首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously reported that the synthetic cannabinoid receptor agonist WIN55,212-2 causes a selective reduction in paired-pulse depression of population spikes in the CA1 region of the rat hippocampal slice. This effect is consistent with the observation that activation of cannabinoid receptors inhibits GABA release in the hippocampus. We have now investigated the actions of the putative endogenous cannabinoids 2-arachidonoyl-glycerol (2-AG) and anandamide in this system. 2-AG mimicked the effect of WIN55,212-2 by selectively reducing paired-pulse depression at concentrations of 1–30 μM. In contrast, anandamide caused a selective increase in paired-pulse depression at concentrations of 1–30 μM. This effect was mimicked by the vanilloid receptor agonists capsaicin and resiniferatoxin, and blocked by the vanilloid receptor antagonist capsazepine, but not by the cannabinoid receptor antagonist AM281. These results are the first to demonstrate a clear functional vanilloid receptor-mediated effect in the hippocampus, and further, that anandamide but not 2-AG acts at these receptors to increase paired-pulse depression of population spikes.  相似文献   

2.
A role of opioids as inhibitors of the non-adrenergic non-cholinergic (NANC) excitatory nerves has been studied in the guinea-pig bronchi using electrical field stimulation. Morphine and DAGO gave dose-dependent inhibition of NANC contraction, which was reversed by naloxone, whereas the cholinergic nerve and substance P responses were unaffected. [Met5]enkephalin and [Leu5]enkephalin weakly inhibited NANC contraction, whereas dynorphin-(1-13) had no effect. These results suggest that opiates inhibit NANC bronchoconstriction via mu-opioid receptors.  相似文献   

3.
Elucidation of pathways involved with lipid metabolism has been limited by analytical challenges associated with detection and structure identification. A discovery-based mass spectrometry lipidomic approach has been applied to identify metabolites of the endogenous cannabinoid anandamide (N-arachidonylethanolamide). Previously, a model system was established to show that anandamide can be recycled by cells to form new endocannabinoids suggesting recycling of the arachidonate carbon chain. We hypothesized that distinct cellular pathways exist to direct the anandamide-derived arachidonate chain into a specific set of metabolites, different from the metabolite pool that is comprised of non-anandamide-derived arachidonic acid. Using stable isotope encoding and liquid chromatography–mass spectrometry, we identified a distinct pool of lipid metabolites derived from exogenous anandamide or arachidonic acid in RBL-2H3 cells. We discovered that arachidonic acid-derived metabolites were primarily comprised of the eicosanoid lipid class, whereas anandamide-derived arachidonic acid, in addition to eicosanoids, was metabolized into diradylglycerols, fatty acid amides, sterols, and glycerophospholipids. From the list of anandamide metabolites of particular interest was 1-O-arachidonyl-sn-glycero-3-phosphocholine. Furthermore, we determined that while 1-O-arachidonyl-sn-glycero-3-phosphocholine may be a metabolite of anandamide, the sn-2 compound was more abundant in mouse brain tissue. Overall, our results provide a novel approach to study the metabolic fate of endocannabinoids and fatty acid-derived signaling molecules.  相似文献   

4.
The analgesic properties of cannabinoid receptor agonists are well characterized. However, numerous side effects limit the therapeutic potential of these agents. Here we report a synergistic antinociceptive interaction between the endogenous cannabinoid receptor agonist anandamide and the synthetic peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist 2-(4-(2-(1-Cyclohexanebutyl)-3-cyclohexylureido)ethyl)phenylthio)-2-methylpropionic acid (GW7647) in a model of acute chemical-induced pain. Moreover, we show that anandamide synergistically interacts with the large-conductance potassium channel (KCa1.1, BK) activator isopimaric acid. These findings reveal a synergistic interaction between the endocannabinoid and PPAR-alpha systems that might be exploited clinically and identify a new pharmacological effect of the BK channel activator isopimaric acid.  相似文献   

