首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Our objective was to evaluate the relationship between the disposition of sertraline and the presence of the CYP2C19 gene and to define the contribution of cytochrome P450 2C19 (CYP2C19) to sertraline N-demethylation. METHODS: A single oral 100-mg dose of sertraline was administered to 6 subjects who were extensive metabolizers and 6 subjects who were poor metabolizers recruited from 77 healthy Chinese volunteers whose genotypes were predetermined by polymerase chain reaction-based amplification, followed by restriction fragment length polymorphism analysis. Phenotypes were determined by use of the omeprazole metabolic rate. The plasma concentrations of sertraline and desmethylsertraline were determined by gas chromatography with electron-capture detection. RESULTS: Six poor metabolizers with m1 mutation had area under the plasma concentration versus time curve (AUC(0-infinity)) values (983.6 +/- 199.3 microg x h/L versus 697.6 +/- 133.0 microg x h/L; P <.05) and terminal elimination half-life values of sertraline (35.5 +/- 5.6 hours versus 23.5 +/- 4.4 hours; P <.01) that were significantly higher than the values in 6 extensive metabolizers who were either homozygous or heterozygous for CYP2C19*1. The oral clearance of sertraline in poor metabolizers (105.3 +/- 19.4 L/h) was significantly lower than that of extensive metabolizers (148.4 +/- 28.6 L/h). The area under the concentration-time curve from 0 to 144 hours and the maximum plasma concentration of desmethylsertraline in poor metabolizers were significantly lower than the values of extensive metabolizers (627.6 +/- 203.8 microg x h/L versus 972.1 +/- 270.3 microg x h/L; P <.05; and 23.6 +/- 6.5 nmol/L versus 32.4 +/- 8.2 nmol/L; P <.01; respectively). CONCLUSIONS: The polymorphic CYP2C19 appears to be a major enzyme involved in the N-demethylation of sertraline, and both extensive and poor metabolizers had marked differences in the disposition of sertraline.  相似文献   

2.
OBJECTIVE: To evaluate the relationship between the metabolic ratio (MR) of metoprolol, CYP2D6*10B genotype, and the disposition of paroxetine in Korean subjects. METHODS: A single 40-mg dose of paroxetine was administered orally to one poor metabolizer and 15 healthy subjects recruited from 223 Korean extensive metabolizers whose phenotypes were predetermined by use of the metoprolol MR. Genotypes were determined by allele-specific polymerase chain reaction and the GeneChip microarray technique. Pharmacokinetic parameters were estimated from plasma concentrations of paroxetine for more than 240 hours after the oral dose. RESULTS: The oral clearance and area under the plasma concentration versus time curve (AUC) of paroxetine were best described by a nonlinear relationship with metoprolol MR at correlation coefficients of 0.82 and 0.91, respectively (P < .05). Nine extensive metabolizer who were either homozygous or heterozygous for CYP2D6*10B had significantly lower oral clearance values of paroxetine than six extensive metabolizers with CYP2D6*1/*1. The AUC of paroxetine in subjects who were homozygous for CYP2D6*10B (666.4 +/- 169.4 ng/mL x h) was significantly greater than that of subjects who were homozygous for the wild type (194.5 +/- 55.9 ng/mL x h). Unexpectedly, the average AUC of subjects who were heterozygous for CYP2D6*10B was greater with wide variation (789.8 +/- 816.9 ng/mL x h) than that of subjects who were homozygous CYP2D6*10B/*10B mainly because of two atypical subjects whose metoprolol MR was not associated with the CYP2D6*10B genotype and who showed greater AUC and lower oral clearance than subjects with homozygous CYP2D6*10B. CONCLUSIONS: The CYP2D6 activity measured by metoprolol MR was a strong predictor of paroxetine disposition in Korean extensive metabolizers. In general, the extensive metabolizers with the CYP2D6*10B allele seemed to have higher plasma concentrations of paroxetine than extensive metabolizers with the wild-type CYP2D6 genotype. However, quantitative prediction of paroxetine disposition from the CYP2D6*10B genotype alone was not perfect because several Korean extensive metabolizers had metoprolol MRs that were not associated with the genotype.  相似文献   

