首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aversive and safe taste memory processing is dramatically disrupted by bilateral lesions of the pontine parabrachial nucleus (PBN). To determine how such lesions affect patterns of neuronal activation in forebrain, lesions were combined with assessment of cFos-like immunoreactivity (FLI) in insular cortex (IC) and amygdala after conditioned taste aversion (CTA) training. Increases in FLI in amygdala and IC, which are normally seen following novel (versus familiar) CS-US pairing, were eliminated after PBN lesions. This suggests that PBN lesions prevent transmission of critical CS and US information to forebrain regions for the processing of both aversive and safe taste memories. Unilateral asymmetrical lesions of PBN and IC blocked CTA acquisition as well as normal patterns of FLI in amygdala after novel CS-US pairing, an effect not seen when unilateral lesions were confined to a single hemisphere. The crossed-disconnection experiments provide compelling evidence that functional interactions between PBN and IC are required for CTA acquisition, but not for safe taste memory formation and retrieval. The dissociation between effects of the different types of lesions on safe and aversive taste memories supports emerging evidence that the neural underpinnings of the two types of taste learning differ.  相似文献   

2.
Although the lateral and basal nuclei of the amygdala are believed to be essential for the acquisition of Pavlovian fear conditioning, studies using post-training manipulations of the amygdala in the inhibitory avoidance learning paradigm have recently called this view into question. We used the GABA(A) agonist muscimol to functionally inactivate these nuclei immediately after single-trial Pavlovian fear conditioning or single-trial inhibitory avoidance learning. Immediate post-training infusions of muscimol had no effect on Pavlovian conditioning but produced a dose-dependent effect on inhibitory avoidance. However, pre-training infusions dose-dependently disrupted Pavlovian conditioning. These findings indicate that the amygdala plays an essential role in the acquisition of Pavlovian fear conditioning and contributes to the modulation of memory consolidation of inhibitory avoidance but not of Pavlovian fear conditioning.  相似文献   

3.
Adult male hooded rats (n = 12) with bilateral electrolytic lesions centered on the anterior basolateral amygdala (BLA) were given training using procedures meant to produce two different types of conditioned taste aversions (CTAs) to test whether the disruptive effects of such lesions on this form of learning were dependent upon the dosages of the illness-inducing agents used as unconditioned stimuli (UCSs). The CTAs were produced by either LiCl-induced toxicosis or lactose malabsorption. Comparison with sham-operated control subjects (n = 8) indicated that the disruptive effects of the lesions were inversely related to the dosage level of LiCl but not lactose: whilst the lesions disrupted CTAs produced by a low i.p. dose of LiCl and by a low, but not a high, oral dose of LiCl, they did not alter CTA learning produced by either high or low oral doses of lactose. These results were interpreted as providing further evidence that BLA mediates only certain types of CTA learning.  相似文献   

4.
Brain mechanisms of taste aversion learning in the rat.   总被引:6,自引:0,他引:6  
This study aims to reveal brain mechanisms underlying the conditioned taste aversion (CTA) learning. To establish CTA in Wistar male adult rats, 0.01 M Na-saccharin and IP injection of 0.15 M LiCl were used for conditioned stimulus and unconditioned stimulus, respectively. Rats with ibotenic acid lesions of the pontine taste area, thalamic taste area, or basolateral nucleus of the amygdala, failed to establish CTA learning, but lesions of the amygdaloid nuclei other than the basolateral nucleus, cortical gustatory area, hippocampus, entorhinal cortex, bed nucleus of the stria terminalis, or substantia innominata, showed slight or little effects. Rats that received amino-phosphovaleric acid chronically in the amygdala failed to establish CTA. These results, together with our preliminary results, suggest that long-term potentiation of gustatory responses involving N-methyl-D-aspartate receptors in the basolateral nucleus of the amygdala is a basic mechanism for CTA learning.  相似文献   

