首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiopurine S-methyltransferase (TPMT) catalyses the S-methylation of thiopurine drugs. In Caucasians, four variant TPMT alleles have been detected in over 80% of individuals with low or intermediate TPMT activity. The wild-type allele is designated as TPMT*1 and the mutant alleles are designated TPMT*2 through TPMT*8. The frequency of these alleles in different ethnic groups has not been well defined. In this study, one hundred individuals, from each of the Indonesian, Thai and Philippine populations, together with 249 Taiwanese, were analysed by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing methods. The results showed that the allelic frequencies of TPMT*3C were 0.6% for Taiwanese and 1% for Filipino, Thai and Indonesian populations, respectively. One Filipino with a Caucasian parent was found to be heterozygous for the TPMT*2 allele. This study provides the first analysis of the allele frequency distribution of all known TPMT mutations in South-east Asian populations.  相似文献   

2.
Thiopurine methyltransferase metabolizes 6-mercaptopurine, thioguanine and azathioprine, thereby regulating cytotoxicity and clinical response to these thiopurine drugs. In healthy Caucasian populations, 89-94% of individuals have high thiopurine methyltransferase activity, 6-11% intermediate and 0.3% low, resulting from genetic polymorphism. Four variant thiopurine methyltransferase alleles were detected in over 80% of individuals with low or intermediate thiopurine methyltransferase activity. The wild-type allele is defined as TPMT*1 and the mutant alleles are TPMT*2 (G238C), TPMT*3A (G460A and A719G), TPMT*3B (G460A) and TPMT*3B (A719G). The frequency of these alleles in different ethnic groups is not well defined. In this study, DNA from 199 British Caucasian, 99 British South West Asian and 192 Chinese individuals was analysed for the presence of these variant alleles using polymerase chain reaction-restriction fragment length polymorphism and allele-specific polymerase chain reaction based assays. The frequency of individuals with a variant thiopurine methyltransferase genotype was: Caucasians 10.1% (20/199), South West Asians 2.0% (2/99) and Chinese 4.7% (9/192). Two TPMT*2 heterozygotes were identified in the Caucasian population, but this allele was not found in the two Asian populations. TPMT*3A was the only mutant allele found in the South West Asians (two heterozygotes). This was also the most common mutant allele in the Caucasians (16 heterozygotes and one homozygote) but was not found in the Chinese. All mutant alleles identified in the Chinese population were TPMT*3C (nine heterozygotes). This allele was found at a low frequency in the Caucasians (one heterozygote). This suggests that A719G is the oldest mutation, with G460A being acquired later to form the TPMT*3A allele in the Caucasian and South West Asian populations. TPMT*2 appears to be a more recent allele, which has only been detected in Caucasians to date. These ethnic differences may be important in the clinical use of thiopurine drugs.  相似文献   

3.
中国新疆维吾尔族硫嘌呤甲基转移酶基因突变研究   总被引:1,自引:0,他引:1  
目的 研究硫嘌呤甲基转移酶(thiopurine S-methyltransferase,TPMT)在新疆维吾尔族中的基因突变频率。方法 用等位基因特异性的PCR方法和限制性片断长度多态性的方法检测4种常见的导致酶活性降低的突变类型:TPMT*2、TPMT*3A、TPMT*3B和TPMT*3C。结果 在160名维吾尔族中发现了1例TPMT*3A(A719G/G460A)杂合子、5例TPMT*3C(A719G)杂合子,TPMT*3A和TPMT*3C的等位基因频率分别是0.3%和1.6%。结论 维吾尔族总的TPMT突变等位基因频率(1.9%)同中国其他民族相近;TPMT*3C是维吾尔族最主要的突变类型。  相似文献   

4.
Thiopurine methyltransferase (TPMT) catalyzes the inactivation of thiopurine drugs (mercaptopurine, thioguanine and azathioprine) used to treat acute lymphoblastic leukemia, autoimmune diseases and recipients of transplanted organs. No endogenous substrates for this enzyme are known. The TPMT polymorphism is a major determinant of individual differences in the toxicity or therapeutic efficacy of these drugs. The molecular basis of this polymorphism has been established in Caucasians, Africans, African-Americans and Asians, but not yet in the heterogeneous Latin American groups, including the Colombian population. The frequency of the four allelic variants of the TPMT gene, TPMT*2 (G238C), TPMT*3A (G460A and A719G), TPMT*3B (G460A) and TPMT*3C (A719G), were determined in 140 Colombian volunteers of Mestizo origin, using allele-specific PCR and PCR-RFLP assays. The *3A allele was found in 10 samples and the *2 allele in one, all heterozygotes; neither homozygous mutant genotypes nor the *3B and *3C alleles were detected. In agreement with these results, 92.1% and 7.9% of the Colombian population correspond to the phenotypes high and intermediate methylators, respectively. These results show that the frequency of mutations and the allelic distribution of the TPMT gene in the Colombian population are similar to the genetic profile found among US and European Caucasian populations, where the *3A allele is prevalent and the *2 allele is currently present.  相似文献   

