首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to reach a deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, we showed that CYP450 (2E1) inhibitors, such as diallyl sulfide (DAS) or phenylethylisothiocyanate (PIC), also potentiate the selective DA neuron degeneration in C57/bl mice. Furthermore we showed that CYP 2E1 is present in the brain and in the basal ganglia of mice (Vaglini et al., 2004). However, because DAS and PIC are not selective CYP 2E1 inhibitors and in order to provide direct evidence for CYP 2E1 involvement in the enhancement of MPTP toxicity, CYP 2E1 knockout mice (GONZ) and wild type animals (SVI) of the same genetic background were treated with MPTP or the combined DDC + MPTP treatment. In CYP 2E1 knockout mice, DDC pretreatment completely fails to enhance MPTP toxicity, although enhancement of MPTP toxicity was regularly present in the SVI control animals. The immunohistochemical study confirms our results and suggests that CYP 2E1 may have a detoxifying role.  相似文献   

2.
Elucidation of the biochemical steps leading to the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-induced degeneration of the nigro-striatal dopamine (DA) pathway has provided new clues to the pathophysiology of Parkinson's Disease (PD). In line with the enhancement of MPTP toxicity by diethyldithiocarbamate (DDC), here we demonstrate how other CYP450 (2E1) inhibitors, such as diallyl sulfide (DAS) or phenylethylisothiocyanate (PIC), also potentiate the selective DA neuron degeneration in C57/bl mice. In order to provide direct evidence for this isozyme involvement, CYP 2E1 knockout mice were challenged with MPTP or the combined treatment. Here we show that these transgenic mice have a low sensitivity to MPTP alone, similarly to the wild type SVI, suggesting that it is likely that transgenic mice compensate for the missing enzyme. However, in these CYP 2E1 knockout mice, DDC pretreatment completely fails to enhance MPTP toxicity; this enhancement is instead regularly present in the SVI control animals. This study indicates that the occurrence of CYP 2E1 in C57/bl mouse brain is relevant for MPTP toxicity, and suggests that this isozyme may have a detoxificant role related to the efflux transporter of the toxin.  相似文献   

3.
We have previously shown that ethanol and acetaldehyde (ACE) potentiate MPTP toxicity in mice, selectively enhancing dopamine (DA) depletion in the striatum and markedly increasing loss of DA neurons in the substantia nigra. Several months after these combined treatments there is no evidence of any recovery. In the present study, we measured the accumulation of the MPTP toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) in both striatum and whole brain, after MPTP alone or after combined treatments with ethanol or acetaldehyde, in order to determine whether this enhancement of toxicity is caused by changes in the MPTP metabolism. We also investigated whether acetaldehyde interfered with the conversion of MPTP to MPP+ by glial cells in vitro and studied its effects on the MPP+ uptake and spontaneous release from mesencephalic DA neurons or striatal astrocytes in primary cell cultures from E13 mouse embryos. The results from the in vivo experiments indicated that relatively low doses of ethanol or acetaldehyde potentiate directly MPP+ toxicity, apparently without interfering with its pharmacokinetics. However when higher doses of these drugs were administered, they also decreased MPP+ clearance from the striatum. ACE also increased initial MPTP accumulation in the whole brain but failed to enhance MPP+ levels, thus indicating that ACE effect is not related to MPTP metabolism. In vitro studies confirmed that ACE does not modify MPTP metabolism in striatal or mesencephalic astrocytes in culture. In mesencephalic neuronal cultures ACE does not change the levels of MPP+ uptake (MPP+ is accumulated in putative DA neurons in vitro with a mechanism similar to that of the DA high affinity uptake) nor its spontaneous release. These results indicate that the slower MPP+ clearance from the stratum after ACE is not related to a direct effect of ACE on DA neurons or astrocytes.  相似文献   

