首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the growing concerns over the toxicity and immunogenicity of viral DNA delivery systems, DNA delivery via nonviral routes has become more desirable and advantageous. In particular, polycation complexes with DNA (polyplex) are attractive nonviral vectors. To design novel polycationic vectors, we prepared polyamidoamine starburst dendrimer (dendrimer) conjugates with three cyclodextrins (CDE conjugates) and three generations (G2, G3, and G4) of dendrimers. Of seven CDE conjugates, an alpha-CDE conjugate (G3) with an average degree of substitution (DS) of alpha-CyD of 2.4 [alpha-CDE conjugate (G3, DS 2.4)] showed greater gene transfer activity than dendrimers and other alpha-CDE conjugates with less cytotoxicity. These results suggest the potential use of alpha-CDE conjugate (G3, DS 2.4) as a polycationic vector in vitro and in vivo. Herein, I review a recent polyfection method, with special focus on alpha-CDE conjugate (G3, DS 2.4).  相似文献   

2.
The potential of starburst polyamidoamine dendrimer (dendrimer, generation 3, G3) conjugate with alpha-cyclodextrin (alpha-CyD) having an average degree of substitution of 2.4 (alpha-CDE) as a novel carrier of short hairpin RNA (shRNA) expressing plasmid DNA (shpDNA) was evaluated and the shpDNA transfer activity of alpha-CDE was compared with that of dendrimer (G3). Alpha-CDE formed a stable and condensed complex with shpDNA and induced a conformational transition of shpDNA in solution even in the low charge ratios. In addition, alpha-CDE markedly inhibited the enzymatic degradation of shpDNA by DNase I. The shpDNA complex with alpha-CDE at the charge ratio of 20/1 (alpha-CDE/shpDNA) elicited the most potent RNAi effects in cells transiently and stably expressing the GL3 and GL2 luciferase genes without cytotoxicity among the complexes with the various charge ratios. Besides, the RNAi effects were strikingly enhanced by the further addition of the adequate amounts of siRNA to the shpDNA complex with alpha-CDE. Taken together, the prominent RNAi effects of the shpDNA complex with alpha-CDE could be attributed to the stabilizing effect of alpha-CDE on enzymatic degradation of shpDNA and negligible cytotoxicity. These results suggest that alpha-CDE possesses the potential to be a novel carrier for shpDNA and siRNA.  相似文献   

3.
In this study, we evaluated the polyamidoamine starburst dendrimer (dendrimer, generation 2: G2) conjugate with 6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-cyclodextrin (GUG-β-CDE (G2)) as a gene transfer carrier. The in vitro gene transfer activity of GUG-β-CDE (G2, degree of substitution (DS) of cyclodextrin (CyD) 1.8) was remarkably higher than that of dendrimer (G2) conjugate with α-CyD (α-CDE (G2, DS 1.2)) and that with β-CyD(β-CDE (G2, DS 1.3)) in A549 and RAW264.7 cells. The particle size, ζ-potential, DNase I-catalyzed degradation, and cellular association of plasmid DNA (pDNA) complex with GUG-β-CDE (G2, DS 1.8) were almost the same as those of the other CDEs. Fluorescent-labeled GUG-β-CDE (G2, DS 1.8) localized in the nucleus 6?h after transfection of its pDNA complex in A549 cells, suggesting that nuclear localization of pDNA complex with GUG-β-CDE (G2, DS 1.8), at least in part, contributes to its high gene transfer activity. GUG-β-CDE (G2, DS 1.8) provided higher gene transfer activity than α-CDE (G2, DS 1.2) and β-CDE (G2, DS 1.3) in kidney with negligible changes in blood chemistry values 12?h after intravenous injection of pDNA complexes with GUG-β-CDE (G2, DS 1.8) in mice. In conclusion, the present findings suggest that GUG-β-CDE (G2, DS 1.8) has the potential for a novel polymeric pDNA carrier in vitro and in vivo.  相似文献   

