and sustained hind limb locomotion in the first week after the spinalization at a time when the cats were paraplegic. Later, after the spontaneous recovery of a stable locomotor pattern, clonidine prolonged the cycle duration, increased the amplitude and duration of flexor and extensor bursts, and augmented the foot drag at the onset of swing. In intact cats, yohimbine at high doses (800--1600 microg/100 microl) caused major walking difficulties characterized by asymmetric stepping, stumbling with poor lateral stability, and, at smaller doses (400 microg/100 microl), only had slight effects such as abduction of one of the hindlimbs and the turning of the hindquarters to one side. After spinalization, yohimbine had no effect even at the largest doses. These results indicate that, in the intact state, noradrenergic mechanisms probably play an important role in the control of locomotion since blocking the receptors results in a marked disruption of walking. In the spinal state, although the receptors are still present and functional since they can be activated by clonidine, they are seemingly not critical for the spontaneous expression of spinal locomotion since their blockade by yohimbine does not impair spinal locomotion. It is postulated therefore that the expression of spinal locomotion must depend on the activation of other types of receptors, probably related to excitatory amino acids.  相似文献   

11.
Adult spinal cats were trained initially to perform either bipedal hindlimb locomotion on a treadmill or full-weight-bearing hindlimb standing. After 12 wk of training, stepping ability was tested before and after the administration (intraperitoneal) of the glycinergic receptor antagonist, strychnine. Spinal cats that were trained to stand after spinalization had poor locomotor ability as reported previously, but strychnine administration induced full-weight-bearing stepping in their hindlimbs within 30-45 min. In the cats that were trained to step after spinalization, full-weight-bearing stepping occurred and was unaffected by strychnine. Each cat then was retrained to perform the other task for 12 wk and locomotor ability was retested. The spinal cats that were trained initially to stand recovered the ability to step after they received 12 wk of treadmill training and strychnine was no longer effective in facilitating their locomotion. Locomotor ability declined in the spinal cats that were retrained to stand and strychnine restored the ability to step to the levels that were acquired after the step-training period. Based on analyses of hindlimb muscle electromyographic activity patterns and kinematic characteristics, strychnine improved the consistency of the stepping and enhanced the execution of hindlimb flexion during full-weight-bearing step cycles in the spinal cats when they were trained to stand but not when they were trained to step. The present findings provide evidence that 1) the neural circuits that generate full-weight-bearing hindlimb stepping are present in the spinal cord of chronic spinal cats that can and cannot step; however, the ability of these circuits to interpret sensory input to drive stepping is mediated at least in part by glycinergic inhibition; and 2) these spinal circuits adapt to the specific motor task imposed, and that these adaptations may include modifications in the glycinergic pathways that provide inhibition.  相似文献   

12.
On the central generation of locomotion in the low spinal cat   总被引:1,自引:0,他引:1  
A central network of neurones in the spinal cord has been shown to produce a rhythmic motor output similar to locomotion after suppression of all afferent inflow. The experiments were performed mainly in acute spinal cats (th. 12), which had received DOPA i.v. and the monoamine oxidase inhibitor Nialamide. In some preparations all dorsal roots supplying the spinal cord were transected, in others phasic afferent activity was suppressed by curarization. The activity was recorded as neurograms from nerve filaments or as electromyograms. It is concluded that: 1. alternating activity between flexors and extensors of foot, ankel, knee, and hip of one limb can still occur 2. the duration of the flexor discharges vary less with the cycle duration than the extensor discharges 3. different flexor muscles may retain individual patterns 4. the activity at different joints can be dissociated 5. there is at least one network for each limb. 6. the coordination between the two hindlimbs can be alternating as in walking or be more closely spaced as in galloping 7. alternating activity in the ankle remains even when only segments L6, L7 and S1 are intact.  相似文献   

13.
The motor effects induced by pulsed magnetic fields (PMF) projected onto the lumbar and cervical spinal cord were studied in decerebrate cats. A magnetic coil (inductor) of diameter 8 cm was positioned 1–2 cm above the surface of the spinal cord. Stimulation of the spinal cord with PMF was performed in two regimes: with single impulses with an intensity of 0.5–1 T and with continuous rhythmic stimulation at a frequency of 1 Hz and an intensity of 0.5 T. Application of single stimuli to the lumbar enlargement evoked reflex responses in the proximal and distal hindlimb muscles. Rhythmic stimulation initiated locomotor activity of the limb on a running treadmill, i.e., activated the neural locomotor network of the spinal cord (stepping movement generator). Magnetic stimulation of the lumbar enlargement evoked coordinated stepping movements of the hindlimbs only. Application of PMF to the cervical enlargement induced coordinated stepping movements of all four limbs, hindlimb movements starting before forelimb movements. After cessation of magnetic stimulation, the limbs completed several further coordinated movement cycles. This is the first report of the triggering of limb stepping movement generators with PMF in decerebrate cats. The results obtained here demonstrate that the neural locomotor networks of the spinal cord can be activated noninvasively and open new perspectives for the clinical use of PMF.  相似文献   