4.
The mitochondrial inhibitor 1-methyl-4-phenylpyridinium (MPP(+)) is the toxicologically relevant metabolite of 1-methyl-4-phenyltetrahydropyridine (MPTP), which causes relatively selective degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic LUHMES cells were used to investigate whether ATP-depletion can be uncoupled from cell death as a downstream event in these fully post-mitotic human neurons. Biochemical assays indicated that in the homogeneously differentiated cell cultures, MPP(+) was taken up by the dopamine transporter (DAT). MPP(+) then triggered oxidative stress and caspase activation, as well as ATP-depletion followed by cell death. Enhanced survival of the neurons in the presence of agents interfering with mitochondrial pathology, such as the fission inhibitor Mdivi-1 or a Bax channel blocker suggested a pivotal role of mitochondria in this model. However, these compounds did not prevent cellular ATP-depletion. To further investigate whether cells could be rescued despite respiratory chain inhibition by MPP(+), we have chosen a diverse set of pharmacological inhibitors well-known to interfere with MPP(+) toxicity. The antioxidant ascorbate, the iron chelator desferoxamine, the stress kinase inhibitor CEP1347, and different caspase inhibitors reduced cell death, but allowed ATP-depletion in protected cells. None of these compounds interfered with MPP(+) accumulation in the cells. These findings suggest that ATP-depletion, as the initial mitochondrial effect of MPP(+), requires further downstream processes to result in neuronal death. These processes may form self-enhancing signaling loops, that aggravate an initial energetic impairment and eventually determine cell fate.  相似文献   

5.
This study investigated the effect of a knockout of the caspase 2 gene on the sensitivity of murine nigral dopaminergic neurons to 1-methyl-4-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity. Female wild type (WT), heterozygous caspase 2 NL (HET) and homozygous caspase 2 null (NL) mice were treated with cumulative dosages of 0, 10, 15 or 20 mg/kg MPTP free base. Without MPTP treatment, one week later dopamine (DA) levels were not significantly different in HET or NL versus WT mice. Twenty mg/kg MPTP reduced striatal DA in WT and HET (p < 0.01) but not NL mice. This same MPTP dosage regimen also induced a significantly greater decrease in tyrosine hydroxylase immunopositive (TH+) protein in striata of WT compared to NL mice (p < 0.001).Subsequently, WT and NL mice were treated daily with 20 mg/kg MPTP for 3 days and 25 mg/kg MPTP for 2 additional days, and TH+ neurons in the substantia nigra (SN) were estimated using unbiased stereology. When compared to untreated WT, the numbers of TH+ neurons were significantly lower in the SN of untreated NL mice (p < 0.05). Treatment with the MPTP regimen significantly reduced TH+ neurons in WT mice but not NL mice.In primary mesencephalic cultures both the cell bodies and the neuronal processes of TH immunopositive (TH+) neurons from NL embryos were significantly (p < 0.001) more resistant to 10 μM MPP+ compared to WT. Following MPP+ treatment, features of apoptotic cell death were also significantly (p < 0.001) more prevalent in nuclei of TH+ neurons in cultures prepared from WT versus NL mouse pups.These results suggest that caspase 2 may play a role in modulating the MPTP-induced damage to the nigrostriatal dopaminergic system.  相似文献   

6.
Parkinson's disease (PD) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity are both associated with dopaminergic neuron death in the substantia nigra. Although a variety of evidence has shown that degenerative cells have apoptotic features, the role of apoptosis in disease pathology remains controversial. The 1-methyl-4-phenylpyridinium ion (MPP(+)), a metabolite of MPTP, was recently shown to alter the expression of proteins involved in translational control. The initiation step of translational control is regulated by a cascade of phosphorylation affecting proteins of the antiapoptotic way controlled by mammalian target of rapamycin (mTOR) and of the proapoptotic way controlled by double-stranded RNA protein-dependent kinase (PKR). A study showed that MPP(+) induced an increase in eIF2alpha phosphorylation, leading to inhibition of protein synthesis. The aims of our study were: (1) to assess the effects of MPP(+) toxicity on molecular factors of PKR and mTOR signaling pathways in murine neuroblastoma cells, and (2) to examine the ability of VIP and PACAP peptides to counteract the MPP(+) toxicity. Our findings showed that MPP(+) induced phosphorylation of eIF2alpha and significantly reduced the expression of phosphorylated mTOR, p70S6K, eIF4E, and 4E-BP1, suggesting its toxicity in controlling protein synthesis. Furthermore, the VIP peptide had no effect on either the PKR or the mTOR signaling pathway. On the contrary, the PACAP 27 neuropeptide prevented MPP(+)-induced eIF2alpha phosphorylation and blocked MPP(+) toxicity in molecular factors of the mTOR pathway. And last, PACAP 27 seemed to protect Neuro-2a cells from the apoptotic process as assessed by the decreased nuclear condensation after DAPI staining. These results could open new paths of research of PACAP in PD.  相似文献   