4.
Abstract

To develop a novel hepatocyte-selective gene carrier, we prepared polyamidoamine starburst dendrimer (generation 3, G3) conjugates with three functional molecules, i.e. α-cyclodextrin, polyethylene glycol (PEG, molecular weight?=?2170) and lactose (PEG-LαCs), and evaluated gene delivery efficiency of these conjugates in vitro and in vivo. PEG-LαC (G3, degrees of substitution of the PEG moiety (DSP) 2.1) showed higher gene transfer activity than other PEG-LαCs (G3, DSP4.0, 6.2) in HepG2 cells, expressing asialoglycoprotein receptor, and the activity decreased in HeLa cells, non-expressing the receptor and in the presence of asialofetuin. High gene transfer activity of PEG-LαC (G3, DSP2.1) was retained even in the presence of 50% serum, although the activity of α-cyclodextrin/lactosylated dendrimer (G3) conjugate (Lac-α-CDE (G3)), which is lacking a PEG moiety, was severely decreased in the presence of 20% serum. PEG-LαC (G3, DSP2.1) provided negligible cytotoxicity up to a charge ratio of 50 (carrier/pDNA) in HepG2 cells and less acute organ toxicity. PEG-LαC (G3, DSP2.1) showed selective gene transfer activity to hepatic parenchymal cells rather than hepatic non-parenchymal cells. These results suggest that PEG-LαC (G3, DSP2.1) is useful as a hepatocyte-selective gene carrier in vitro and in vivo.  相似文献   

5.
We previously reported that glucuronylglucosyl-β-cyclodextrin (GUG-β-CyD) conjugate with polyamidoamine starburst dendrimer (GUG-β-CDE conjugate) with the average degree of substitution (DS) of cyclodextrin (CyD) of 1.8 (GUG-β-CDE conjugate (DS 1.8)), showed remarkably higher gene transfer activity than α-CyD/dendrimer conjugate (α-CDE conjugate (DS 1.2)) and β-CyD/dendrimer conjugate (β-CDE conjugate (DS 1.3)) in vitro and in vivo. In this study, to clarify the enhancing mechanism for high gene transfer activity of GUG-β-CDE conjugate (DS 1.8), we investigated the physicochemical properties, cellular uptake, endosomal escape and nuclear translocation of the plasmid DNA (pDNA) complexes as well as pDNA release from the complexes. The particle size, ζ-potential and cellular uptake of GUG-β-CDE conjugate (DS 1.8)/pDNA complex were mostly comparable to those of α-CDE conjugate (DS 1.2) and β-CDE conjugate (DS 1.3). Meanwhile, GUG-β-CDE conjugate (DS 1.8)/pDNA complex was likely to have high endosomal escaping ability and nuclear localization ability in A549 and RAW264.7 cells. In addition, the pDNA condensation and decondensation abilities of GUG-β-CDE conjugate (DS 1.8) were lower and higher than that of α-CDE conjugate (DS 1.2) or β-CDE conjugate (DS 1.3), respectively. These results suggest that high gene transfer activity of GUG-β-CDE conjugate (DS 1.8) could be, at least in part, attributed to high endosomal escaping ability, nuclear localization ability and suitable pDNA release from its complex.  相似文献   

6.
The widespread use of various cyclodextrin (CyD)-appended polymers and polyrotaxanes as gene carriers has been reported. Among the various polyamidoamine dendrimer (dendrimer) conjugates with CyDs (CDE), the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 (α-CDE (G3, DS 2)) displayed remarkable properties as DNA carriers. In an attempt to develop cell-specific gene transfer carriers, we prepared some sugar-appended α-CDEs, e.g. mannosylated, galactosylated, and lactosylated α-CDEs. In addition, PEGylated Lac-α-CDEs (G3) were prepared and evaluated as a hepatocyte-selective and serum-resistant gene transfer carrier. Moreover, PEGylated-α-CDE/CyD polypseudorotaxane systems for novel sustained DNA release system have been developed. Interestingly, glucronylglucosyl-β-cyclodextrin (GUG-β-CyD) conjugates with dendrimer (G2) (GUG-β-CDE (G2)) had superior gene transfer activity to α-CDE (G2), expecting a development of new series of sugar-appended CDEs over α-CDEs (G2). Collectively, sugar-appended α-CDEs have the potential as novel cell-specific and safe carriers for DNA.  相似文献   