5.
A facilitated transport process that removes the endogenous cannabinoid anandamide from extracellular spaces has been identified. Once transported into the cytoplasm, fatty acid amide hydrolase (FAAH) is responsible for metabolizing the accumulated anandamide. We propose that FAAH contributes to anandamide uptake by creating and maintaining an inward concentration gradient for anandamide. To explore the role of FAAH in anandamide transport, we examined anandamide metabolism and uptake in RBL-2H3 cells, which natively express FAAH, as well as wild-type HeLa cells that lack FAAH. RBL-2H3 and FAAH-transfected HeLa cells demonstrated a robust ability to metabolize anandamide compared with vector-transfected HeLa cells. This activity was reduced to that observed in wild-type HeLa cells upon the addition of the FAAH inhibitor methyl arachidonyl fluorophosphonate. Anandamide uptake was reduced in a dose-dependent manner by various FAAH inhibitors in both RBL-2H3 cells and wild-type HeLa cells. Anandamide uptake studies in wild-type HeLa cells showed that only FAAH inhibitors structurally similar to anandamide decreased anandamide uptake. Because there is no detectable FAAH activity in wild-type HeLa cells, these FAAH inhibitors are probably blocking uptake via actions on a plasma membrane transport protein. Phenylmethylsulfonyl fluoride, a FAAH inhibitor that is structurally unrelated to anandamide, inhibited anandamide uptake in RBL-2H3 cells and FAAH-transfected HeLa cells, but not in wild-type HeLa cells. Furthermore, expression of FAAH in HeLa cells increased maximal anandamide transport 2-fold compared with wild-type HeLa cells. These results suggest that FAAH facilitates anandamide uptake but is not solely required for transport to occur.  相似文献   

6.
The cellular effects of anandamide, endogenous cannabinoid receptor agonist, include changes in cellular immunity and calcium currents. The present study investigated the effects of anandamide, the calcium channel antagonist verapamil and the combined treatment with verapamil+anandamide on leukocyte phagocytosis and the social behaviour in aggressive singly-housed mice on dyadic interactions with non-aggressive group-housed partners. Verapamil was used at the dose (1 mg/kg) which did not markedly affect either phagocytosis or the behaviour of the mice. Anandamide given alone elicited a biphasic effect on phagocytosis: stimulation after the low dose (0·01 mg/kg) and inhibition after the high dose (10 mg/kg). Both doses of anandamide caused dose-related inhibition of aggressiveness in singly-housed mice. Anandamide combined with verapamil prevented both the stimulatory and inhibitory effect of anandamide on phagocytosis and on inhibition of aggression elicited by the low dose of anandamide. The dose of verapamil used did not influence behavioural changes caused by the high dose of anandamide. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
1. Arachidonylethanolamide (AEA; anandamide) has been isolated from mammalian brain and found to bind to, and is thought to be, an endogenous ligand for the cannabinoid receptor. In order to understand better its behavioural and physiological properties, we have examined its acute effects in unanaesthetized freely behaving rats. 2. Intravenous AEA caused dose-related decreases in locomotor behaviour, a pronounced hyperreflexia, and a moderate antinociceptive state. At doses between 3 and 30 mg kg-1, a dose-dependent hypothermia and profound, time-dependent cardiovascular changes were also observed. 3. An immediate bradycardia exceeding 50% was seen within 10-15 s of administration and lasted up to 11 min following the highest dose of the drug. In contrast, the change in mean arterial pressure was biphasic: an immediate 20% decrease in mean arterial pressure followed by a significant increase in blood pressure that lasted about 13 min after the highest dose. 4. These data demonstrate that AEA in the unanaesthetized rat exerts behavioural and physiological effects generally similar to those seen following natural cannabinoids and synthetic cannabimimetic agents and suggests a role for AEA in regulation of various physiological processes.  相似文献   

8.

Background and purpose:

Sensory nerves regulate central and local reflexes such as airway plasma protein leakage, bronchoconstriction and cough. Sensory nerve activity may be enhanced during inflammation such that these protective effects become exacerbated and deleterious. Cannabinoids are known to inhibit airway sensory nerve function. However, there is still controversy surrounding which receptor is involved in eliciting these effects.