7.
8.
Mutations in the gene for DJ-1 have been associated with early-onset autosomal recessive parkinsonism. Previous studies of null DJ-1 mice have shown alterations in striatal dopamine (DA) transmission with no DAergic cell loss. Here we characterize a new line of DJ-1-deficient mice. A subtle locomotor deficit was present in the absence of a change in striatal DA levels. However, increased [(3)H]-DA synaptosomal uptake and [(125)I]-RTI-121 binding were measured in null DJ-1 vs. wild-type mice. Western analyses of synaptosomes revealed significantly higher dopamine transporter (DAT) levels in pre-synaptic membrane fractions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure exacerbated striatal DA depletion in null DJ-1 mice with no difference in DAergic nigral cell loss. Furthermore, increased 1-methyl-4-phenylpyridinium (MPP(+)) synaptosomal uptake and enhanced MPP(+) accumulation were measured in DJ-1-deficient vs. control striatum. Thus, under null DJ-1 conditions, DAT changes likely contribute to altered DA neurotransmission and enhanced sensitivity to toxins that utilize DAT for nigrostriatal entry.  相似文献   

9.
We characterized organotypic ventral mesencephalic (VM) cultures derived from embryonic day 12 (E12) mice (CBL57/bL6) in terms of number of dopaminergic neurons, cell soma size and dopamine production in relation to time in vitro and tested the effects of 1-methyl-4-phenylpyridinium (MPP(+)) and glial derived neurotrophic factor (GDNF) to validate this novel culture model. Dopamine production and dopaminergic neuron soma size increased dramatically with time in vitro, whereas the number of dopamine neurons declined by approximately 30% between week 1 and week 2, which was further reduced after week 4. GDNF treatment (100 ng/mL) increased dopaminergic neuron soma size (up to 43%) and DOPAC production (approximately three-fold), but not the number of dopamine neurons in control cultures. One-week-old cultures were more vulnerable to MPP(+), than three-week-old cultures. The EC(50) for dopamine depletion after 2 days exposure and 15 days of recovery were 0.6 and 7 microm, respectively. Both pre-treatment and post-treatment with GDNF are important to obtain maximal protection against MPP(+) toxicity. In one-week-old cultures (5 microm MPP(+), 2 days) GDNF provided potent neuroprotection with dopamine contents reaching control levels and number of tyrosine hydroxylase (TH)(+) cells up to 80% of control, but in three-week-old cultures (10 microm MPP(+), 2 days) the protective potential of GDNF was markedly reduced. Long recovery periods after MPP(+) exposure are required to distinguish between reversible or irreversible toxic and/or trophic effects.  相似文献   

10.
Carlos Fonck  Michel Baudry   《Brain research》2001,905(1-2):199-206
MPTP is a toxin presumed to damage dopamine-secreting neurons by an oxygen free radical-mediated mechanism. Two steps in MPTP metabolism are the primary candidates for oxygen free radical generation: (a) MPTP oxidation to MPP(+) by a monoamine oxidase and (b) NADH dehydrogenase inhibition by MPP(+). In order to test the idea that MPTP toxicity is mediated by oxygen free radicals, we assessed lipid peroxidation and the effects of antioxidants in dopaminergic PC12 cells treated with MPTP or MPP(+). For comparison purposes, we also examined the effects of the pro-oxidant tert-butyl-hydroperoxide (TBHP) and of the dopaminergic toxin 6-hydroxydopamine (6-OHDA) in PC12 cells. MPTP and MPP(+), unlike TBHP, failed to induce lipid peroxidation in PC12 cells after a 4-h exposure. All toxins tested (MPTP, MPP(+), TBHP and 6-OHDA) caused a dose-dependent decrease in [(3)H]dopamine ((3)H-DA) uptake in PC12 cultures. The hydroperoxide scavengers glutathione and N-acetyl-cysteine and the superoxide and peroxide scavenger EUK-134 protected PC12 cells from TBHP- and 6-OHDA-induced decrease in (3)H-DA uptake. However, no protection by these antioxidants at various concentrations and time regimens was observed against MPTP- or MPP(+)-induced decreases in (3)H-DA uptake in PC12 cells. In addition, incubation of PC12 cells with the energy-rich substrate, NADH, attenuated MPP(+)-induced decrease in (3)H-DA uptake. These results suggest that MPTP-induced toxicity in dopaminergic PC12 cell cultures, does not involve oxygen free radical production, but rather may be caused by impairment in energy metabolism.  相似文献   