5.
In rats, the septo-hippocampal system is important for memory encoding. Previous reports indicate that muscimol, a specific GABAergic agonist induces learning and memory deficits when infused into the medial septal area. The basolateral nucleus of the amygdala (BLA) modulates memory encoding in other brain areas, including the hippocampus. To explore the interactions between the septo-hippocampal system and amygdala in memory, we studied the effects of intra-medial septal infusions of muscimol in rats with BLA lesions. Animals received sham surgery or excitotoxic BLA lesions and were given infusions of either vehicle or muscimol (5 nmol) into the medial septal area 5 min prior to training sessions in inhibitory avoidance and water maze tasks. In the inhibitory avoidance task, muscimol-induced memory impairment was potentiated by BLA amygdala lesions. Additionally, in the water maze task, BLA-lesioned rats given muscimol infusions into the medial septal also showed memory impairment. These findings indicate that the MSA interacts with the BLA in the processing of memory storage.  相似文献   

6.
This study examined the effects of stria terminalis (ST) lesions on glucocorticoid-induced modulation of memory formation for inhibitory avoidance training and spatial learning in a water maze. Systemic (s.c.) posttraining injections of the glucocorticoid receptor agonist dexamethasone (0.3 or 1.0 mg/kg) enhanced memory for inhibitory avoidance training in rats with sham ST lesions. Removal of the adrenal glands (adrenalectomy; ADX) significantly impaired spatial memory in a water maze, and immediate posttraining injections of dexamethasone (0.3 mg/kg) attenuated the memory impairment. Bilateral lesions of the ST did not significantly affect retention of these two tasks. However, ST lesions did block the effects of short-term ADX and dexamethasone administration on memory for both tasks. These results are similar to those of previous experiments examining the effects of lesions of the basolateral nucleus of the amygdala on the glucocorticoid-induced modulation of memory for both tasks. These findings suggest that the integrity of the ST, which connects the amygdala with other brain structures, is essential for the modulating effects of glucocorticoids on memory storage.  相似文献   

7.
These experiments examined the effects of bilateral amygdala nuclei lesions on modulation of memory storage induced by bilateral intrahippocampal microinfusions of glucocorticoids in male Sprague-Dawley rats. Post-training infusions of the glucocorticoid receptor (type II) agonist RU 28362 (3.0 or 10.0 ng) enhanced inhibitory avoidance retention, and infusions of the glucocorticoid receptor antagonist RU 38486 (3.0 or 10.0 ng) administered shortly before training in a water maze spatial task did not affect acquisition, but impaired retention. In both tasks, neurochemically induced lesions of the basolateral but not of the central amygdala blocked the memory-modulatory effects of the intrahippocampal infusions of the drugs affecting glucocorticoid receptors. Lesions of the central amygdala alone impaired inhibitory avoidance retention, but basolateral amygdala lesions alone did not affect acquisition or retention in either task. These findings are consistent with previous evidence indicating that lesions of the basolateral amygdala block the memory-modulatory effects of systemically administered glucocorticoids, and provide further evidence that the basolateral amygdala is a critical area involved in regulating glucocorticoid effects in other brain regions involved in memory storage.  相似文献   

8.
The neural substrates of fear conditioning in rats have been well characterized, with converging lines of evidence indicating that conditioned stimulus (CS) and unconditioned stimulus (US) information form a CS-US association in the amygdala. Auditory CS information can reach the amygdala via two routes: a direct thalamo-amygdala pathway, and an indirect thalamo-cortico-amygdala pathway. Although either pathway can fully support learning when the alternate pathway is disrupted, many studies to date have argued that the thalamo-amygdala pathway is the principal auditory CS pathway in intact brains. To test this hypothesis, we trained rats in auditory fear conditioning, and 24 h later lesioned either pathway, leaving the alternate pathway intact. Later, animals were tested for conditioned freezing to the auditory CS. We report that lesions of the thalamo-amygdala pathway produced severe but incomplete deficits in freezing during the tone retention test, while lesions of the thalamo-cortico-amygdala pathway completely abolished freezing during tone presentation. These results suggest that the thalamo-cortico-amygdala pathway is the principal auditory CS pathway when the brain is intact.  相似文献   