Experimental approach:

We have adopted a pharmacological approach, including using a novel, more selective CB2 receptor agonist, GW 833972A (1000-fold selective CB2/CB1), and receptor selective antagonists to investigate the inhibitory activity of cannabinoids on sensory nerve activity in vitro and in vivo in guinea-pig models of cough and plasma extravasation.

Key results:

GW 833972A inhibited capsaicin-induced depolarization of the human and guinea-pig and prostaglandin E2 (PGE2) and hypertonic saline-induced depolarization of the guinea-pig isolated vagus nerve in vitro. GW 833972A also inhibited citric acid-induced cough but not plasma extravasation in the guinea-pig and this effect was blocked by a CB2 receptor antagonist.

Conclusions and implications:

This confirms and extends previous studies highlighting the role of CB2 receptors in the modulation of sensory nerve activity elicited both by the exogenous ligands capsaicin and hypertonic saline but also by endogenous modulators such as PGE2 and low pH stimuli. These data establish the CB2 receptor as an interesting target for the treatment of chronic cough.  相似文献   

9.
We studied the effect of endogenous nitric oxide (NO) on vagally induced plasma exudation into guinea-pig trachea and main bronchi using 125I-albumin as a plasma marker. NG-Nitro-L-arginine methyl ester (L-NAME, 1-10 mg/kg) dose dependently inhibited neurogenic plasma exudation. Intravenous phenylephrine which simulated the vasopressor effect as L-NAME (10 mg/kg) was without effect. The effect of L-NAME (5 mg/kg) was reversed by L-arginine (50 mg/kg). These results suggest that endogenous NO may contribute to neurogenic inflammation in the airways.  相似文献   

10.
Anandamide (AEA) and delta9-tetrahydrocannabinol (THC) are endogenous and exogenous ligands, respectively, for cannabinoid receptors. Whereas most of the pharmacological actions of cannabinoids are mediated by CB1 receptors, there is also evidence that these compounds can produce effects that are not mediated by the activation of identified cannabinoid receptors. Here, we report that THC and AEA, in a CB1 receptor-independent manner, cause a significant potentiation of the amplitudes of glycine-activated currents (I(Gly)) in acutely isolated neurons from rat ventral tegmental area (VTA) and in Xenopus laevis oocytes expressing human homomeric (alpha1) and heteromeric (alpha1beta1) subunits of glycine receptors (GlyRs). The potentiation of I(Gly) by THC and AEA is concentration-dependent, with respective EC50 values of 86 +/- 9 and 319 +/- 31 nM for alpha1 homomeric receptors, 73 +/- 8 and 318 +/- 24 nM for alpha1beta1 heteromeric receptors, and 115 +/- 13 and 230 +/- 29 nM for native GlyRs in VTA neurons. The effects of THC and AEA are selective for I(Gly), because GABA-activated current in VTA neurons or in X. laevis oocytes expressing alpha2beta3gamma2 GABA(A) receptor subunits were unaffected by these compounds. The maximal potentiation by THC and AEA was observed at the lowest concentration of glycine; with increasing concentrations of glycine, the potentiation significantly decreased. The site for THC and AEA seems to be distinct from that of the alcohol and volatile anesthetics. The results indicate that THC and AEA, in pharmacologically relevant concentrations, directly potentiate the function of GlyRs through an allosteric mechanism.  相似文献   