11.
Although nontoxic when administered alone, diethyldithiocarbamate (DDC) is known to enhance the dopamine-depleting effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse striatum. The purpose of the present study was twofold: (i) to carefully characterize the effects of DDC on MPTP-induced degeneration of dopaminergic neurons in substantia nigra pars compacta using unbiased, stereological cell counting techniques and (ii) to determine whether or not DDC can convert a nontoxic dose of MPTP into one which is clearly toxic on dopaminergic neurons in the substantia nigra. A single low dose of MPTP (15 mg/kg intraperitoneally (ip)) was used for these studies, which failed to induce any neurochemical or histological effects on the nigrostriatal system of C57BL/6 mice when administered alone. However, when animals were pretreated with DDC (400 mg/kg ip), the same dose of MPTP resulted in a 50% loss of neurons in the substantia nigra pars compacta, as well as a 70% reduction in striatal dopamine (DA). A 31% reduction of DA in the ventral mesencephalon was also seen. This combined regimen of DDC and MPTP was not significantly different from a maximally tolerated "toxic" dose of MPTP alone (15 mg/kg x 4, 1 h apart, ip). As expected, animals receiving DDC alone did not show any dopamine depletion nor nigral neuronal loss. The present study confirms previous work suggesting that DDC enhances MPTP-induced nigral cell loss and shows for the first time that DDC can "unmask" MPTP toxicity. These observations could have implications for theories on the cause of Parkinson's disease.  相似文献   

12.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), the active product of MPTP, caused Parkinson's disease-like symptoms. The mechanism of action of MPP+ is unknown, but analogues of MPTP lacking an N-methyl group were found to be essentially devoid of toxicity, which means that the methyl group of the pyridine ring plays a role in the toxicity. This is of interest because S-adenosylmethionine (SAM), which is the biologic methyl donor and requires a methyl group for its action, also caused MPP(+)-like motor deficits in rodents. Therefore, the requirement of a methyl group by MPTP and MPP+ for their actions suggests that, like SAM, MPP+ and MPTP may serve as methyl donors. This hypothesis was tested by reacting SAM, MPP+, or MPTP with dopamine in the presence of catechol-O-methyltransferase and measuring the methylated product of dopamine produced. Like SAM, MPP+, but not MPTP, methylated dopamine. The methylated product coeluted from chromatographic columns with standard 3-methoxytyramine. Concentrations of 15.6, 62.5, 250, and 1000 nmoles/tube increased the 3-methoxytyramine recovered above controls by 0.0, 6.88, 44.55, 129.47 and 5.8, 13.9, 50.58, 121.31 nmoles for SAM and MPP+, respectively. The dopamine that remained unreacted was dose-dependently decreased. MPTP had no significant effect. The ability of MPP+ to serve as a methyl donor may represent a mechanism for the toxicity of MPP+.  相似文献   