5.
AIMS: To determine the frequencies of four thiopurine S-methyltransferase (TPMT) mutant alleles, TPMT*2, *3A, *3B and *3C in a normal Japanese population. METHODS: Genotypes were determined in 151 Japanese subjects and in six family members of a propositus using polymerase chain reaction (PCR)-restriction fragment length polymorphism and allele-specific PCR assays. RESULTS: Only one TPMT*3C heterozygote was identified (gene frequency 0.3%). TPMT*2, *3A and *3B were not detected. In addition, TPMT*3C was found to have been inherited from the mother and passed on to the son of the propositus. CONCLUSIONS: TPMT*3C appears to be most prevalent among the known mutant allele of TPMT in a Japanese population which may have some relevance for the treatment of Japanese patients with thiopurine drugs.  相似文献   

6.
Thiopurine S-methyltransferase (TPMT) is an enzyme that catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathioprine. TPMT activity exhibits an interindividual variability mainly a result of genetic polymorphism. Patients with intermediate or deficient TPMT activity are at risk for toxicity after receiving standard doses of thiopurine drugs. It has previously been reported that 3 variant alleles:TPMT*2, *3A, and *3C are responsible for over 95% cases of lower enzyme activity. The purpose of this study was to determine the frequency of TPMT variant alleles in a Polish population. DNA samples were obtained from 358 unrelated healthy Polish subjects of white origin, and TPMT genetic polymorphism was determined using PCR-RFLP and allele-specific PCR methods. The results showed that allelic frequencies were 0.4% for TPMT*2, 2.7% for TPMT*3A, and 0.1% for TPMT*3C, respectively. A TPMT*3B allele was not found in the studied population. The general pattern of TPMT allele disposition in the Polish population is similar to those determined for other white populations, but the frequency of total variant alleles is lower than in other European populations studied to date.  相似文献   

7.
Thiopurine methyltransferase (TPMT) degrades 6-mercaptopurine, azathioprine and 6-thioguanine which are commonly used in the treatment of autoimmune diseases, leukaemia and organ transplantation. TPMT activity is polymorphic as a result of gene mutations. Heterozygous individuals have an increased risk of haematological toxicity after thiopurine medication, while homozygous mutant individuals suffer life threatening complications. Previous population studies have identified ethnic variations in both phenotype and genotype, but limited information is available within African populations. This study determined the frequency of common TPMT variant alleles in 101 Kenyan individuals and 199 Caucasians. The frequency of mutant alleles was similar between the Caucasian (10.1%) and Kenyan (10.9%) populations. However, all mutant alleles in the Kenyan population were TPMT*3C compared with 4.8% in Caucasians. In contrast TPMT*3A was the most common mutant allele in the Caucasian individuals. This study confirms ethnic differences in the predominant mutant TPMT allele and the findings will be useful for the development of polymerase chain reaction-based strategies to prevent toxicity with thiopurine medications.  相似文献   

8.
AIMS: To determine the frequencies of CYP2C9 variants in the Korean population and compare them with the frequencies in other ethnic populations. METHODS: Genotyping of CYP2C9*2 and CYP2C9*3 allelic variants was carried out in 574 Korean subjects by PCR and restriction fragment length pattern analysis. RESULTS: Thirteen of 574 subjects (2.3%) were heterozygous for CYP2C9*3 (Ile359Leu), but no subjects with a CYP2C9*2 allele or homozygous for CYP2C9*3 were identified. The allele frequency of CYP2C9*3 in Korean subjects (0.0113, 95% CI 0.0066-0.0193) was similar to that of other East Asian populations, but was considerably lower than that of Caucasian populations. CONCLUSIONS: CYP2C9*3 seems to be an allelic variant related to the functional polymorphism of CYP2C9, but this variant is rarely seen among Koreans compared with Caucasians. Routine genotyping of the CYP2C9*2 allele is considered to be unnecessary in Korean and East Asians, because this allele appears to be extremely rare or absent in these populations.  相似文献   