11.
1. The synthetic cationic polypeptide, poly-L-arginine (0.03-1 mg ml-1) induced concentration-dependent contraction of guinea-pig and rat isolated trachea. In guinea-pig isolated trachea, this response was attenuated in the presence of the muscarinic cholinoceptor antagonist, atropine (0.1 microM) and augmented by the acetylcholinesterase inhibitor, ecothiophate (0.1 microM). The neuronal sodium channel blocker, tetrodotoxin (3 microM) failed to alter the contractile response to poly-L-arginine and acetylcholine. 2. The contractile response to poly-L-arginine in rat isolated trachea was inhibited in the presence of atropine (0.1 microM) and the 5-hydroxytryptamine (5-HT) receptor antagonist, methysergide (1 microM). Treatment of rat tracheal preparations with capsaicin (100 microM) or tetrodotoxin (3 microM) failed to alter the contractile response to poly-L-arginine. In contrast, ecothiophate (0.1 microM) augmented the contractile response to poly-L-arginine in rat isolated trachea. 3. Electrical field stimulation (5 Hz, 2 min) of epithelium-denuded guinea-pig tracheal preparations preloaded with [3H]-choline resulted in a contractile response and the simultaneous efflux of radioactivity into the superfusate. Both these responses were abolished in the presence of tetrodotoxin (1.5 microM). Poly-L-arginine (1 mg ml-1) also increased the efflux of total radioactivity from epithelium-denuded guinea-pig isolated tracheal preparations preloaded with [3H]-choline, but this response was tetrodotoxin-insensitive. The negatively charged polyanion, heparin (1 mg ml-1) failed to increase significantly the efflux of radioactivity from epithelium-denuded preparations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.

BACKGROUND AND PURPOSE

The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes.

EXPERIMENTAL APPROACH

Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes.

KEY RESULTS

In the presence of 1–10 μM AEA, suppression of both Na+ and L-type Ca2+ channels was observed. Inhibition of Na+ channels was voltage and Pertussis toxin (PTX) – independent. Radioligand-binding studies indicated that specific binding of [3H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd. Further studies on L-type Ca2+ channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba2+ currents. MetAEA also inhibited Na+ and L-type Ca2+ currents. Radioligand studies indicated that specific binding of [3H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd.

CONCLUSION AND IMPLICATIONS

Results indicate that AEA inhibited the function of voltage-dependent Na+ and L-type Ca2+ channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation.  相似文献   

13.
1. In the present study we have examined whether neuropeptide Y (NPY) interferes with non-adrenergic, non-cholinergic nerve-mediated contractions and relaxations in the guinea-pig airways. In these experiments we have used ring preparations of bronchi and trachea, incubated in the presence of atropine, propranolol and indomethacin (each 1 microM). 2. The contractile response to electrical stimulation of non-adrenergic, non-cholinergic nerve fibres was suppressed by NPY and NPY 13-36 in a concentration-dependent manner, these agents having similar inhibitory potencies. NPY caused a more complete inhibition than the C terminal fragment. 3. NPY affected neither the basal tension nor the substance P-evoked contraction in the bronchi and trachea and did not interfere with nerve-mediated, non-adrenergic relaxation in the trachea. 4. On the basis of these results, it is suggested that NPY may act on the terminals of sensory neurones in the airways to prevent antidromic, excitatory neurotransmission by inhibiting transmitter release.  相似文献   

14.
Kinins have been suggested to be involved in human airway diseases such as asthma and rhinitis. MEN16132 is a non-peptide kinin B(2) receptor antagonist able to inhibit the responses produced by intravenous bradykinin into the airways, as bronchoconstriction and microvascular leakage; we tested the effect of MEN16132 on endogenously generated bradykinin through the dextran sulfate-induced contact activation of kinin-kallikrein cascade in guinea-pigs. After dextran sulfate administration (1.5 mg/kg i.v.), the pulmonary insufflation pressure was monitored and the microvascular leakage of upper and lower airways was assessed using Evans blue as tracer of plasma protein extravasation. Our results demonstrated that topical MEN16132 strongly inhibited the dextran sulfate-induced bronchoconstriction (0.3 mM solution aerosol for 5 min) and plasma protein extravasation in both lower airways (3-10 microM solution aerosol for 5 min) and nasal mucosa (0.3 nmol/nostril); Icatibant, the peptide antagonist of kinin B(2) receptor, exerted a 3-30-fold less potent inhibitory effect than MEN16132. We conclude that local application of MEN16132 into the airways abolishes the responses produced by the endogenous generation of bradykinin and it can be useful as new pharmacological tool to check the role of kinins in human diseases.  相似文献   