13.
The protein α-synuclein is central to the pathophysiology of Parkinson’s disease (PD) but its role in the development of neurodegeneration remains unclear. α-Synuclein-knockout mice develop without gross abnormality and are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial inhibitor widely used to model parkinsonism. Here we show that differentiated human dopaminergic neuron-like cells also have increased resistance to 1-methyl-4-phenylpyridine (MPP+), the active metabolite of MPTP, when α-synuclein is knocked down using RNA interference. In attempting to understand how this occurred we found that lowering α-synuclein levels caused changes to intracellular vesicles, dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2), each of which is known to be an important component of the early events leading to MPP+ toxicity. Knockdown of α-synuclein reduced the availability of DAT on the neuronal surface by 50%, decreased the total number of intracellular vesicles by 37% but increased the density of VMAT2 molecules per vesicle by 2.8-fold. However, these changes were not associated with any reduction in MPP+-induced superoxide production, suggesting that α-synuclein knockdown may have other downstream effects which are important. We then showed that α-synuclein knockdown prevented MPP+-induced activation of nitric oxide synthase (NOS). Activation of NOS is an essential step in MPTP toxicity and increasing evidence points to nitrosative stress as being important in neurodegeneration. Overall, these results show that as well as having a number of effects on cellular events upstream of mitochondrial dysfunction α-synuclein affects pathways downstream of superoxide production, possibly involving regulation of NOS activity.  相似文献   

14.
Cerebellar granule cells in enriched primary culture are susceptible to the neurotoxic effects of 1-methyl-4-phenylpyridinium (MPP+). Relatively high MPP+ concentrations are required to elicit neurotoxic effects at early culture times, but lower concentrations of MPP+ produce comparable neurotoxic effects at later culture times. Under identical culture conditions 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is not neurotoxic. Preincubation with the glutamate uptake blockers, DL-threo-3-hydroxyaspartic acid or dihydrokainate, or the dopaminergic uptake blocker mazindol, protects the granule cells from the cytotoxic effects of MPP+. Although MPTP is not neurotoxic in an enriched granule cell culture, in coculture with cerebellar astrocytes MPTP is toxic to granule cells, presumably because it is converted in astrocytes to MPP+. Cerebellar astrocytes remain confluent and viable. The addition of pargyline to the coculture abolishes the neurotoxicity consistent with a role of MAO B in bioactivation of MPTP. The concentration of MPP+ in the coculture medium (13 microM) was less than that required for the toxic effect in enriched neuronal cultures at earlier culture times, suggesting that an astroglial-neuronal interaction, perhaps by proximity, enhances the neurotoxicity of MPP+. These results might explain reported effects of MPTP on some cerebellar cells in mice.  相似文献   

15.
16.
Diethyldithiocarbamate (DDC) has been shown to enhance 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced striatal dopamine depletion in mice. Surprisingly, although DDC is a prototypic member of a class of compounds called dithiocarbamates (DTCs) that are widely used in industry and agriculture, only one study has investigated the interaction of dithiocarbamates other than DDC with MPTP. The purpose of the present study was to investigate whether two other widely used dithiocarbamates, ethylenebisdithiocarbamate (EBDC) and methyldithiocarbamate (MDC), would also enhance MPTP toxicity. The dithiocarbamates were administered to mice intraperitoneally at various doses with or without MPTP. Doses were chosen based on the LD50 values for each compound. DDC was also tested (using a previously reported dose) for comparison. Striata were obtained one week later for dopamine measurements. Consistent with previous reports, DDC produced statistically significant enhancement in MPTP-induced striatal dopamine depletion. EBDC also produced significant exacerbation of MPTP-induced dopamine depletion. In contrast to DDC and EBDC, MDC failed to enhance the effects of MPTP, even when administered at doses of high lethality. Further studies of the dithiocarbamate class of compounds may help to elucidate the mechanism of DDC and EBDC enhancement of MPTP toxicity. Given the widespread use of these compounds in the environment such studies may also provide clues to the process of nigrostriatal cell degeneration in Parkinson's disease.  相似文献   

17.
Smeyne M  Goloubeva O  Smeyne RJ 《Glia》2001,34(2):73-80
Parkinson's disease (PD) is a debilitating neurological disorder that strikes approximately 2% of people over age 50. Current hypotheses propose that the cause of PD is multifactorial, involving environmental agents and genetic predisposition. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces parkinsonism in many species, including humans and shows strain specificity in mice. The mechanism of strain specificity, however, remains unknown. Using novel chimeric murine substantia nigra cultures, we demonstrate that sensitivity to MPTP is conferred by glia and that it does not involve the MAO-B conversion of MPTP to MPP(+). C57Bl/6J dopaminergic neurons exposed to MPP(+) demonstrated a 39% loss when cultured on C57Bl/6J glia compared with 17% neuron loss when cultured on resistant SWR/J glia. Similarly, SWR/J neurons exposed to MPP(+) demonstrated a 4% loss when cultured on SWR/J glia, but a 14% loss when cultured on sensitive C57Bl/6J glia. The identification of glia as the critical cell type in the genesis of experimental Parkinsonism provides a target for the development of new anti-parkinsonian therapies.  相似文献   

