首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Simian virus 40 (SV40) DNA replication dependent on the SV40 origin of replication and the SV40 large tumor (T) antigen has been reconstituted in vitro with purified protein components isolated from HeLa cells. In addition to SV40 T antigen, these components included the DNA polymerase alpha-primase complex, topoisomerase I, and a fraction that contained a single-stranded DNA binding protein. The latter protein, which sediments at 5.1 S on glycerol gradients and copurifies with two major protein species of 72 and 76 kDa, was isolated solely by its ability to support SV40 DNA replication. The purified system retained the species-specific DNA polymerase alpha-primase requirement previously observed with crude fractions; the complex from HeLa cells supported SV40 replication, whereas that from calf thymus and mouse cells did not. DNA containing the polyomavirus origin of replication was replicated in a system containing polyomavirus T antigen, the HeLa single-stranded DNA binding protein-containing fraction, and DNA polymerase alpha-primase complex from mouse, but not HeLa, cells. While crude fractions yielded closed circular duplex DNA, none was detected with the purified system. Nevertheless, the addition of a crude fraction to the purified system yielded closed circular monomer products.  相似文献   

2.
Proliferating-cell nuclear antigen (PCNA) mediates the replication of simian virus 40 (SV40) DNA by reversing the effects of a protein that inhibits the elongation reaction. Two other protein fractions, activator I and activator II, were also shown to play important roles in this process. We report that activator II isolated from HeLa cell extracts is a PCNA-dependent DNA polymerase delta that is required for efficient replication of DNA containing the SV40 origin of replication. PCNA-dependent DNA polymerase delta on a DNA singly primed phi X174 single-stranded circular DNA template required PCNA, a complex of the elongation inhibitor and activator I, and the single-stranded DNA-binding protein essential for SV40 DNA replication. DNA polymerase delta, in contrast to DNA polymerase alpha, hardly used RNA-primed DNA templates. These results indicate that both DNA polymerase alpha and delta are involved in SV40 DNA replication in vitro and their activity depends on PCNA, the elongation inhibitor, and activator I.  相似文献   

3.
p37 and p40 are two cloned gene products of the five-subunit human cellular DNA replication factor activator 1 (A1) protein complex (also called replication factor C). Here, we describe the solubilization, purification, and characterization of these two proteins that were overproduced in Escherichia coli. Using a nitrocellulose filter binding assay, we demonstrated that the purified A1 p37 protein associated with DNA preferentially at the primer terminus, a property resembling that of the A1 complex. We also show that in the presence of relatively high levels of salt, the recombinant p37 protein alone activated DNA polymerase epsilon but not polymerase delta in catalyzing the elongation of DNA chains. The p40 protein specifically associated with cellular p37 and proliferating-cell nuclear antigen (PCNA) present in HeLa cell cytosolic extract. The addition of purified p40 protein abolished the in vitro polymerase delta-catalyzed DNA elongation reaction dependent on both PCNA and A1. However, this inhibition was reversed by excess polymerase delta, suggesting a specific interaction between the polymerase and the p40 protein. Thus, while p37 binds DNA at the primer end and has a specific affinity for pol epsilon, p40, which binds ATP, interacts with PCNA and pol delta. These activities are essential for the DNA elongation reactions that lead to the synthesis of leading-strand DNA and the maturation of Okazaki fragments.  相似文献   

4.
We have evidence for the formation of a stable preelongation complex during the replication of simian virus 40 (SV40) origin containing DNA (ori+ DNA) in vitro. Preincubation of ori+ DNA with HeLa cytosolic extracts and SV40-encoded large tumor antigen (T antigen) in the absence of deoxynucleoside triphosphates eliminates a lag that normally precedes replication. This effect requires ATP and is inhibited by RNase A; subsequent elongation is inhibited by aphidicolin but not by RNase A. A T antigen and SV40 origin-dependent complex can be isolated by gel-filtration chromatography of preincubation reaction mixtures. In both cases, the products formed by replication after complex formation resemble those formed during in vitro replication reactions described previously. HeLa cytosolic extract was separated into two ammonium sulfate fractions: a 0-40% fraction (AS 40) that shows low levels of DNA synthesis and a 40-65% fraction (AS 65) that is inactive by itself but stimulates synthesis when added to the AS 40 fraction. DNA synthesis by these combined fractions has the same requirements as crude extract, occurs in two stages as described above, and is sensitive to RNase A. Pretreatment of both fractions with micrococcal nuclease eliminated replication activity, whereas the combination of a pretreated fraction (either AS 40 or 65) with an untreated fraction was active. A heat-inactivated (55 degrees C, 5 min) AS 65 fraction restored replication activity to the combination of micrococcal nuclease-treated AS 40 and AS 65 fractions.  相似文献   