3.
OBJECTIVE: To evaluate the enantioselective disposition of lansoprazole in relation to the genetic polymorphism of CYP2C19. METHODS: A single oral dose of racemic lansoprazole (30 mg) was administered to 6 extensive metabolizers and 6 poor metabolizers whose genotypes were determined by use of polymerase chain reaction-restriction fragment length polymorphism. The pharmacokinetic parameters were estimated from the plasma concentrations of lansoprazole racemate, its enantiomers, and metabolites, which were measured for 24 hours after drug administration. The unbound fraction of lansoprazole enantiomers was determined by means of ultrafiltration of fresh human serum spiked with racemic lansoprazole. RESULTS: The plasma concentrations of R(+)-lansoprazole were consistently higher than those of the S(-)-enantiomer in both extensive and poor metabolizers of CYP2C19, and the mean area under the plasma concentration-time curve of the (+)- and (-)-enantiomers showed 4.3- and 5.8-fold differences between poor and extensive metabolizers, respectively. The (+)/(-) ratios of lansoprazole clearance were not significantly different between poor and extensive metabolizers (0.19 +/- 0.07 and 0.05 +/- 0.08, respectively). The values for volume of distribution of the (-)-enantiomer were 3- and 10-fold greater, respectively, than those of the (+)-enantiomer in poor and extensive metabolizers, which was related to a 2-fold higher unbound fraction of the (-)-enantiomer. CONCLUSIONS: The effect of CYP2C19 genetic polymorphism on the enantioselective disposition of lansoprazole seems to be less significant than the effect on omeprazole and pantoprazole. The disposition of lansoprazole enantiomers appears to be influenced by enantioselective protein binding and by enantioselective metabolism of lansoprazole.  相似文献   

4.
BACKGROUNDS AND AIM: Lansoprazole is mainly metabolized by cytochrome P4502C19 (CYP2C19) in the liver. The effect of lansoprazole is assumed to be insufficient in subjects who are homozygous extensive metabolizers of CYP2C19. This study aimed to examine whether the CYP2C19 genotype status affected the acid-inhibitory effects of lansoprazole and to develop a strategy to overcome this pharmacogenetic problem. METHODS: Eighteen Helicobacter pylori-negative healthy volunteers, whose CYP2C19 genotypic status had been assessed, participated in the study. They consisted of 7 subjects who were homozygous extensive metabolizers, 7 subjects who were heterozygous extensive metabolizers, and 4 subjects who were poor metabolizers of CYP2C19, who took a placebo or lansoprazole 30 mg once daily in the morning for 8 days. On day 8 of dosing, 24-hour intragastric pH values were recorded. Five of the homozygous extensive metabolizer subjects underwent the 24-hour intragastric pH monitoring on day 8 of dosing of lansoprazole 30 mg 4 times daily. RESULTS: When lansoprazole 30 mg was given once daily, the mean 24-hour intragastric pH values in the subjects who were homozygous extensive metabolizers, heterozygous extensive metabolizers, and poor metabolizers were 4.5, 4.9, and 5.5, respectively (P <.005). On day 8 of dosing of lansoprazole 30 mg 4 times daily in subjects who were homozygous extensive metabolizers, the mean 24-hour intragastric pH value was 7.4. CONCLUSION: The effect of lansoprazole on intragastric pH depended significantly on CYP2C19 genotype status. Complete acid inhibition could be achieved by the frequent administration of lansoprazole (eg, 30 mg 4 times daily) in subjects who were homozygous extensive metabolizers. A genotyping test of CYP2C19 status appears useful for prescribing an optimal dosing scheme of lansoprazole.  相似文献   

5.
OBJECTIVES: Cytochrome P450 (CYP) 2C19 and CYP3A4 are the major enzymes responsible for voriconazole elimination. Because the activity of CYP2C19 is under genetic control, the extent of inhibition with a CYP3A4 inhibitor was expected to be modulated by the CYP2C19 metabolizer status. This study thus assessed the effect of the potent CYP3A4 inhibitor ritonavir after short-term administration on voriconazole pharmacokinetics in extensive metabolizers (EMs) and poor metabolizers (PMs) of CYP2C19. METHODS: In a randomized, placebo-controlled crossover study, 20 healthy participants who were stratified according to CYP2C19 genotype received oral ritonavir (300 mg twice daily) or placebo for 2 days. Together with the first ritonavir or placebo dose, a single oral dose of 400 mg voriconazole was administered. Voriconazole was determined in plasma and urine by liquid chromatography-mass spectrometry, and pharmacokinetic parameters were estimated by noncompartmental analysis. RESULTS: When given alone, the apparent oral clearance of voriconazole after single oral dosing was 26%+/-16% (P > .05) lower in CYP2C19*1/*2 individuals and 66%+/-14% (P < .01) lower in CYP2C19 PMs. The addition of ritonavir caused a major reduction in voriconazole apparent oral clearance (354+/-173 mL/min versus 202+/-139 mL/min, P = .0001). This reduction occurred in all CYP2C19 genotypes (463+/-168 mL/min versus 305+/-112 mL/min [P = .023] for *1/*1, 343+/-127 mL/min versus 190+/-93 mL/min [P = .008] for *1/*2, and 158+/-54 mL/min versus 22+/-11 mL/min for *2/*2) and is probably caused by inhibition of CYP3A4-mediated voriconazole metabolism. CONCLUSIONS: Coadministration of a potent CYP3A4 inhibitor leads to a higher and prolonged exposure with voriconazole that might increase the risk of the development of adverse drug reactions on a short-term basis, particularly in CYP2C19 PM patients.  相似文献   