14.
We have analyzed the behavior of neurons of the lateral reticular nucleus (LRN) during fictive respiration and locomotion and found that some LRN neurons have both central respiratory and locomotor rhythms. Experiments were conducted on decrebrate, decerebellate, immobilized, and artificially ventilated cats, with the spinal cord transected at the lower thoracic cord. Fictive respiration and fictive forelimb locomotion were ascertained by monitoring activities from the phrenic nerve and forelimb extensor and flexor nerves, respectively. Fictive locomotion was evoked by electrical stimulation of the mesencephalic locomotor region (MRL) or sometimes occurred spontaneously. During fictive locomotion many LRN neurons fired in certain phases of the locomotion cycle; i.e., with respect to the nerve discharge of the ipsilateral forelimb they fired in either the extensor, flexor, extensor-flexor, or flexor-extensor phase. Firing of some LRN neurons was modulated synchronously with central respiratory rhythm. Neurons with inspiratory activity and those with expiratory activity were both found. More than half of these respiration-related LRN neurons had locomotor rhythm as well. The majority of the three types of LRN neurons, i.e., neurons with only locomotor rhythm, those with only respiratory rhythm, and those with both respiratory and locomotor rhythm, were antidromically activated by electrical stimulation of the ipsilateral inferior cerebellar peduncle. Electrical stimulation of the upper cervical cord showed that these LRN neurons, not only locomotion-related but also respiration-related neurons, received short latency inputs from the spinal cord. The LRN neurons studied were distributed widely in the LRN, relatively densely in the caudal two-thirds of the nucleus. No particular differences were detected between the three types of LRN neurons with respect to their location in the nucleus. These results indicate that the information about central respiratory and locomotor rhythms that is necessary for cerebellar control of the coordination between respiration and locomotion converges, at least partly, at the level of the LRN.  相似文献   

15.
We hypothesized that the activation patterns of flexor and extensor muscles and the resulting kinematics of the forelimbs and hindlimbs during locomotion in the Rhesus would have unique characteristics relative to other quadrupedal mammals. Adaptations of limb movements and in motor pool recruitment patterns in accommodating a range of treadmill speeds similar to other terrestrial animals in both the hindlimb and forelimb were observed. Flexor and extensor motor neurons from motor pools in the lumbar segments, however, were more highly coordinated than in the cervical segments. Unlike the lateral sequence characterizing subprimate quadrupedal locomotion, non-human primates use diagonal coordination between the hindlimbs and forelimbs, similar to that observed in humans between the legs and arms. Although there was a high level of coordination between hind- and forelimb locomotion kinematics, limb-specific neural control strategies were evident in the intersegmental coordination patterns and limb endpoint trajectories. Based on limb kinematics and muscle recruitment patterns, it appears that the hindlimbs, and notably the distal extremities, contribute more to body propulsion than the forelimbs. Furthermore, we found adaptive changes in the recruitment patterns of distal muscles in the hind- and forelimb with increased treadmill speed that likely correlate with the anatomical and functional evolution of hand and foot digits in monkeys. Changes in the properties of both the spinal and supraspinal circuitry related to stepping, probably account for the peculiarities in the kinematic and EMG properties during non-human primate locomotion. We suggest that such adaptive changes may have facilitated evolution toward bipedal locomotion.  相似文献   