5.
Replication of plasmid DNA molecules containing the simian virus 40 (SV40) origin of DNA replication has been reconstituted with seven highly purified cellular proteins plus the SV40 large tumor (T) antigen. Initiation of DNA synthesis is absolutely dependent upon T antigen, replication protein A, and the DNA polymerase alpha-primase complex and is stimulated by the catalytic subunit of protein phosphatase 2A. Efficient elongation of nascent chains additionally requires proliferating cell nuclear antigen, replication factor C, DNA topoisomerase I, and DNA polymerase delta. Electron microscopic studies indicate that DNA replication begins at the viral origin and proceeds via intermediates containing two forks that move in opposite directions. These findings indicate that the reconstituted replication reaction has many of the characteristics expected of authentic viral DNA replication.  相似文献   

6.
The synthesis of oligoribonucleotides by DNA primase in the presence of duplex DNA containing the simian virus 40 (SV40) origin of replication was examined. Small RNA chains (10-15 nucleotides) were synthesized in the presence of the four common ribonucleoside triphosphates, SV40 large tumor antigen (T antigen), the human DNA polymerase alpha (pol alpha)-DNA primase complex, the human single-stranded DNA-binding protein (HSSB), and topoisomerase I isolated from HeLa cells. The DNA primase-catalyzed reaction showed an absolute requirement for T antigen, HSSB, and pol alpha. The requirement for HSSB was not satisfied by other SSBs that can support the T-antigen-catalyzed unwinding of DNA containing the SV40 origin of replication. Oligoribonucleotide synthesis occurred with a lag that paralleled the lag observed in DNA synthesis. These results indicate that the specificity for the HSSB in the SV40 replication reaction is due to the pol alpha-primase-mediated synthesis of the Okazaki fragments. In contrast to this specificity, the elongation of Okazaki fragments can be catalyzed by a variety of different DNA polymerases, including high levels of pol alpha, the polymerase delta holoenzyme, T4 polymerase holoenzyme, the Escherichia coli polymerase III holoenzyme, and other polymerases. These observations suggest that leading-strand synthesis in the in vitro SV40 replication system can be nonspecific.  相似文献   

7.
In vitro replication of DNA containing the polyoma (Py) virus origin of replication has been carried out with cell-free extracts prepared from mouse FM3A cells. The in vitro system required the Py virus-encoded large tumor (T) antigen, DNA containing the Py virus origin of replication, ATP, and an ATP-regenerating system. The replication reaction was inhibited by aphidicolin, suggesting the involvement of DNA polymerase alpha in this system. Simian virus 40 (SV40) T antigen could not substitute for the Py T antigen. Cell extracts prepared from HeLa cells, a source that replicates SV40 DNA in the presence of SV40 T antigen, replicated Py DNA poorly. The addition of purified DNA polymerase alpha-primase complex isolated from FM3A cells enabled HeLa cell extracts to replicate Py DNA with the same efficiency as FM3A cell extracts. Complementary experiments have shown that FM3A cell extracts do not support SV40 DNA replication unless supplemented with DNA polymerase alpha-primase complex from HeLa cells [Murakami, Y., Wobbe, C.R., Weissbach, L., Dean, F.B. & Hurwitz, J. (1986) Proc. Natl. Acad. Sci. USA 83, 2869-2873]. These results indicate that the host-cell source of the DNA polymerase alpha-primase complex plays an important role in discriminating between SV40 T antigen- and Py T antigen-dependent replication of their homologous DNA in vitro. This may explain the host-range specificity of these viruses in vivo.  相似文献   

8.
9.
The replication of simian virus 40 (SV40) DNA is dependent upon a single viral protein [tumor (T) antigen] and multiple cellular proteins. To define the required cellular proteins, we have made use of a cell-free system that supports the replication of plasmid DNA molecules containing the SV40 origin of replication. We report here the purification from HeLa cell extracts of replication protein C (RP-C), a previously undescribed protein that is required to reconstitute efficient DNA replication in vitro. Highly purified preparations of RP-C contain two closely related polypeptides of 32 and 34 kDa. Preincubation of purified RP-C with T antigen and the DNA template largely eliminates the delay normally observed before the onset of rapid DNA synthesis. In addition, RP-C stimulates the unwinding of duplex DNA molecules containing the SV40 replication origin in a reaction that requires T antigen and a single-stranded DNA binding protein. These observations suggest that RP-C is involved in the initial steps of SV40 DNA replication in vitro.  相似文献   