6.
BACKGROUND: Although cytochrome P450 (CYP) 2C9 was thought to be the main pathway for glyburide (INN, glibenclamide) metabolism in vivo, studies in vitro indicated that CYP2C19 had a more dominant effect. This study investigated the relative influence of CYP2C9 and CYP2C19 genotypes on the pharmacokinetics and pharmacodynamics of glyburide in Chinese subjects. METHODS: Three groups of healthy male Chinese subjects (n=6 per group) were enrolled, as follows: group I, CYP2C9*1/*1 and CYP2C19 extensive metabolizers (EMs); group II, CYP2C9*1/*1 and CYP2C19 poor metabolizers (PMs); and group III, CYP2C9*1/*3 and CYP2C19 EMs. Subjects received single oral doses of 5 mg glyburide. Multiple blood samples were collected, and the plasma glyburide concentrations were determined by an HPLC method. The plasma glucose and insulin concentrations were also measured up to 2 hours after dosing. RESULTS: No significant differences in glyburide pharmacokinetics were observed between CYP2C19 EM and PM subjects who had the CYP2C9*1/*1 genotype (group I versus group II). Their respective values for area under the plasma concentration-time curve from time 0 to infinity (AUC0-infinity) and elimination half-life (t1/2) were 0.46+/-0.13 microg.h/mL versus 0.57+/- 0.11 microg.h/mL (P=.569) and 2.09+/-0.22 hours versus 2.24+/- 0.27 hours (P=.721). However, significant increases in AUC(0-infinity) (125% and 82%; P=.008 and .024, respectively) and t1/2 (71% and 60%; P=.003 and .007, respectively) were observed when CYP2C9*1/*3 subjects (group III) were compared with CYP2C9*1/*1 subjects in group I or II. Blood glucose reductions at 2 hours after dosing were 41.8%, 23.9%, and 27.7% in groups I, II, and III, respectively (P=.029), and hypoglycemia developed in 3 of 6 CYP2C9*1/*3 carriers and 2 of 12 CYP2C9*1/*1 carriers. CONCLUSION: CYP2C9, but not CYP2C19, polymorphism appears to exert a dominant influence on glyburide pharmacokinetics and pharmacodynamics in vivo. Further studies in diabetic patients with long-term dosing are warranted to confirm these findings.  相似文献   

7.
Pantoprazole, a proton pump inhibitor, is administered as a racemic mixture. To determine the role of cytochrome P450 (CYP) 2C19 in the stereoselective metabolism of pantoprazole, we investigated the pharmacokinetic disposition of (+)- and (-)-pantoprazole in 7 extensive metabolizers and 7 poor metabolizers of S-mephenytoin. All of the subjects received an oral 40-mg dose of racemic pantoprazole as the enteric-coated formulation. In the extensive metabolizers, the mean clearance of (-)-pantoprazole was only slightly lower than that of (+)-pantoprazole and no significant differences in the other pharmacokinetic parameters between (+)- and (-)-pantoprazole were observed. The mean (+)/(-) ratios for maximum concentration, area under the plasma concentration-time curve from 0 to infinity, and elimination half-life were 0.94, 0.82, and 0.90, respectively. In contrast, in the poor metabolizers, the clearance values of both enantiomers were significantly lower than those in the extensive metabolizers, and a significant difference in pharmacokinetics between (+)- and (-)-pantoprazole was observed. The mean elimination half-life for (+)-pantoprazole was 3.55-fold longer than that of (-)-pantoprazole, and the mean maximum concentration and area under the plasma concentration-time curve from 0 to infinity for (+)-pantoprazole were 1.31- and 3.59-fold greater, respectively, than those for (-)-pantoprazole. These results indicate that the stereoselective metabolism of pantoprazole depends on S-mephenytoin 4'-hydroxylase (CYP2C19). The metabolism of (+)-pantoprazole was impaired to a greater extent than (-)-pantoprazole in the poor metabolizers.  相似文献   