7.
We previously reported that of the various polyamidoamine (PAMAM) STARBURST dendrimer (generation 3, G3) (dendrimer) conjugates with cyclodextrins (CyDs), the dendrimer (G3) conjugate with α-CyD having an average degree of substitution of 2.4 (α-CDE (G3)) has the greatest potential for a novel carrier for siRNA in vitro and in vivo. To improve the siRNA transfer activity and the lack of target specificity of α-CDE (G3), we prepared folate-polyethylene glycol (PEG)-appended α-CDEs (G3) (Fol-PαCs) with various degrees of substitution of folate (DSF) and evaluated their siRNA transfer activity to folate receptor (FR)-overexpressing cancer cells in vitro and in vivo. Of the three Fol-PαCs (G3, DSF 2, 4 and 7), Fol-PαC (G3, DSF 4) had the highest siRNA transfer activity in KB cells (FR-positive). Fol-PαC (G3, DSF 4) was endocytosed into KB cells through FR. No cytotoxicity of the siRNA complex with Fol-PαC (G3, DSF 4) was observed in KB cells (FR-positive) or A549 cells (FR-negative) up to the charge ratio of 100/1 (carrier/siRNA). In addition, the siRNA complex with Fol-PαC (G3, DSF 4) showed neither interferon response nor inflammatory response. Importantly, the siRNA complex with Fol-PαC (G3, DSF 4) tended to show the in vivo RNAi effects after intratumoral injection and intravenous injection in tumor cells-bearing mice. The FITC-labeled siRNA and TRITC-labeled Fol-PαC (G3, DSF 4) were actually accumulated in tumor tissues after intravenous injection in the mice. In conclusion, the present results suggest that Fol-PαC (G3, DSF 4) could potentially be used as a FR-overexpressing cancer cell-selective siRNA delivery carrier in vitro and in vivo.  相似文献   

8.
Non-viral DNA vectors are promising gene delivery systems and a variety of non-viral DNA vectors have been developed to date. Recently, we developed a novel non-viral gene delivery system--multifunctional envelope-type nano device (MEND). The MEND system has high transfection activity, similar to that of adenovirus vector, which is a potent viral vector. However, conventional MEND is relatively large and heterogeneous (approximately 300 nm), probably because they contain relatively large- and heterogeneous-pDNA particles condensed with polycations, such as poly-L-lysine. Small particle size is important for in vivo delivery, because large particles are rapidly eliminated from systemic circulation. Moreover, heterogeneous size of drug carriers is difficult to apply to clinical applications. Here, we describe construction of small homogeneous MEND. First, we screened mono-cationic detergents (MCD(s)) to obtain optimal pDNA condensed particles. We determined that benzyldimethylhexadecylammonium chloride (BDHAC) and thonzonium bromide (TB) were optimal pDNA condensers. Next, we packaged the condensed pDNA particles into a lipid bi-layer. The resulting lipid-encapsulated pDNA particles were then equipped with octaarginine to facilitate cell-uptake (R8-MEND (MCD)). The carrier showed high transfection activity in cultured HeLa cells. Furthermore, the R8-MEND (MCD) were small and homogeneous compared with conventional MEND. These results indicate that R8-MEND (MCD) has potential as a novel non-viral delivery system for clinical application.  相似文献   

9.
Non-viral gene transfer is an alternative to viral vectors for gene transfer. However, non-viral transgene expression remains undesirably low and transient. Matrix attachment regions (MARs) are DNA elements that are defined by their high affinity for the nuclear matrix. MARs may also be related to long-term transgene expression in vitro. The purpose of this research is to evaluate human interferon-beta MARs element in various cell types. This was accomplished by constructing MARs-containing plasmid DNA (pDNA) and comparing their transgene expression with non-MARs-containing pDNA. We found that MARs-containing pDNA increased and prolonged the expression in Chinese hamster ovary (CHO) cells, but not in human neuroblastoma cells (SKnSH) and neuronal cells (primary neuron, astroglia and microglia). From the cotransfection experiment, MARs-containing pDNA had a trans effect on another pDNA expression. A PCR method was used to monitor the intracellular distribution of pDNA after cellular fractionalization. We found that non-MAR containing pDNA demonstrates similar intracellular distribution as non-MARs-containing pDNA.  相似文献   