9.
AIMS: The goal of this study was to determine the frequencies of important allelic variants in the TPMT, NAT2, GST, SULT1A1 and MDR-1 genes in the Egyptian population and compare them with the frequencies in other ethnic populations. METHODS: Genotyping was carried out in a total of 200 unrelated Egyptian subjects. TPMT*2 was detected using an allele-specific polymerase chain reaction (PCR) assay. TPMT*3C and NAT2 variants (*5,*6 and *7) were detected using an allele-specific real-time PCR assay. Detection of GSTM1 and GSTT1 null alleles was performed simultaneously using a multiplex PCR assay. Finally, a PCR-restriction fragment length polymorphism assay was applied for the determination of TPMT*3A (*3B), SULT1A1*2 and MDR-1 (3435T) variants. RESULTS: Genotyping of TPMT revealed frequencies of 0.003 and 0.013 for TPMT*3A and TPMT*3C, respectively. No TPMT*2 or *3B was detected in the analysed samples. The frequencies of specific NAT2 alleles were 0.215, 0.497, 0.260 and 0.028 for *4 (wild-type), *5 (341C), *6 (590A) and *7 (857A), respectively. GSTM1 and GSTT1 null alleles were detected in 55.5% and 29.5% of the subjects, respectively. SULT1A1*2 was detected at a frequency of 0.135. Finally, the frequencies of the wild-type allele (3435C) and the 3435T variant in the MDR-1 gene were found to be 0.6 and 0.4, respectively. CONCLUSIONS: We found that Egyptians resemble other Caucasians with regard to allelic frequencies of the tested variants of NAT2, GST and MDR-1. By contrast, this Egyptian population more closely resemble Africans with respect to the TPMT*3C allele, and shows a distinctly different frequency with regard to the SULT1A1*2 variant. The predominance of the slow acetylator genotype in the present study (60.50%) could not confirm a previously reported higher frequency of the slow acetylator phenotype in Egyptians (92.00%), indicating the possibility of the presence of other mutations not detectable as T341C, G590A and G857A. The purpose of our future studies is to investigate for new polymorphisms, which could be relatively unique to the Egyptian population.  相似文献   

10.
AIMS: To determine the frequencies of the major arylamine- N-acetyltransferase-2 (NAT2) alleles in the Thai population. METHODS: DNA samples from 235 Thai individuals were analysed by polymerase chain reaction with restriction fragment length polymorphism assays. RESULTS: The frequency distribution of major NAT2 alleles, including NAT2*4, NAT2*5, NAT2*6 and NAT2*7 were 0.381 (95% CI 0.337, 0.426), 0.038 (0.023, 0.060), 0.326 (0.283, 0.370) and 0.204 (0.169, 0.244), respectively. When converted to phenotypes, the study population comprised 63.8% rapid acetylators and 36.2% slow acetylators. CONCLUSIONS: The pattern of NAT2 alleles of Thais is similar to those of many Asian populations, although the frequency of NAT2*4 is significantly lower and NAT2*7 is higher than that of Oriental populations.  相似文献   

11.
Genetic polymorphism of TPMT activity is an important factor responsible for large individual differences in thiopurine toxicity and therapeutic efficacy. The aim of this study was to determine the distribution of TPMT activity as well as the types and frequencies of mutant alleles in a Bulgarian population sample. TPMT activity was measured in 313 Bulgarians, using an established HPLC procedure. All individuals with TPMT activity less than 12.0 nmol/(mL Ery.h) (n = 76) were additionally genotyped using a color multiplex hybridization assay. The samples were tested for TPMT*2, *3A, *3B, *3C, *3D, *4, and *6 mutant alleles. TPMT activities varied from 1.1 to 24.0 nmol/(mL Ery.h) [mean 14.2 +/- 3.2 nmol/(mL Ery.h)]: 92.3% of the individuals investigated had high TPMT activity [>10 nmol/(mL Ery. h)], whereas 7.4% were intermediate [2.8-10 nmol/(mL Ery.h)], and 0.3% were low metabolizers [< 2.8 nmol/(mL Ery.h)]. A significant gender-related difference in TPMT activity (P = 0.02) was observed with 6.2% higher values in men than in women. There was no significant correlation between age and enzyme activity (r = 0.06, P = 0.27). Genotype analysis revealed three mutant TPMT alleles: 2, 3A, and 3C. The frequency of these alleles among the TPMT-deficient individuals was 2.17%, 30.4%, and 2.17%, respectively. These data show a similar distribution of TPMT activity among the Bulgarian population investigated as in most other white populations with the frequency of intermediate metabolizers being somewhat lower (7.4% versus approximately 11%) in the Bulgarians. The most common variant allele was TPMT-3A, as in other white populations.  相似文献   