8.
BACKGROUND: Moclobemide, an antidepressant with selective monoamine oxidase-A inhibitory action, is known to be metabolized by CYP2C19 and is also reported to be an inhibitor of CYP2C19, CYP2D6, and CYP1A2. To confirm the involvement of CYP2C19, we performed a pharmacokinetic interaction study. METHODS: The effect of omeprazole on the pharmacokinetics of moclobemide was studied in 16 healthy volunteers. The volunteer group comprised 8 extensive metabolizers and 8 poor metabolizers of CYP2C19, which was confirmed by genotyping. Subjects were randomly allocated into two sequence groups, and a single-blind, placebo-controlled, two-period crossover study was performed. In study I, a placebo was orally administered for 7 days. On the eighth morning, 300 mg of moclobemide and 40 mg of placebo were coadministered with 200 mL of water, and a pharmacokinetic study was performed. During study II, 40 mg of omeprazole was given each morning instead of placebo, and pharmacokinetic studies were performed on the first and eighth day with 300 mg of moclobemide coadministration. RESULTS: The inhibition of moclobemide metabolism was significant in extensive metabolizers even after a single dose of omeprazole. After daily administration of omeprazole for 1 week, the pharmacokinetic parameters of moclobemide and its metabolites in extensive metabolizers changed to values similar to those in poor metabolizers. In poor metabolizers, no remarkable changes in the pharmacokinetic parameters were observed. CONCLUSION: Our results show that CYP2C19 is an important enzyme in the elimination of moclobemide and that it is extensively inhibited by omeprazole in extensive metabolizers, but not in poor metabolizers.  相似文献   

9.
OBJECTIVES: To identify defective alleles of CYP2C19 (CYP2C19*2 and *3) in North Indians. METHODS: One hundred extensive metabolizers and 21 poor metabolizers of omeprazole were genotyped with respect to CYP2C19*2 and *3 alleles with polymerase chain reaction-based diagnostic tests. RESULTS: Fifty-two extensive metabolizers and six poor metabolizers were homozygous with the CYP2C19*1/*1 genotype, and 48 extensive metabolizers and six poor metabolizers were heterozygous with the CYP2C19*1/*2 genotype. Nine poor metabolizers were homozygous with the CYP2C19*2/*2 genotype. No extensive or poor metabolizers demonstrated the presence of the CYP2C19*3 allele. CYP2C19*2 could explain 43% (9/21) of the poor metabolizers and 57% (24/42) of the defective alleles in poor metabolizers. Allele frequency of CYP2C19*1 and *2 was 0.7 (95% confidence interval of 0.65 to 0.75) and 0.3 (95% confidence interval of 0.25 to 0.35), respectively. Homozygous extensive metabolizers excreted 7.85 +/- 7.6 micromol 5-hydroxyomeprazole in 8 hours, which was 28% more as compared with heterozygous extensive metabolizers who excreted 5.6 +/- 3.6 micromol 5-hydroxyomeprazole in 8 hours (P < .05). CONCLUSIONS: CYP2C19*2 demonstrated allele frequency of 0.3, whereas CYP2C19*3 was absent in North Indians. Because CYP2C19*2 is not able to explain 57% of poor metabolizers, other mutations (CYP2C19*4 to *8) might be present in North Indians. CYP2C19 demonstrated differential evolution in North Indians because the frequency of CYP2C19*2 was similar to that in Oriental subjects, but that of CYP2C19*3 was similar to that in white subjects.  相似文献   