10.
We previously engineered a novel, non-viral, multifunctional gene vector (STR-CH(2)R(4)H(2)C) containing stearoyl (STR) and a block peptide consisting of Cys (C), His (H), and Arg (R). STR-CH(2)R(4)H(2)C forms a nano-complex with pDNA and is stabilized by electronic interactions and disulfide cross linkages. In blood, pDNA, a cytosol-sensitive gene vector, is released from the complex into the cytosol. The current study aimed to make STR-CH(2)R(4)H(2)C capable of active nuclear localization. The dynein light chain association sequence (DLCAS) was disulfide cross-linked to STR-CH(2)R(4)H(2)C/pDNA through disulfide linkages, and the gene expression ability of this DLCAS cross-linked gene vector was evaluated. We examined the gene transfection efficiency of S-180 cells transfected with the STR-CH(2)R(4)H(2)C/DLCAS/pDNA complex. STR-CH(2)R(4)H(2)C/DLCAS/pDNA showed significantly higher and faster gene expression compared with STR-CH(2)R(4)H(2)C/pDNA. We also evaluated the cellular uptake ability of STR-CH(2)R(4)H(2)C/DLCAS/Cy5-labeled pDNA complex. STR-CH(2)R(4)H(2)C/DLCAS/pDNA showed significantly lower cellular uptake compared with STR-CH(2)R(4)H(2)C/pDNA. This result indicates that high gene expression of STR-CH(2)R(4)H(2)C/DLCAS/pDNA does not facilitate its cellular uptake. In addition, the gene expression of DLCAS/STR-CH(2)R(4)H(2)C/pDNA in S-180 cells pretreated with the tubulin polymerization inhibitor, nocodazole (NCZ), was significantly lower than that in the absence of NCZ. These results indicate that the high transfection efficiency of DLCAS/STR-CH(2)R(4)H(2)C/pDNA is dependent on intra-cellular transport utilizing the microtubule motor protein, dynein. Taken together, our results suggest that DLCAS-modified STR-CH(2)R(4)H(2)C may be a promising gene delivery system.  相似文献   

11.
Nano-structured hyperbranched cationic star polymers, called star vectors, were molecularly designed for a novel gene delivery non-viral vector. The linear and 3, 4 or 6 branched water-soluble cationic polymers, which had same molecular weight of ca. 18,000, were synthesized by iniferter (initiator-transfer agent-terminator)-based photo-living-radical polymerization of 3-(N,N-dimethylamino)propyl acrylamide, initiated from respective multi-dithiocarbamate-derivatized benzenes as an iniferter. All polymers produced polyion complexes 'polyplexes' by mixing with pDNA (pGL3-control plasmid), in which the particle size was ca. 250 nm in diameter [the charge ratio < 2/1 (vevtor/pDNA)] and ca. 150 nm (the charge ratio > 2.5/1), and the zeta-potential was ca. +10 mV (the charge ratio > 1/1). When COS-1 cells were incubated with the polyplexes 12 h after preparation under the charge ratio of 5/1, higher gene expression was obtained as an increase in branching, with a little cytotoxicity. The relative gene expression to the linear polymer was about 2, 5, and 10 times in 3-, 4-, and 6-branched polymers, respectively. The precise change in branching of polymers enabled the control of the gene transfer activity.  相似文献   

12.
Peptide based gene carriers are among the most promising non-viral vectors for gene delivery to eukaryotic cells. We have engineered a new fusion peptide using recombinant technology with the purpose of overcoming the cell barriers to gene delivery. A His- tagged multi-domain peptide was expressed in Escherichia coli BL21 (DE3) pLysS and purified using Ni-NTA resin. The fusion peptide is composed of two repeats of truncated histone H1 peptide to condense pDNA, a fusogenic peptide to disrupt endosome membranes and a nuclear localization signal to enhance translocation of pDNA towards nucleus. The results demonstrated that the vector can effectively condense plasmid DNA into nanoparticles with average sizes of 200 nm. The fusogenic peptide in the vector structure also showed membrane disruptive effect in the endosomal pH. Overall, the transfection efficiency of the vector demonstrated that it holds great promise as a nontoxic and effective non-viral gene carrier.  相似文献   