15.
The endogenous cannabinoid anandamide was identified as an agonist for the recombinant human VR1 (hVR1) by screening a large array of bioactive substances using a FLIPR-based calcium assay. Further electrophysiological studies showed that anandamide (10 or 100 microM) and capsaicin (1 microM) produced similar inward currents in hVR1 transfected, but not in parental, HEK293 cells. These currents were abolished by capsazepine (1 microM). In the FLIPR anandamide and capsaicin were full agonists at hVR1, with pEC(50) values of 5. 94+/-0.06 (n=5) and 7.13+/-0.11 (n=8) respectively. The response to anandamide was inhibited by capsazepine (pK(B) of 7.40+/-0.02, n=6), but not by the cannabinoid receptor antagonists AM630 or AM281. Furthermore, pretreatment with capsaicin desensitized the anandamide-induced calcium response and vice versa. In conclusion, this study has demonstrated for the first time that anandamide acts as a full agonist at the human VR1.  相似文献   

16.
1. In the isolated electrically driven left atria from reserpine-pretreated guinea-pigs and in presence of 1 microM atropine, electrical field stimulation (EFS) at 10 Hz produces a delayed positive inotropic response (DPIR) involving activation of capsaicin-sensitive afferents. 2. Opioids inhibited the DPIR with the following order of potency: dermorphin greater than [D-Ala2,N-MePhe4, Gly5-ol]-enkephalin (DAGO) greater than or equal to [D-Ala2,D-Leu5]-enkephalin (DADLE) greater than morphine greater than dynorphin A (1-13) greater than [D-Pen2,D-Pen5]-enkephalin (DPDPE). U-50488 was ineffective up to 10 microM. 3. Opioids also inhibited resting inotropism (3 Hz) with the following rank order of potency: DADLE greater than DAGO greater than U-50488 = dynorphin A (1-13) = morphine = DPDPE. 4. Both inhibition of the DPIR and inhibition of resting inotropism were prevented by 10 microM naloxone. 5. Neither dermorphin (0.1 microM) nor DAGO (0.3 microM) or DADLE (1 microM) inhibit responses produced by capsaicin (30 nM) or calcitonin gene-related peptide (3 nM). 6. These findings indicate that capsaicin-sensitive nerves in the guinea-pig atrium are endowed with mu opioid receptors which inhibit transmitter release when sensory nerve terminals are activated by EFS but not by capsaicin.  相似文献   

17.
18.
1. The effects of anandamide on [3H]-acetylcholine release and muscle contraction were studied on the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum preincubated with [3H]-choline. 2. Anandamide increased both basal [3H]-acetylcholine release (pEC(50) 6.3) and muscle tone (pEC(50) 6.3). The concentration-response curves for anandamide were shifted to the right by 1 microM capsazepine (pK(B) 7.5 and 7.6), and by the combined blockade of NK1 and NK3 tachykinin receptors with the antagonists CP99994 plus SR142801 (each 0.1 microM). The CB1 and CB2 receptor antagonists, SR141716A (1 microM) and SR144528 (30 nM), did not modify the facilitatory effects of anandamide. 3. Anandamide inhibited the electrically-evoked release of [3H]-acetylcholine (pEC(50) 5.8) and contractions (pEC(50) 5.2). The contractile response to the muscarinic agonist methacholine was not significantly affected by 10 microM anandamide. 4. The inhibitory effects of anandamide were not changed by either capsazepine (1 microM), SR144528 (30 nM) or CP99994 plus SR142801 (each 0.1 microM). SR141716A (1 microM) produced rightward shifts in the inhibitory concentration-response curves for anandamide yielding pK(B) values of 6.6 and 6.2. 5. CP55940 inhibited the evoked [3H]-acetylcholine release and contractions, and SR141716A (0.1 microM) shifted the concentration-response curves of CP55940 to the right with pK(B) values of 8.4 and 8.9. 6. The experiments confirm the existence of release-inhibitory CB1 receptors on cholinergic myenteric neurones. We conclude that anandamide inhibits the evoked acetylcholine release via stimulation of a receptor that is different from the CB1 and CB2 receptor. Furthermore, anandamide increases basal acetylcholine release via stimulation of vanilloid receptors located at primary afferent fibres.  相似文献   