10.
BACKGROUND: To investigate whether the pharmacodynamics and pharmacokinetics of omeprazole (OPZ) are dependent of the CYP2C19 genotype status in Chinese people. METHODS: Eighteen healthy subjects were voluntary to participate in the study, whose CYP2C19 genotype status were determined by polymerase chain reaction-restriction fragment length polymorphism method. There were six homozygous extensive metabolizers, six heterozygous extensive metabolizers and six poor metabolizers (PMs). All subjects were Helicobacter pylori-negative, determined by serology method and (13)C-urea breath test. After d1 and d8 orally received OPZ 20 mg once daily in the morning, intragastric pH values were monitored for 24 h by Digitrapper pH. Meanwhile, blood samples were collected at various time-points until 24 h after administration. The serum concentrations of OPZ were measured by liquid chromatography. RESULTS: After single or repeated doses, the PMs showed a significantly higher mean area under the serum concentration-time curves (AUC) values than that observed in the homozygous extensive metabolizers or the heterozygous extensive metabolizers, with a relative ratio of 1.0 : 1.1 : 4.2 and 1.0 : 1.3 : 3.3 (homozygous extensive metabolizers:heterozygous extensive metabolizers:poor metabolizers), respectively. After a single dose of OPZ, significant differences in intragastric pH median, pH > 3 holding time and pH > 4 holding time were observed among the three groups. After repeated doses, the PMs showed a significantly higher intragastric pH values than that observed in the homozygous extensive metabolizers or the heterozygous extensive metabolizers. CONCLUSION: The pharmacodynamic effects of OPZ and its pharmacokinetics depend on the CYP2C19 genotype status in Chinese people.  相似文献   

11.
12.
In clinical practice, antifungal therapy may be switched from fluconazole to voriconazole; such sequential use poses the potential for drug interaction due to cytochrome P450 2C19 (CYP2C19)-mediated inhibition of voriconazole metabolism. This open-label, randomized, two-way crossover study investigated the effect of concomitant fluconazole on voriconazole pharmacokinetics in 10 subjects: 8 extensive metabolizers and 2 poor metabolizers of CYP2C19. The study consisted of 4-day voriconazole-only and 5-day voriconazole-plus-fluconazole treatments, separated by a 14-day washout. Voriconazole pharmacokinetics were determined by noncompartmental analyses. A physiologically based pharmacokinetic model was developed in Simcyp (Simcyp Ltd., Sheffield, United Kingdom) to predict the magnitude of drug interaction should antifungal therapy be switched from fluconazole to voriconazole, following various simulated lag times for the switch. In CYP2C19 extensive metabolizers, fluconazole increased the maximum plasma concentration and the area under the plasma concentration-time curve (AUC) of voriconazole by 57% and 178%, respectively. In poor metabolizers, however, voriconazole pharmacokinetics were unaffected by fluconazole. The simulations based on pharmacokinetic modeling predicted that if voriconazole was started 6, 12, 24, or 36 h after the last dose of fluconazole, the voriconazole AUC ratios (sequential therapy versus voriconazole only) after the first dose would be 1.51, 1.41, 1.28, and 1.14, respectively. This suggests that the remaining systemic fluconazole would result in a marked drug interaction with voriconazole for ≥ 24 h. Although no safety issues were observed during coadministration, concomitant use of fluconazole and voriconazole is not recommended. Frequent monitoring for voriconazole-related adverse events is advisable if voriconazole is used sequentially after fluconazole.  相似文献   

13.
BACKGROUND: Proton pump inhibitors such as omeprazole and lansoprazole are mainly metabolized by CYP2C19 in the liver. The therapeutic effects of proton pump inhibitors are assumed to depend on CYP2C19 genotype status. OBJECTIVE: We investigated whether CYP2C19 genotype status was related to eradication rates of H pylori by triple proton pump inhibitor-clarithromycin-amoxicillin (INN, amoxicilline) therapy and attempted to establish a strategy for treatment after failure to eradicate H pylori. METHODS: A total of 261 patients infected with H pylori completed initial treatment with 20 mg of omeprazole or 30 mg of lansoprazole twice a day, 200 mg of clarithromycin three times a day, and 500 mg of amoxicillin three times a day for 1 week. CYP2C19 genotypes of patients were determined with polymerase chain reaction-restriction fragment length polymorphism analysis. Patients without eradication after initial treatment were retreated with 30 mg of lansoprazole four times daily and 500 mg of amoxicillin four times daily for 2 weeks. RESULTS: Eradication rates for H pylori were 72.7% (95% confidence interval, 64.4%-81.8%), 92.1% (confidence interval, 86.4%-97.3%), and 97.8% (confidence interval, 88.5%-99.9%) in the homozygous extensive, heterozygous extensive, and poor metabolizer groups, respectively. Thirty-four of 35 patients without eradication had an extensive metabolizer genotype of CYP2C19. Nineteen of those patients were infected with clarithromycin-resistant strains of H pylori. However, there were no amoxicillin-resistant strains of H pylori. Re-treatment of H pylori infection with dual high-dose lansoprazole-amoxicillin therapy succeeded in 30 of 31 patients with extensive metabolizer genotype of CYP2C19. CONCLUSION: The majority of patients without initial eradication of H pylori had an extensive metabolizer CYP2C19 genotype but were successfully re-treated with high doses of lansoprazole and an antibiotic to which H pylori was sensitive, such as amoxicillin, even when the patients were infected with clarithromycin-resistant strains of H pylori.  相似文献   