9.
The present study investigated the involvement of two amygdala pathways, the stria terminalis (ST) and the ventral amygdalofugal pathway (VAF), in the effect of post-training electrical stimulation of the amygdala on retention. Rats with implanted amygdaloid electrodes and ST lesions, VAF transections or sham pathway operations, were trained on an inhibitory avoidance task and an active avoidance task. Electrical stimulation of the amygdala was given immediately after training and retention was tested 24 h later. In rats with sham ST lesions, post-training amygdaloid stimulation impaired retention in both tasks. Lesions of the ST did not significantly affect retention in the unstimulated rats. However, the ST lesions attenuated the amnestic effect of amygdaloid stimulation. In rats with sham VAF transections, stimulation of the amygdala impaired retention in the inhibitory avoidance task but enhanced retention in the active avoidance task. Transecting the VAF impaired retention performance of the unstimulated rats in the inhibitory avoidance task. However, the VAF transections did not alter the effect of amygdaloid stimulation: in both tasks, the retention performance of stimulated rats with VAF transections did not differ from that of stimulated rats with sham transections. These findings suggest that the ST may be involved in mediating the influences of the stimulated amygdala in modulating memory storage processing in the brain.  相似文献   

10.
It has been proposed that long-term potentiation (LTP) a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC) a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl- -aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonist CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid) disrupts the acquisition of conditioned taste aversion, as well as, the IC-LTP induction in vivo. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA dependent neocortical LTP, constitute a possible mechanism for the learning related functions performed by the IC.  相似文献   

11.
The peptide-hormone relaxin has well-established actions in male and female reproductive tracts, and has functional effects in circumventricular regions of brain involved in neurohormonal secretion. In the current study, we initially mapped the distribution of mRNA encoding the relaxin receptor--leucine-rich repeat-containing G-protein-coupled receptor 7 (LGR7)- and [33P]-human relaxin-binding sites in extra-hypothalamic sites of male Sprague-Dawley rats. The basolateral amygdala (BLA) expressed high levels of LGR7 mRNA and relaxin-binding sites and, although relaxin peptide was not detected in the BLA, several brain regions that send projections to the BLA were found to contain relaxin-expressing neurons. As it is well established that the BLA is involved in regulating the consolidation of memory for emotionally arousing experiences, we investigated whether activation of LGR7 in the BLA modulated memory consolidation for aversively motivated inhibitory avoidance training. Bilateral infusions of human relaxin (10-200 ng in 0.2 microL) into the BLA immediately after inhibitory avoidance training impaired 48-h retention performance in a dose-dependent manner. Delayed infusions of relaxin into the BLA 3 h after training were ineffective, indicating that the retention impairment was due to influences on memory consolidation. Post-training infusions of relaxin into the adjacent central amygdala, which is devoid of LGR7, did not impair retention. These findings suggest a novel function for endogenous relaxin-LGR7 signalling in rat brain involving regulation of memory consolidation.  相似文献   

12.
Long-lasting changes in synaptic strength, such as long-term potentiation (LTP), are thought to underlie memory formation. Recent studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and retention of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce LTP in the IC of adult rats in vivo, as well as, that blockade of N-methyl-D-aspartate (NMDA) receptors disrupts CTA and IC-LTP induction in vivo. Here, we present experimental data showing that induction of LTP in the Bla-IC projection previous to CTA training enhances the retention of this task. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying neocortical LTP may contribute to memory related functions performed by the IC.  相似文献   

13.
In this study, we examined single-unit activity in the amygdala before and after a rat had acquired an inhibitory avoidance task. Long-Evans rats with microwires chronically implanted into the central nucleus (CeA) or basolateral complex (BLC) of the amygdala were acclimatized to the apparatus of a step-through inhibitory avoidance task for three sessions. On the fourth session, rats in the experimental group received an inescapable footshock (3 mA, 1 s) as they stepped from the lit side into the dark side of the task apparatus, whereas rats in the control group received the same amount of shock on a different apparatus. All rats were tested for retention in the task apparatus 1 day after shock training. The experimental rats showed better retention than the controls as they stayed longer in the lit side. Ensemble unit activities were recorded in the amygdala nuclei from the indwelling wire bundles during the acclimation and test sessions. The data collected from well-isolated amygdala units showed that neuronal discharge habituated from the first to the third acclimation session. In the test session, the experimental group, but not the control group, showed elevated firing rates in the CeA or BLC neurons located on either side of the brain. These findings provide the first piece of evidence showing that learning of an inhibitory avoidance task leads to an increase in amygdala neuronal discharges during a retention test.  相似文献   