10.
The proliferating-cell nuclear antigen (PCNA) and the replication factors A and C (RF-A and RF-C) are cellular proteins essential for complete elongation of DNA during synthesis from the simian virus 40 origin of DNA replication in vitro. All three cooperate to stimulate processive DNA synthesis by DNA polymerase delta on a primed single-stranded M13 template DNA and as such can be categorized as DNA polymerase accessory proteins. Biochemical analyses with highly purified RF-C and PCNA have demonstrated functions that are completely analogous to the functions of bacteriophage T4 DNA polymerase accessory proteins. A primer-template-specific DNA binding activity and a DNA-dependent ATPase activity copurified with the multisubunit protein RF-C and are similar to the functions of the phage T4 gene 44/62 protein complex. Furthermore, PCNA stimulated the RF-C ATPase activity and is, therefore, analogous to the phage T4 gene 45 protein, which stimulates the ATPase function of the gene 44/62 protein complex. Indeed, some primary sequence similarities between human PCNA and the phage T4 gene 45 protein could be detected. These results demonstrate a striking conservation of the DNA replication apparatus in human cells and bacteriophage T4.  相似文献   

11.
The role of DNA polymerase alpha (pol alpha) and DNA primase has been investigated in the simian virus 40 (SV40) DNA replication system in vitro. Removal of pol alpha and primase activities from crude extracts of HeLa cells or monkey cells by use of an anti-pol alpha immunoaffinity column resulted in the loss of replication activity. The addition of purified pol alpha-primase complex isolated from HeLa cells or monkey cells restored the replication activity of depleted extracts. In contrast, the pol alpha-primase complex isolated from either mouse cells or calf thumus did not. Extracts prepared from mouse cells (a source that does not support replication of SV40) did not replicate SV40 DNA. However, the addition of purified pol alpha-primase complex isolated from HeLa cells activated mouse cell extracts. pol alpha and primase from HeLa cells were extensively purified and separated by a one-step immunoaffinity adsorption and elution procedure. Both activities were required to restore DNA synthesis; the addition of pol alpha or primase alone supported replication poorly. Crude extracts of HeLa cells that were active in SV40 replication catalyzed the synthesis of full-length linear double-stranded (RFIII) DNA in reaction mixtures containing poly(dT)-tailed pBR322 RFIII. Maximal activity was dependent on the addition of oligo(dA), ATP, and creatine phosphate and was totally inhibited by aphidicolin. Since pol alpha alone could not replicate this substrate and since there was no degradation of input DNA, we propose that other enzymatic activities associate with pol alpha, displace the non-template strand, and allow the enzyme to replicate through duplex regions.  相似文献   

12.
Fidelity of a human cell DNA replication complex.   总被引:7,自引:2,他引:7  
We have measured the fidelity of bidirectional, semiconservative DNA synthesis by a human DNA replication complex in vitro. Replication was performed by extracts of HeLa cells in the presence of simian virus 40 (SV40) large tumor antigen by using a double-stranded phage M13mp2 DNA template containing the SV40 origin of replication and either of two different target sequences for scoring mutations in the lacZ alpha-complementation gene, which encodes the alpha region (specifying the amino-terminal portion) of beta-galactosidase. Replicative synthesis was substantially more accurate than synthesis by the human DNA polymerase alpha-DNA primase complex purified from HeLa cell extracts by immunoaffinity chromatography, suggesting that additional factors or activities in the extract may increase fidelity during bidirectional replication. However, by using a sensitive opal codon reversion assay, single-base substitution errors were readily detected in the replication products at frequencies significantly higher than estimated spontaneous mutation rates in vivo. These data suggest that additional fidelity factors may be present during chromosomal replication in vivo and/or that the fidelity of replication alone does not account for the low spontaneous mutation rates in eukaryotes.  相似文献   