14.
BACKGROUND: Phenytoin, a cytochrome P450 (CYP) 2C9 substrate, has a narrow therapeutic index and nonlinear pharmacokinetics. Therefore there is the potential for significant concentration-related adverse effects when phenytoin is coadministered with other CYP2C9 substrates. Losartan, an antihypertensive agent, is also a substrate for CYP2C9. OBJECTIVE: Our objective was to assess the effects of losartan on the pharmacokinetics of phenytoin and the effects of phenytoin on the pharmacokinetics of losartan in a healthy population of volunteers. METHODS: A prospective, randomized, 3-period crossover study was conducted in 16 healthy volunteers with phenytoin alone, phenytoin in combination with losartan, and losartan alone. Each treatment was given for 10 days with a 3-week washout period between treatments. On day 10, plasma concentrations of phenytoin and plasma and urine concentrations of losartan and its active carboxylic-acid metabolite E3174 were measured to determine steady-state pharmacokinetic parameters. RESULTS: Coadministration of losartan had no effect on the pharmacokinetics of phenytoin. Coadministration of phenytoin increased the mean area under the concentration-time curve from time zero to 24 hours [AUC(0-24)] of losartan by 17% (355 +/- 220 ng x h/mL versus 427 +/- 177 ng x h/mL; P =.1), but this difference was not statistically significant. In the 14 CYP2C9*1/*1 subjects, the mean AUC(0-24) of losartan was increased by 29% (284 +/- 84 ng x h/mL versus 402 +/- 128 ng x h/mL; P =.008). Coadministration of phenytoin significantly reduced the AUC(0-24) of E3174 by 63% (1254 +/- 256 ng x h/mL versus 466 +/- 174 ng x h/mL; P =.0001) and the formation clearance of losartan to E3174 (1.91 +/- 0.8 mL/h per kilogram versus 0.62 +/- 0.4 mL/h per kilogram; P =.0001). CONCLUSIONS: Losartan, a CYP2C9 substrate, had no effect on the pharmacokinetics of phenytoin. However, phenytoin inhibited the CYP2C9-mediated conversion of losartan to E3174.  相似文献   

15.
Phenotypic-genotypic analysis of CYP2C19 in the Jewish Israeli population   总被引:3,自引:0,他引:3  
OBJECTIVES: Evaluation of CYP2C19 activity and the frequency of CYP2C19 alleles in the Jewish Israeli population. METHODS: One hundred forty Jewish Israeli subjects received 100 mg racemic mephenytoin and collected urine for 8 hours. Urinary concentrations of mephenytoin enantiomers and 4'-hydroxymephenytoin were determined by gas-liquid chromatography and HPLC, respectively. CYP2C19 activity was derived from urinary S/R-ratio and 8-hour urinary excretion of 4'-hydroxymephenytoin. Mutations were identified by polymerase chain reaction and enzyme digestion with SmaI (CYP2C19*2) and BamHI (CYP2C19*3). RESULTS: Deficient mephenytoin hydroxylation was found in 4 subjects (2.9%; 95% confidence interval [CI], 0.1% to 5.7%) who were homozygous for CYP2C19*2. CYP2C19*2 was the major deactivating allele accounting for 15% (95% CI, 11% to 19%) of CYP2C19 alleles, whereas CYP2C19*3 was identified in 2 subjects (1%; 95% CI, 0% to 2%). Among 136 extensive metabolizers, 99 were homozygous for CYP2C19*1 and 37 were compound heterozygous CYP2C19*1/CYP2C19*2 (35 subjects) or CYP2C19*1/CYP2C19*3 (2 subjects). Gene dose effect was noted so that the S/R-ratio was significantly greater and urinary excretion of 4'-hydroxymephenytoin was significantly lower in compound heterozygous than in homozygous extensive metabolizers (0.310+/-0.209 versus 0.225+/-0.176, P < .04 and 48.6%+/-19.2% versus 56.3%+/-16.0%, P < .03, respectively). Female extensive metabolizers had a significantly lower excretion of 4'-hydroxymephenytoin than male extensive metabolizers (49.5%+/-17.6% versus 58.4%+/-16.7%, respectively, P < .005). CONCLUSION: The frequency of poor metabolizers of CYP2C19 and CYP2C19*2 allele in the Jewish Israeli population resembles findings in non-Asian populations. Complete concordance was noted between phenotypic and genotypic findings. CYP2C19 genotyping may enable subclassification of extensive metabolizers into subjects with high and low activity.  相似文献   