12.
OBJECTIVE: The aim of the present study was to estimate the concordance rate between erythrocyte thiopurine methyltransferase (TPMT) activity and genotype at the TPMT locus in an Italian population sample. METHODS: The TPMT phenotype and genotype were determined in an unrelated population of 103 Italian healthy blood donors. Erythrocyte TPMT activity was measured with a radiochemical assay using 12.5 microM S-adenosyl-L-(methyl-14C)-methionine and 4 mM 6-mercaptopurine. The genotyping assay was based on restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR) methods. RESULTS: All subjects had detectable TPMT activity. The activity of TPMT varied 2.8-fold between the 5th and 95th percentile. This variation was neither age (P = 0.63) nor gender (P = 0.44) regulated and the frequency distribution of TPMT activity is compatible with a polymorphic distribution. The presence of the four most common defective alleles, i.e. TPMT*2, TPMT*3A, TPMT*3B and TPMT*3C, was examined through the entire phenotyped population. Ninety-two subjects did not carry any of the tested mutations. Eleven individuals were heterozygous for one of the mutant alleles and had a TPMT activity lower than 30 pmol/min/mg. Eight subjects were TPMT*1/TPMT*3A, two TPMT*1/TPMT*3C and one was TPMT*1/TPMT*2. The TPMT*3B allele was not detected in the samples analysed. CONCLUSION: There was a concordance of 97% between genotype and phenotype. All the heterozygotes had an intermediate phenotype. However, the wide variation range in TPMT activity detected in the wild-type homozygotes indicates that other genetic or epigenetic factors influence the TPMT phenotype.  相似文献   

13.
Analysis of the CYP2C19 polymorphism in a North-eastern Thai population   总被引:3,自引:0,他引:3  
CYP2C19 is a polymorphically expressed cytochrome P450 responsible for the metabolism of several clinically used drugs, including some barbiturates, diazepam, proguanil, propranolol and several proton pump inhibitors. Genetic polymorphism of this enzyme shows marked interracial differences, with the poor metabolizer (PM) phenotype representing 2-5% of Caucasian and 11-23% of Oriental populations. In the present study, CYP2C19 phenotype and genotype were investigated in 107 North-eastern Thai subjects using the omeprazole hydroxylation index (HI) and polymerase chain reaction-restriction fragment length polymorphism technique, respectively. It was found that the distribution of HI in these subjects was bimodal. Seven subjects [6.54%, 95% confidence (CI) 1.86-11.22%] were identified as PM, with an HI > 7. Analysis of CYP2C19 genotypes in these 107 Thai subjects revealed that the allele frequencies for CYP2C19*1, CYP2C19*2 and CYP2C19*3 were 0.71 (95% CI 0.65-0.77), 0.27 (95% CI 0.21-0.33) and 0.02 (95% CI 0.01-0.05), respectively. The PM phenotype and the frequencies of CYP2C19 defective alleles in Thais, particularly CYP2C19*3, were lower than those observed in other Oriental populations. It is noteworthy that there was a case of nonaccordance between phenotype and genotype in one of the PMs. Whether this PM represents a novel defective allele requires further investigation.  相似文献   

14.
The genetic polymorphism of CYP2C19 was examined in three Southeast Asian populations. This study was conducted in 774 Thais, 127 Burmeses and 131 Karens. Genomic DNA was extracted from leucocytes and analyzed by the PCR-RFLP technique. Genotype analysis revealed that the allele frequencies of CYP2C19*1, CYP2C19*2 and CYP2C19*3 in the Thais were 0.68, 0.29 and 0.03, respectively, and those of the Burmese population were 0.66, 0.30 and 0.04, respectively. For Karens, the minority ethnic in Mynmar, the allele frequencies of CYP2C19*1, CYP2C19*2 and CYP2C19*3 were 0.71, 0.28 and 0.01, respectively. The prevalence of PM estimated from genotype data among these three ethnic populations were 9.2%, 11.0%, and 8.4%, respectively. The PM phenotype and the frequencies of CYP2C19 defective alleles, particularly CYP2C19*3 among these three Southeast Asian ethnics appeared to be lower than other Asian populations. Lower prevalence of CYP2C19 PM suggests that these ethnics may have different capacity to metabolize drugs that are substrates of CYP2C19. Certain drug dosage regiments should be considered differently for Asian populations.  相似文献   