13.
Deoxycholic acid-spermine conjugate (DAS), which is composed of natural components (deoxycholic acid and spermine), was incorporated in liposomes and evaluated for its interaction with plasmid DNA (pDNA) and in vitro transfection efficiency. Electromicrographs demonstrated that DAS-pDNA complexes are spherical, compact and electronically dense compared to the toroidal shapes formed by the monovalent lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and pDNA. In comparison to the singly charged, non-cholesterol based lipid (DOTAP), the multivalent lipid DAS had similar transfection efficiency in two cell lines. The monovalent sterol, deoxycholic acid propyldiamine conjugate (DAP) was not effective as a transfecting agent. This suggests that multivalent facial amphiphiles such as DAS may serve as excellent candidates for non-viral gene transfer and warrant further study.  相似文献   

14.
15.
The transfection activity of non-viral vectors is highly dependent on the delivery capacity of the carriers. Therefore, the aim of this work was to evaluate the activity of a new PAMAM dendrimer-Transferrin conjugate (P-Tf) with improved gene delivery activity to cancer cells. The formulations containing the novel P-Tf were able to bind pDNA and protect it from the activity of DNAse I enzyme. Moreover, it formed nanoparticles with positive surface charge, although the presence of Tf led to a decrease of the zeta potential to almost electroneutral values. This new vector, formulated at N/P 6, exhibited excellent transfection efficacy in HeLa, HepG2 and CT26 cell lines, whereas in Neuro2A no improvement was achieved. Compared to control complexes with branched polyethylenimine (bPEI), targeted dendriplexes (complexes formed by cationic polymeric dendrimers and DNA) were more efficient in HepG2 and HeLa cells. Cellular viability was always kept over 80% in these cell lines with higher values than bPEI control polyplexes. The uptake via receptor-mediated endocytosis was ensured by a competition assay, by adding an excess of free Tf, which led to a decrease in the transfection activity of targeted dendriplexes.  相似文献   

16.
The cellular uptake and cytotoxicity of an engineered multifunctional dendritic nanodevice containing folic acid (FA) as the targeting molecule, methotrexate (MTX) as the chemotherapeutic drug, and fluorescein (FI) as the detecting agent were studied in vitro. FI and FA were conjugated to the generation 5 poly(amidoamine) (G5) dendrimer carrier through a thiourea and amide linkage and MTX was conjugated through an ester linkage to the carrier to generate the trifunctional dendritic device, G5-FI-FA-MTX. This trifunctional dendrimer-drug conjugate bound to FA receptor-expressing KB cells in a dose-dependent and saturable manner. Confocal microscopic analysis demonstrated cellular internalization of the conjugate. G5-FI-FA-MTX induced a time- and dose-dependent inhibition of cell growth in KB cells. The targeted dendrimer conjugates G5-FI-FA-MTX and G5-FA-MTX inhibited cell growth in KB cells, whereas the nontargeted G5-MTX failed to induce growth inhibition. These studies show the potential of G5-FI-FA-MTX or G5-FA-MTX for targeting and growth suppression of tumor cells that overexpress FA-receptors.  相似文献   

17.
目的合成两嵌段聚乙二醇-b-聚赖氨酸共聚物(PEG-b-PLL),并评价PEG-b-PLL载基因纳米复合物。方法以端氨基PEG引发Lys(z)-NCA,首先得到两嵌段共聚物PEG-b-PZLL,然后酸解去除苄氧羰基保护基团,得到了两嵌段共聚物PEG-b-PLL。通过正负电荷吸附作用自组装形成PEG-b-PLL载基因纳米复合物,考察其性质。结果制备的PEG-b-PLL载基因纳米复合物外观圆整,呈类球形,大小均匀,平均粒径为(150.3±5.5)nm,其Zeta电位为(-15.82±2.34)mV。该复合物在血浆中稳定,具有一定的抗核酸酶降解能力,且能成功的转染HepG2细胞。结论该复合物是一种制备工艺简单,性能良好,极富潜力的非病毒基因载体。  相似文献   