16.
Progress of tailor-made treatment of peptic ulcer]   总被引:1,自引:0,他引:1  
We previously reported that a comparative pharmacokinetic study with each PPI was designed as an open, randomized, and crossover study of 18 Japanese healthy volunteers who were classified into the homozygous, heterozygous extensive metabolizer and the poor metabolizer based on the CYP2C19 genotype. With at least 1 week washout period between treatments. Plasma concentrations of PPIs and their metabolites were monitored until 12 h after medication. Pharmacokinetic profiles of omeprazole and lansoprazole were well correlated with the CYP2C19 genotype. The heterozygous extensive metabolizer was slightly different from the homozygote, but there was no statistically significant difference. The CYP2C19 genotype dependence found for lansoprazole was not obvious compared with omeprazole. As for rabeprazole, the pharmacokinetic profile was independent of the CYP2C19 genotype. CYP2C19 genotyping can provide a new strategy to choose an optimal regimen, and this genotyping is especially useful for Japanese, as the frequency of poor metabolizers is five times greater than that found among Caucasians.  相似文献   

17.
OBJECTIVES: Diazepam is widely used to relieve preoperative anxiety in patients. The objective of this study was to investigate the effects of polymorphism in CYP2C19 and the effects of CYP3A4 messenger ribonucleic acid (mRNA) content in blood on recovery from general anesthesia and on diazepam pharmacokinetics. METHODS: Sixty-three Japanese patients were classified into the following 3 genotype (phenotype) groups on the basis of polymerase chain reaction-restriction fragment length polymorphism analysis of CYP2C19 polymorphism: no variants, *1/*1 (extensive metabolizer [EM]); 1 variant, *1/*2 or *1/*3 (intermediate metabolizer [IM]); and 2 variants, *2/*2, *2/*3, or *3/*3 (poor metabolizer [PM]). We assessed the effects of these polymorphisms and of CYP3A4 mRNA content in the lymphocytes on the patients' recovery from general anesthesia. RESULTS: CYP2C19 genotyping analysis in the 63 subjects showed that 32%, 46%, and 22% of subjects were classified into the EM, IM, and PM groups, respectively. The PM subjects showed a larger area under the curve representing the concentration of diazepam over a 24-hour period (AUC(0-24)) (2088 +/- 378 ng/mL.h(-1), P = .0259), lower clearance of diazepam (0.049 +/- 0.009 L.h(-1).kg(-1), P = .0287), and longer emergence time (median, 18 minutes; 25th-75th percentile range, 13-21 minutes; P < .001) in comparison with subjects in the EM group (AUC(0-24), 1412 +/- 312 ng/mL; clearance, 0.074 +/- 0.018 L.h(-1).kg(-1); and emergence time, 10 minutes, 8-12 minutes [median and 25th-75th percentile range]). The IM group also showed a longer emergence time (median, 13 minutes; 25th-75th percentile range, 9-20 minutes; P < .001) and a larger variation in this parameter in comparison with the EM group. The distributions of the CYP2C19 genotype were significantly different between the 2 groups (rapid emergence <20 minutes, slow emergence >20 minutes) (P = .0148). The mean value of the CYP3A4 mRNA level in the slow-emergence group (mean +/- SD, 4.80 +/- 3.99 x10(-10)) was significantly lower than that of the rapid-emergence group (mean +/- SD, 12.50 +/- 11.90 x10(-10)) (P = .0315). However, there was no significant correlation between emergence time and CYP3A4 mRNA levels (r = 0.239, P = .0601). CONCLUSION: We found that the CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia and that the slow-emergence group possesses lower levels of CYP3A4 mRNA than are found in the rapid-emergence group.  相似文献   