15.
Objective Thiopurine drugs are commonly used in pediatric patients for the treatment of acute leukemia, organ transplantation and inflammatory diseases. They are catabolized by the cytosolic thiopurine methyltransferase (TPMT), which is subject to a genetic polymorphism. In children, enzyme activities are immature at birth and developmental patterns vary widely from one enzyme to another. The present study was undertaken to evaluate erythrocyte TPMT activity and the correlation between genotype and phenotype in different age groups from birth to adolescence and adulthood.Methods The study included 304 healthy adult blood donors, 147 children and 18 neonates (cord bloods). TPMT activity was measured by liquid chromatography, and genotype was determined using a polymerase chain reaction reverse dot-blot analysis identifying the predominant TPMT mutant alleles (TPMT*3A, TPMT*3B, TPMT*3C, TPMT*2).Results There was no significant difference in TPMT activity between cord bloods (n=18) and children (n=147) (17.48±4.04 versus 18.62±4.14 respectively, P=0.424). However, TPMT was significantly lower in children than in adults (19.34±4.09) (P=0.033). In the whole population, there were 91.9% homozygous wild type, 7.9% heterozygous mutants and 0.2% homozygous mutants. The frequency of mutant alleles was 3.0% for TPMT*3A, 0.7% for TPMT*2 and 0.4% for TPMT*3C.Conclusion No impact of child development on TPMT activity could be evidenced, suggesting that TPMT activity is already mature at birth. The difference between children and adults was low with reduced clinical impact expected. When individual TPMT activity was compared with genotype, there was an overlapping region where subjects (4.5%, 12 adults, 9 children) were either homozygous wild type or heterozygous, with a TPMT activity below the antimode value. This result highlighted the importance of measuring TPMT activity to detect all patients at risk of thiopurine toxicity.  相似文献   

16.
目的:了解细胞色素P450(cytochromes P450,CYP)2C19,N-乙酰基转移酶2(arylamine N- acetyltransferase 2,NAT2)和硫嘌呤甲基转移酶(thiopurine S-methyltransferase,TPMT)基因常见的遗传多态性在河南地区汉族人群中的分布及其频率。方法:应用聚合酶链反应-限制性片段长度多态性分析(PCR-RFLP)对210名河南地区汉族人群的CYP2C19突变基因(*2和*3)、NAT2突变基因(*6和*7)和TPMT突变基因(*3A,*3B和*3C)进行检测。用聚合酶链反应-等位基因特异性扩增(PCR-ASA)对NAT2突变基因(*5)和TPMT突变基因(*2)进行检测。结果:CYP2C19*2和*3等位基因分布频率分别为34.76%和6.4%,同时携带2个等位突变基因的慢基因型频率占14.8%。NAT2*4(wt),*5(341C),*6(590A)和*7(857A)等位基因分布频率分别为59.1%,4.1%,26.4%和9.5%,慢基因型分布频率占19.5%。TPMT*3C等位基因分布频率为1.2%,未发现TPMT*2,TPMT*3A或TPMT*3B。结论:CYP2C19,NAT2和TPMT基因常见的遗传多态性在汉族人群中的分布及其频率与白人存在明显差异,这将有助于我国汉族人群临床药动学研究和给药剂量的确定。  相似文献   

17.
1. The genetically polymorphic cytochrome P450 enzymes 2C9 (CYP2C9) and 2C19 (CYP2C19) are involved in the metabolism and elimination of a number of widely used drugs. The polymorphisms give rise to substantial interindividual and interethnic variability in drug excretion rates and final serum concentrations. For this reason, therapeutic responses and adverse drug reactions may vary from one person to another. In the present study we determined CYP2C9 and CYP2C19 genotypes in a random Iranian population to compare allele frequencies with previous findings in other ethnic groups. 2. Allelic variants of CYP2C9 (*1/*2/*3) and CYP2C19 (*1/*2/*3) were determined in 200 unrelated healthy Iranian volunteers by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays. 3. Fifteen subjects (7.5%) were homozygous for the CYP2C9*2 allele, whereas 21 individuals (10.5%) were heterozygous for this allele and 164 subjects (82%) had the wild-type allele (CYP2C9*1). No CYP2C9*3 was detected in the population sampled. Six subjects (3%) were homozygous for CYP2C19*2, whereas 44 individuals (22%) were heterozygous for this allele. In the remaining subjects (75%), no CYP2C19*2 was found. In addition, no CYP2C19*3 was detected in the population sampled. 4. Based on our data, the frequency of the CYP2C9*2 allelic variant in Iranians is similar to that in other Caucasian populations; however, the frequency of the CYP2C9*3 allele differed significantly (P < 0.05). Conversely, there was no difference in the frequency of CYP2C19 allelic variants between the present study and other studies evaluating this allele in Caucasian populations (P > 0.05).  相似文献   