16.
1. Presynaptic activity of identified primary afferents from flexor, extensor, and bifunctional hindlimb muscles was studied with intra-axonal recordings during fictive locomotion. Fictive locomotion appeared spontaneously in decorticate cats (n = 9), with stimulation of the mesencephalic locomotor region (n = 4), and in spinal cats injected with clonidine or nialamide and L-DOPA (n = 4). Representative flexor and extensor muscle nerves, recorded to monitor the locomotor pattern and dorsal rootlets of the sixth and seventh lumbar segments, were recorded simultaneously to monitor dorsal root potentials (DRPs). 2. From responses to muscle stretches and, in some instances, twitch contractions of the parent muscle, 75% of the single units examined were putatively identified as spindle afferents (40/53). On the basis of conduction velocity and stimulation threshold, 73% of these were further classified as group I fibers (29/40), the rest as group II fibers. 3. All units (n = 53 with resting potential more negative than -45 mV) showed fluctuations of their membrane potential (up to 1.5 mV) at the rhythm of the fictive locomotion. Subsequent averaging of these fluctuations over several cycles revealed that 89% of all units displayed a predominant wave of depolarization during the flexor phase, followed by a trough of repolarization. In 79% of the units, there was also a second, usually smaller, depolarization during the extensor phase. The relative size of each wave of depolarization could vary with different episodes of fictive locomotion in the same unit and among various afferents from the same muscle in the same experiment. 4. The firing frequency of some afferents from the ankle flexor tibialis anterior (5/16) and the bifunctional muscle posterior biceps-semitendinosus (4/15) was phasically modulated along the fictive step cycle. The maximum frequency always occurred during the flexor phase, i.e., during the largest depolarization of the unit. Because of the absence of phasic sensory input in the curarized animal, we assume that the phasic discharges were generated within the spinal cord and antidromically propagated. Phasic firing was never encountered in afferents from extensor muscles such as triceps surae (0/15) and vastus lateralis (0/4). 5. The results demonstrate that the pattern of rhythmic depolarization accompanying fictive locomotion is similar for the majority of flexor, extensor, and bifunctional group I (and possibly group II) muscle spindle primary afferents. They further indicate that there is a specific phasic modulation of antidromic firing for some flexor and bifunctional muscle spindle afferents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Summary Short-latency excitatory postsynaptic potentials (EPSPs) evoked by stimulation in the medial longitudinal fasciculus (MLF) were recorded intracellularly from motoneurons in the cat lumbosacral spinal cord. Monosynaptic and disynaptic EPSPs occurred in most flexor and extensor motoneurons studied. These EPSPs resulted from the activation of fast (> 100 m/s) descending axons from the MLF to the spinal cord. Several features distinguished monosynaptic and disynaptic MLF EPSPs. Disynaptic EPSPs exhibited temporal facilitation during short trains of stimulation, whereas monosynaptic EPSPs did not. Disynaptic EPSPs, but not monosynaptic EPSPs, were also facilitated by stimulation of the pyramidal tract and the mesencephalic locomotor region. However, disynaptic MLF EPSPs exhibited little or no facilitation when conditioned by short-latency cutaneous pathways. During fictive locomotion, the amplitude of disynaptic MLF EPSPs was modulated, with maximal amplitudes during the step cycle phase when the recorded motoneuron was active, resulting in reciprocal patterns of modulation of flexors and extensors. No comparable change was seen in the amplitude of monosynaptic MLF EPSPs during fictive stepping. These data suggest that the central pattern generator for locomotion modulates disynaptic MLF excitation at a premotoneuronal level in a phase-dependent manner. The effects of lesions made in the MLF and thoracic cord suggest that the interneurons in the disynaptic pathway from the MLF to motoneurons reside in the lumbosacral cord.  相似文献   

18.
Locomotor behavior is believed to be produced by interneuronal networks that are intrinsically organized to generate the underlying complex spatiotemporal patterns. In order to study the temporal correlation between the firing of individual interneurons and the pattern of locomotion, we utilized the spinal cord-forelimb preparation from the mudpuppy, in which electrophysiological recordings of neuronal activity were achieved during walking-like movement of the forelimb induced by bath application of N-methyl- D-aspartate (NMDA). Intra- and extracellular recordings were made in the C2 and C3 segments of the spinal cord. These segments contain independent flexor and extensor centers for the forelimb movement about the elbow joint during walking. Among the 289 cells recorded in the intermediate gray matter (an area between the ventral and dorsal horns) of the C2 and C3 segments, approximately 40% of the cells fired rhythmically during "walking." The firing rates were 6.4+/-0.4 impulses/s (mean +/- SE). These rhythmically active cells were classified into four types based on their phase of activity during a normalized step cycle. About half the rhythmic cells fired in phase with either the flexor (F) or extensor (E) motoneurons. The rest fired in the transitions between the two phases (F-->E and E-->F). Longitudinal distributions of the four types of interneurons along the spinal cord were in agreement with observations that revealed distinct but overlapping flexor and extensor centers for walking. Some cells triggered short-latency responses in the elbow flexor or extensor muscles and may be last-order interneurons. These observations suggest that there is a differential distribution of phase-specific interneurons in the central pattern generator of the mudpuppy spinal cord for walking.  相似文献   

19.
In acute spinalized (Th 12) cats, treated with DOPA, curarized or with all lumbosacral dorsal roots transected, stepping patterns were elicited in the hindlimbs by continuous electrical stimulation of the dorsal roots. Single primary endings in dorsal root filaments or single gamma and alpha efferents in muscle nerve filaments from flexors and extensors were recorded together with the efferent nerve activity to various hindlimb muscles. The experiments showed a clear coactivation of the intra- and extrafusal system to the same muscle. The alpha efferent discharges typically started with a very short first interspike interval. It is concluded that there exists a central spinal alpha-gamma-linkage for locomotion in the hindlimbs.  相似文献   

20.
In acute spinalized (Th 12) cats, treated with DOPA, curarized or with all lumbosacral dorsal roots transected, stepping patterns were elicited in the hindlimbs by continuous electrical stimulation of the dorsal roots. Single primary endings in dorsal root filaments or single γ and α efferents in muscle nerve filaments from flexors and extensors were recorded together with the efferent nerve activity to various hindlimb muscles. The experiments showed a clear coactivation of the intra- and extrafusal system to the same muscle. The α efferent discharges typically started with a very short first interspace interval. It is concluded that there exists a central spinal α-γ-Iinkage for locomotion in the hindlimbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号