18.
We studied the genetically determined hydroxylation polymorphism of S-mephenytoin in a Korean population (N = 206) and the pharmacokinetics of diazepam and demethyldiazepam after an oral 8 mg dose of diazepam administered to the nine extensive metabolizers and eight poor metabolizers recruited from the population. The log10 percentage of 4-hydroxymephenytoin excreted in the urine 8 hours after administration showed a bimodal distribution with an antimode of 0.3. The frequency of occurrence of the poor metabolizers was 12.6% in the population. In the panel study of diazepam in relation to the mephenytoin phenotype, there was a significant correlation between the oral clearance of diazepam and log10 urinary excretion of 4-hydroxymephenytoin (rs = 0.777, p less than 0.01). The plasma half-life of diazepam in the poor metabolizers was longer than that in the extensive metabolizers (mean +/- SEM, 91.0 +/- 5.6 and 59.7 +/- 5.4 hours, p less than 0.005), and the poor metabolizers had the lower clearance of diazepam than the extensive metabolizers (9.4 +/- 0.5 and 17.0 +/- 1.4 ml/min, p less than 0.001). In addition, the plasma half-life of demethyldiazepam showed a statistically significant (p less than 0.001) difference between the extensive metabolizers (95.9 +/- 11.3 hours) and poor metabolizers (213.1 +/- 10.7 hours), and correlated with the log10 urinary excretion of 4-hydroxymephenytoin (rs = -0.615, p less than 0.01). The findings indicate that the Korean subjects have a greater incidence of poor metabolizer phenotype of mephenytoin hydroxylation compared with that reported from white subjects and that the metabolism of diazepam and demethyldiazepam is related to the genetically determined mephenytoin hydroxylation polymorphism in Korean subjects.  相似文献   

19.
OBJECTIVE: To clarify the effect of genetic polymorphism of CYP2C19 on pharmacokinetics of phenytoin and phenobarbital using a Non-linear Mixed Effects Modelling analysis in Japanese epileptic patients. METHOD: A total of 326 serum phenytoin concentrations were collected from 132 patients, and a total of 144 serum phenobarbital concentrations were collected from 74 patients during their clinical routine care. RESULT: The maximal elimination rate of phenytoin decreased by 10.2% in patients with CYP2C19*1/*2 compared with patients with normal CYP2C19. The Michaelis-Menten constants in the patients with CYP2C19*1/*3 and the poor metabolizers of (CYP2C19*2/*2 or *2/*3 or *3/*3) were 27% and 54% higher than those for the patients with normal CYP2C19, respectively. The total body clearance of phenobarbital decreased by 19.3% in patients with CYP2C19*1/*3 or the poor metabolizers of CYP2C19 compared with patients with normal CYP2C19 or with CYP2C19*1/*2. CONCLUSION: These findings indicated that the genetic polymorphisms of CYP2C19 contribute to the pharmacokinetic variability of phenytoin and phenobarbital, the poor metabolizers of CYP2C19, which are relatively common in Asian groups.  相似文献   

20.
OBJECTIVES: Omeprazole is used for the treatment of infection caused by Helicobacter pylori, and it is metabolized by the polymorphic cytochrome P4502C19 (CYP2C19). We have found that the anti-H pylori efficacy by the combination of omeprazole and antibiotics is related to the CYP2C19 genotype. METHODS: One hundred eight patients with cultured H pylori-positive gastritis or peptic ulcer were treated with three regimens: quadruple treatment without proton pump inhibitors (n = 25), dual treatment with omeprazole and amoxicillin (INN, amoxicilline) (n = 26), and triple treatment with omeprazole, amoxicillin, and clarithromycin (n = 57). The CYP2C19 genotype was determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and the assessment of the eradication of H pylori was based on all negative examinations, including culture, histology, and 13C-urea breath test. RESULTS: The eradication rates for the extensive metabolizers were 50% and 86% for the dual and triple treatments, respectively. In contrast, all of the poor metabolizers treated with omeprazole and antibiotics (n = 15) showed an eradication of H pylori. CONCLUSION: The anti-H pylori effect of dual treatment is highly efficient for CYP2C19 poor metabolizers, which suggests that clarithromycin is not necessary as a first line of therapy for this type of patients. Genotyping can provide a choice for the optimal regimen based on individual CYP2C19 genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号