18.
In this report we show that dextromethorphan, a non-opioid cough suppressant, prevents the neurodegeneration of dopaminergic neurons in the substantia nigra of mice treated with diethyldithiocarbamate (DDC) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This effect is further substantiated by the assessment of dopamine (DA) content in the striatum of these animals. Dextromethorphan does not attenuate the striatal DA fall induced by MPTP alone but completely prevents DDC-induced enhancement after the combined treatment. Moreover, a study of DA metabolites has confirmed this neuroprotective property. The striatal levels of serotonin, which were studied as a control neuronal marker, did not change with any of the treatments administered. Furthermore, we show that dextromethorphan reduces the toxicity of glutamate against dopamine neurons in mesencephalic cell cultures. In line with previous data suggesting that dextromethorphan can prevent neuronal damage, our observations supply new evidence regarding the possibility of this compound being of therapeutic use in neurodegenerative diseases.  相似文献   

19.
Dopaminergic neurons are a primary target for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. However, the conversion of MPTP to its neurotoxic 1-methyl-4-phenylpyridinium metabolite (MPP+) is likely to occur in astrocytes via the monoamine oxidase (MAO)-dependent formation of the 1-methyl-4-phenyl-2,3-dihydropyridinium intermediate (MPDP+). The main purpose of this study was to characterize the molecular mechanism(s) by which MPP+, once generated by astrocytes, may reach the extracellular space to become available for the active accumulation into dopaminergic neurons. Primary cultures of mouse astrocytes were used as an in vitro model system. After the addition of MPTP, levels of MPP+ were found to increase at constant rates both intracellularly and extracellularly at time points when no sign of cytotoxicity was evident. In contrast, MPDP+ levels remained quite stable during 4 days of incubation in the presence of MPTP. Finally, when astrocytes were allowed to accumulate MPP+ by pretreatment with either MPTP or MPP+ and then were incubated in fresh medium not containing MPTP or MPP+, intracellular levels of MPP+ rapidly declined and corresponding amounts of this compound were found in the incubation medium. Results of this study are compatible with the following conclusions: 1) the MPP+ accumulated in the extracellular compartment during incubations with MPTP is not released from astrocytes as a consequence of its own cytotoxic effects; 2) MPP+ can be formed extracellularly presumably via autoxidation of MPDP+ after this latter compound has been generated within astrocytes and has crossed astrocyte membranes; and 3) despite its charged chemical structure, MPP+ can cross the plasma membrane toward the extracellular space after being formed within astrocytes.  相似文献   

20.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The present study assessed the preventive effect of a prostaglandin E(1) analogue misoprostol against the toxicity of parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) with respect to the mitochondria-mediated cell death process and oxidative stress. MPP(+) induced the nuclear damage, the changes in the mitochondrial membrane permeability, the formation of reactive oxygen species and the depletion of GSH, which leads to cell death in differentiated PC12 cells. Misoprostol prevented the toxic effect of MPP(+). Treatment with misoprostol significantly attenuated the MPP(+)-induced mitochondrial membrane permeability change that leads to the increase in pro-apoptotic Bax and Cytochrome c levels, and subsequent caspase-3 activation. The protective effect of misoprostol may be supported by the inhibitory effect of prostaglandin E(1) on the MPP(+) toxicity. Misoprostol significantly attenuated another parkinsonian neurotoxin rotenone-induced cell death. The results show that misoprostol may prevent the MPP(+) toxicity by suppressing the mitochondrial membrane permeability change that leads to the Cytochrome c release and caspase-3 activation. The preventive effect seems to be ascribed to the inhibitory effect on the formation of reactive oxygen species and depletion of GSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号