14.
The present study examined the disruptive effects of low-intensity electrical stimulation in the caudate or amygdala on retention of inhibitory shock avoidance. Caudate stimulation administered during a training trial disrupted inhibitory avoidance on a retest trial. However, animals receiving caudate stimulation during both training and retention trials displayed good retention of this behavior and did not differ significantly from implanted controls. These data suggest a role for state-dependent learning in mediating the disruptive effects of caudate stimulation on inhibitory shock avoidance. No evidence was found for state-dependent effects with amygdaloid stimulation. Animals receiving stimulation only during training or during both training and retest trials showed comparable disruption of inhibitory shock avoidance. These data provide evidence for locus-specific state-dependent effects of electrical brain-stimulation. The implications of these state-dependent effects are discussed with respect to the use of electrical brain-stimulation to study the neural substrates of memory.  相似文献   

15.
There is extensive evidence that amnestic treatments are less effective, or ineffective when administered to subjects that have been overtrained or subjected to high foot‐shock intensities in aversively motivated learning. This protective effect has been found with a variety of learning tasks and with treatments that disrupt activity in several regions of the brain, including the hippocampus, amygdala, striatum, and substantia nigra. Such findings have been interpreted as suggesting that the brain regions disrupted are not critical sites for the memory processes induced by these types of training. In most experiments investigating this issue the amnestic treatments were administered after training. Thus, it might be less amnesia was induced because the training accelerated memory consolidation and, thus, the maximum effect of the amnestic treatment occurred after memory of the learning experience was consolidated. This study investigated this issue by inactivating the hippocampus of rats bilaterally with tetrodotoxin (TTX) (10 ng/side) 30 min before one‐trial inhibitory avoidance training using relatively low (1.0 mA), medium (2.0 mA), or high (3.0 mA) foot‐shock intensities. Retention of the task was measured 48 h after training. TTX produced a profound retention deficit, a mild deficit, and no deficit at all in the 1.0, 2.0, and 3.0 mA groups, respectively. These data confirm the protective effect of training with relatively high foot‐shock intensity against experimentally induced amnesia, and suggests that this protection is not due to accelerated consolidation. Rather, the findings suggest that strong training activates brain systems other than those typically involved in mediating memory consolidation. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
There is extensive evidence suggesting that the basolateral nucleus of the amygdala plays a critical role in modulating memory consolidation processes in other brain regions. The present experiments examined interactions between the basolateral amygdala and the entorhinal cortex in modulating memory consolidation for inhibitory avoidance training. Several studies have reported that activation of the second messenger system adenosine 3',5'-cyclic monophosphate (cAMP) in several brain regions enhances memory and induces long-term plasticity. In the present experiments, a unilateral infusion of the cAMP analogue, 8-Br-cAMP (0.25 or 1.25 microg in 0.5 microL), administered into the entorhinal cortex of male Sprague-Dawley rats immediately after training, enhanced 48-h retention. An N-methyl-d-aspartate-induced lesion of the ipsilateral basolateral amygdala did not impair retention, but blocked the memory-enhancing effect of 8-Br-cAMP (infused into the entorhinal cortex) post-training. A lesion of the contralateral basolateral amygdala did not block the 8-Br-cAMP-induced retention enhancement. These findings indicate that an intact basolateral amygdala is essential for modulation of memory consolidation involving the entorhinal cortex, and are consistent with evidence that the basolateral amygdala regulates memory consolidation mediated by other brain regions.  相似文献   