19.
1. This study was directed at exploring the structure-activity relationship for anandamide and certain of its analogues at the rat VR1 receptor in transfected cells and at investigating the relative extent to which anandamide interacts with CB(1) and vanilloid receptors in the mouse vas deferens. 2. pK(i) values for displacement of [(3)H]-resiniferatoxin from membranes of rVR1 transfected CHO cells were significantly less for anandamide (5.78) than for its structural analogues N-(4-hydroxyphenyl)-arachidonylamide (AM404; 6.18) and N-(3-methoxy-4-hydroxy)benzyl-arachidonylamide (arvanil; 6.77). 3. pEC(50) values for stimulating (45)Ca(2+) uptake into rVR1 transfected CHO cells were significantly less for anandamide (5.80) than for AM404 (6.32) or arvanil (9.29). Arvanil was also significantly more potent than capsaicin (pEC(50)=7.37), a compound with the same substituted benzyl polar head group as arvanil. 4. In the mouse vas deferens, resiniferatoxin was 218 times more potent than capsaicin as an inhibitor of electrically-evoked contractions. Both drugs were antagonized to a similar extent by capsazepine (pK(B)=6.93 and 7.18 respectively) but were not antagonized by SR141716A (1 microM). Anandamide was less susceptible than capsaicin to antagonism by capsazepine (pK(B)=6.02) and less susceptible to antagonism by SR141716A (pK(B)=8.66) than methanandamide (pK(B)=9.56). WIN55212 was antagonized by SR141716A (pK(B)=9.02) but not by capsazepine (10 microM). 5. In conclusion, anandamide and certain of its analogues have affinity and efficacy at the rat VR1 receptor. In the mouse vas deferens, which seems to express vanilloid and CB(1) receptors, both receptor types appear to contribute to anandamide-induced inhibition of evoked contractions.  相似文献   

20.
The endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG) bind to G protein-coupled central and peripheral cannabinoid receptors CB1 and CB2, respectively. Due to the relatively high expression of the CB2 isotype on peripheral immune cells, it has been hypothesized that this receptor mediates the immunosuppressive effects of cannabinoids. Unfortunately, there was a dearth of pharmacological studies with the endocannabinoids and human CB2 (hCB2). These studies compare and contrast the potency and efficacy of anandamide, 2-AG, and the synthetic cannabinoid HU210 at hCB2. Using [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) and radioligand bindings in insect Sf9-hCB2 membranes, we showed that both endocannabinoids bound hCB2 with similar affinity and that the cannabinoids acted as full agonists in stimulating [(35)S]GTPgammaS exchange, although 2-AG was 3-fold more potent than anandamide (EC(50) = 38.9 +/- 3.1 and 121 +/- 29 nM, respectively). In a mammalian expression system (Chinese hamster ovary-hCB2 cells), HU210 and 2-AG maximally inhibited forskolin-stimulated cAMP synthesis (IC(50) = 1.61 +/- 0.42 nM and 1.30 +/- 0.37 microM, respectively) although anandamide was ineffective. In Chinese hamster ovary-hCB2 membranes, HU210 and 2-AG were also full agonists in stimulating [(35)S]GTPgammaS binding (EC(50) = 1.96 +/- 0.35 and 122 +/- 17 nM, respectively), but anandamide was a weak partial agonist (EC(50) = 261 +/- 91 nM; 34 +/- 4% of maximum). Due to its low intrinsic activity, coincubation with anandamide effectively attenuated the functional activity of 2-AG at hCB2. Collectively, the data showed that both endocannabinoids bound hCB2 with similar affinity, but only 2-AG functioned as a full agonist. Moreover, the agonistic activity of 2-AG was attenuated by anandamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号