18.
AIMS: To investigate the incidence of the CYP2C19 polymorphism in the Chinese Dai population. METHODS: One hundred and ninety-three healthy Chinese Dai volunteers were identified with respect to CYP2C19 by genotype and phenotype analyses. A polymerase chain reaction-restriction fragment length polymorphism method was performed for genotyping procedures. The 4'-hydroxymephenytoin (4'-OH-MP) and S/R-mephenytoin ( S/R-MP) excreted in the urine were determined by high-performance liquid chromatography and gas chromatography, respectively. RESULTS: Eighteen subjects were identified as poor metabolisers (PMs). The frequency of PMs in the Chinese Dai subjects was 9.3% (95% confidence interval 5.2, 13.4), which is lower than that in the Chinese Han population ( P<0.05). Chinese Dai subjects had a higher frequency of the mutant CYP2C19*2 allele (0.303) and a lower frequency of the mutant CYP2C19*3 allele (0.034). These two mutant alleles could explain all deficiencies of CYP2C19 activity in the Chinese Dai subjects. The frequency of the CYP2C19*3 allele is significantly lower than that in the Chinese Han population ( P<0.05). The mean S/R ratio was lower in the homozygous extensive metabolisers (EMs) compared with that in heterozygous EMs ( P<0.01), and the latter was lower than that in the PMs ( P<0.01). Furthermore, the mean S/R ratio in CYP2C19*3/ CYP2C19*2 heterozygous PMs was possibly lower than that in the CYP2C19*2/ CYP2C19*2 homozygous PMs ( P<0.05). CONCLUSION: The frequencies of PMs and CYP2C19*3 allele in the Chinese Dai population are significantly lower than those in the Han population. The CYP2C19 genotype analysis is largely consistent with the mephenytoin phenotype analysis. The variability of S/R ratios in EMs and PMs shows a gene-dosage effect.  相似文献   

19.
AIMS: Ethnicity is an important variable influencing drug response. Thiopurine S-methyltransferase (TPMT) plays an important role in the metabolism of thiopurine drugs. Previous population studies have identified ethnic variations in both phenotype and genotype of TPMT, but limited information is available within Chinese population that comprises at least 56 ethnic groups. The current study was conducted to compare both phenotype and genotype of TPMT in healthy Han and Yao Chinese children. METHODS: TPMT activity was measured in healthy Chinese children by a HPLC assay (n = 213, 87 Han Chinese and 126 Yao Chinese). Allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) were used to determine the frequency of TPMT mutant alleles (TPMT*2, TPMT*3 A, TPMT*3B and TPMT*3C) in these children. RESULTS: There was no significant difference in the mean TPMT activity between Han and Yao Chinese children. A unimodal distribution of TPMT activity in Chinese children was found and the mean TPMT activity was 13.32 +/- 3.49 U ml(-1) RBC. TPMT activity was not found to differ with gender, but tended to increase with age in Yao Chinese children. TPMT*2, TPMT*3B and TPMT*3A were not detected, and only one TPMT*3C heterozygote (Han child) was identified in 213 Chinese children. Erythrocyte TPMT activity of this TPMT*3C heterozygote was 12.36 U ml(-1) RBC. The frequency of the known mutant TPMT alleles was 0.2%[1/426] in Chinese children. CONCLUSION: The frequency distribution of RBC TPMT activity was unimodal. The frequency of the known mutant TPMT alleles in Chinese Children is low and TPMT*3C appears to be the most prevalent among the tested mutant TPMT alleles in this population.  相似文献   

20.
Objective This study was to investigate the gene mutation of thiopurine S-methyltransferase (TPMT) in Uygur Chinese.Methods Polymerase chain reaction-based methods were used to analyze three commonly reported inactivating mutations—G238C, G460A and A719G.Results One TPMT*3A heterozygote and five TPMT*3C heterozygotes were found in 160 Uygur Chinese subjects, and allele frequencies of TPMT*3A and TPMT*3C were 0.3% and 1.6%, respectively.Conclusion TPMT*3C is a common mutant allele in Uygur Chinese, while TPMT*3A is a rare mutant allele in Uygur Chinese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号