17.
The induction of c-Fos-like immunoreactivity (c-FLI) in the intermediate division of the nucleus of the solitary tract (iNTS) has been shown to be a cellular correlate of the behavioral expression of a conditioned taste aversion (CTA). To further define neuroanatomical structures and pathways that contribute to this cellular response and to CTA learning in general, electrolytic lesions of insular (gustatory) cortex (IC) were combined with immunostaining for c-FLI. Rats were given either unilateral or bilateral electrolytic lesions of insular cortex or `sham' operations. Following surgery, `paired' animals were given a single conditioning trial consisting of intraoral infusion of 5-ml 0.15% sodium–saccharin followed by injection with LiCl (0.15 M, 20 ml/kg, i.p.) while `unpaired' controls received a non-contingent saccharin–LiCl presentation. Rats with bilateral lesions showed no behavioral evidence of having acquired a CTA. Increases in c-FLI in iNTS were evident, but reduced, relative to `sham' animals. Rats with unilateral-lesions displayed a CTA by rejecting the saccharin, although increases in c-FLI on the side of the iNTS ipsilateral to the lesion were reduced relative to that seen in `sham' animals. A comparison of these results with those obtained after amygdala lesions supports the conclusion that amygdala and insular cortex are necessary, but not sufficient, for the behavioral expression of a CTA.  相似文献   

18.
To understand how the human amygdala contributes to associative learning, it is necessary to differentiate the contributions of its subregions. However, major limitations in the techniques used for the acquisition and analysis of functional magnetic resonance imaging (fMRI) data have hitherto precluded segregation of function with the amygdala in humans. Here, we used high-resolution fMRI in combination with a region-of-interest-based normalization method to differentiate functionally the contributions of distinct subregions within the human amygdala during two different types of instrumental conditioning: reward and avoidance learning. Through the application of a computational-model-based analysis, we found evidence for a dissociation between the contributions of the basolateral and centromedial complexes in the representation of specific computational signals during learning, with the basolateral complex contributing more to reward learning, and the centromedial complex more to avoidance learning. These results provide unique insights into the computations being implemented within fine-grained amygdala circuits in the human brain.  相似文献   

19.
These experiments examined the effects of posttraining systemic administration of the GABAergic agonist muscimol and the GABAergic antagonist bicuculline on retention in mice with bilateral lesions of the amygdala, dorsal hippocampus or caudate nucleus. Unoperated male CD1 mice and mice with either sham lesions or electrolytically induced lesions of these 3 brain regions were trained in a one-trial inhibitory avoidance task and, immediately after training, received i.p. injections of either muscimol, (1.0, 2.0 or 3.0 mg/kg), bicuculline, (0.25, 0.5 or 1.0 mg/kg), or control solutions. Retention was tested 24 h after training. Lesions of the 3 brain regions produced comparable impairment of retention. In the unoperated controls and sham controls muscimol and bicuculline produced dose-dependent impairment and enhancement, respectively, of retention. The drug effects on retention were blocked by lesions of the amygdala and hippocampus, but were not blocked by lesions of the caudate nucleus. These findings are consistent with other recent evidence suggesting that the amygdala and hippocampus are involved in mediating posttraining neuromodulatory influences on memory storage.  相似文献   

20.
This study investigated the role of amygdala CaM-kinase II (calcium/calmodulin-dependent protein kinase II) in affective learning and memory. In Experiment I, two groups of rats were trained on a one-trial step through inhibitory avoidance learning task. The experimental group received a high intensity foot shock contingent upon the stepping-through behavior, whereas the control group received a series of non-contingent low intensity foot shock during training. The experimental rats showed significantly higher retention scores than the control rats. Correspondingly, rats in the experimental group showed significantly higher Ca2+-independent activity of CaM-kinase II than the controls. Intra-amygdala injection of a specific CaM-kinase II inhibitor, KN-62, before the training trial disrupted affective learning. In comparison with the vehicle-injected controls, pretraining injection of KN-62 impaired the acquisition of affective specific learning. These results, taken together, indicated that the activation of amygdala CaM-kinase II in the amygdala is associated with the affective learning behavior, and may be one of the neural mechanisms underlying formation of affective memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号