18.
In the present study we report the development of novel thiolated dendrimers for mucoadhesive drug delivery. The thiolated dendrimers were synthesized by conjugating PAMAM dendrimer (G3.5)with cysteamine at two different molar ratios, i.e. 1:30 (DCys1) and 1:60 (DCys2). The thiolated dendrimers were further encapsulated with acyclovir (DCys1Ac and DCys2Ac) and the conjugates were characterized for thiol content, drug loading, drug release, and mucoadhesive behavior. The thiolated dendrimer conjugates showed thiol content of 10.56±0.34 and 68.21±1.84 μM/mg of the conjugate for DCys1 and DCys2, respectively. The acyclovir loading was observed to be highest in dendrimer drug conjugate (DAc) compared to other DCys1Ac and DCys2Ac conjugates. The thiolated dendrimers showed sustained release of acyclovir and showed higher mucoadhesion. The in vitro mucoadhesive activity of DCys2Ac was 1.53 and 2.89 fold higher mucoadhesion compared to DCys1Ac and DAc, respectively. These results demonstrated the usefulness of thiolated dendrimers as a mucoadhesive carrier and represent a novel platform for drug delivery.From the Clinical EditorThis study demonstrates the utility of thiolated dendrimers as mucoadhesive carriers as reported in an acyclovir delivery model system.  相似文献   

19.
Purpose PAMAM G5 dendrimer (P) was conjugated to Tat peptide (T), a cell penetrating peptide, in search of an efficient cellular delivery vehicle for antisense and siRNA oligonucleotides. Methods PAMAM G5 dendrimer was reacted with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionic acid, sulfosuccinimidyl ester, sodium salt (BODIPY) for visualization to yield the conjugate BP. Bifunctional sulfosuccinimidyl 6-[α-methyl-α-(2-pyridyldithio)toluamido]hexanoate (sulfo-LC-SMPT) was then used to conjugate primary amino groups of BP to cysteine derivatized Tat peptide to give the designed conjugate, BPT. This conjugate was complexed with antisense and siRNA oligonucleotides designed to inhibit MDR1 gene expression. NIH 3T3 MDR cells were used for the evaluation of biological activity of the conjugate. Results Both antisense and siRNA readily formed complexes with the synthesized BPT, introduced into NIH 3T3 MDR cells, and primarily accumulated in intracellular vesicles. MDR1 gene expression was partially inhibited by the antisense–BPT complex and weakly inhibited by the siRNA–BPT complex when both were tested at nontoxic levels of dendrimer. Conjugation with Tat peptide did not improve the delivery efficiency of the dendrimer. Conclusions Dendrimer–oligonucleotide complexes were moderately effective for delivery of antisense and only poorly effective for delivery of siRNA. Conjugation of the dendrimer with the Tat cell penetrating peptide failed to further enhance the effectiveness of the dendrimer.  相似文献   

20.
Both polyethylenimine (PEI) polymers and cationic nanoparticles have been widely used for non-viral DNA transfection. Previously, we reported that cationic nanoparticles composed of cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine and Tween 80 (NP-OH) could deliver plasmid DNA (pDNA) with high transfection efficiency. To increase the transfection activity of NP-OH, we investigated the potential synergism of PEI and NP-OH for the transfection of DNA into human prostate tumor PC-3, human cervices tumor Hela, and human lung adenocarcinoma A549 cells. The transfection efficiency with low-molecular PEI (MW 600) was low, but that with a combination of NP-OH and PEI was higher than with NP-OH alone, being comparable to commercially available lipofectamine 2,000 and lipofectamine LTX, with very low cytotoxicity. Low-molecular weight PEI could not compact pDNA in size, but rather might help to dissociate pDNA from the complex and release pDNA from the endosome to cytoplasm by the proton sponge effect. Therefore, the combination of cationic cholesterol-based nanoparticles and a low-molecular PEI has potential as a non-viral DNA vector for gene delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号