13.
Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro.   总被引:46,自引:19,他引:46       下载免费PDF全文
We examined the roles of DNA topoisomerases in the replication of simian virus 40 (SV40) DNA in a cell-free system composed of an extract from HeLa cells supplemented with purified SV40 tumor antigen. When the activities of both topoisomerase I (EC 5.99.1.2) and topoisomerase II (EC 5.99.1.3) in the extract were blocked with specific inhibitors or antibodies, DNA synthesis was decreased by a factor of 15-20. Addition of purified HeLa DNA topoisomerase II to extracts immunologically depleted of both topoisomerases completely restored replication, and the replication products consisted largely of monomeric daughter molecules. Addition of purified HeLa DNA topoisomerase I to depleted extracts restored DNA synthesis, but the primary products were multiply intertwined, catenated daughter molecules. We conclude that DNA topoisomerases have at least two roles in the replication of SV40 DNA. Either topoisomerase I or topoisomerase II is sufficient to provide the unlinking activity necessary for fork propagation during SV40 DNA replication. However, topoisomerase II is uniquely required for the segregation of newly synthesized daughter molecules.  相似文献   

14.
Analysis of the kinetics of simian virus 40 (SV40) DNA replication in vitro demonstrated the existence of a slow presynthesis reaction that occurs prior to onset of extensive chain elongation and is dependent on a subset of the cellular proteins required for the complete replication reaction. When the presynthesis reaction is carried out in the presence of topoisomerase I, it is possible to detect extensive unwinding of the template DNA. This unwinding reaction is specific for templates that contain the wild-type SV40 origin of DNA replication and requires SV40 large tumor antigen (T antigen), ATP, and a protein fraction derived from HeLa cells. The required cellular protein may be a eukaryotic single-stranded-DNA-binding protein (SSB), since unwinding of the template is also observed when Escherichia coli SSB is substituted for the HeLa protein fraction. These observations suggest that during the initial stages of SV40 DNA replication, T antigen binds specifically to the viral origin and locally unwinds the DNA. This origin-dependent unwinding reaction is presumably a prerequisite for subsequent priming and elongation steps.  相似文献   

15.
We have inserted a 311-base pair DNA fragment containing the simian virus 40 (SV40) origin of DNA replication, the early promoter, and the tumor (T) antigen binding sites into a bacterial plasmid and cloned it. This recombinant plasmid, pSV01, binds to a purified T antigen in vitro and replicates in monkey cells when supplied with large T antigen. A series of deletion mutations was generated in the origin sequences of pSV01 DNA by mutagenesis in vitro. The replication of these mutant DNAs in monkey cells was compared with their ability to bind to purified D2 protein. Mutant DNAs deficient in binding to D2 protein also exhibit reduced levels of replication in monkey cells. These findings provide biochemical evidence that the initiation of SV40 DNA synthesis may involve a direct interaction of T antigen with sequences at the origin of replication.  相似文献   

16.
A distinct unwound form of DNA containing the simian virus 40 (SV40) origin is produced in replication reactions carried out in mixtures containing crude fractions prepared from HeLa cells. This species, termed form UR, comigrates on chloroquine-containing agarose gels with the upper part of the previously described heterogeneous highly unwound circular DNA, form U. As with form U, formation of form UR is dependent upon the SV40 tumor (T) antigen. Pulse-chase experiments demonstrate that the first species to incorporate labeled deoxyribonucleotides comigrates with form UR. Restriction analyses of the products of the pulse-chase experiments show that initiation occurs at the SV40 origin and then proceeds outward in a bidirectional manner. These experiments establish form UR as the earliest detectable substrate for SV40 DNA replication and suggest that SV40 DNA replication initiates on an unwound species.  相似文献   

17.
Cdk-interacting protein 1 (Cip1) is a p53-regulated 21-kDa protein that inhibits several members of the cyclin-dependent kinase (CDK) family. It was initially observed in complexes containing CDK4, cyclin D, and proliferating cell nuclear antigen (PCNA). PCNA, in conjunction with activator 1, acts as a processivity factor for eukaryotic DNA polymerase (pol) delta, and these three proteins constitute the pol delta holoenzyme. In this report, we demonstrate that Cip1 can also directly inhibit DNA synthesis in vitro by binding to PCNA. Cip1 efficiently inhibits simian virus 40 replication dependent upon pol alpha, activator 1, PCNA, and pol delta, and this inhibition can be overcome by additional PCNA. Simian virus 40 DNA replication, catalyzed solely by high levels of pol alpha-primase complex, is unaffected by Cip1. Using the surface plasmon resonance technique, a direct physical interaction of PCNA and Cip1 was detected. We have observed that Cip1 efficiently inhibits synthesis of long (7.2 kb) but not short (10 nt) templates, suggesting that its association with PCNA is likely to impair the processive movement of pol delta during DNA chain elongation, as opposed to blocking assembly of the pol delta holoenzyme. The implications of the Cip1-PCNA interaction with respect to regulation of DNA synthesis, cell cycle checkpoint control, and DNA repair are discussed.  相似文献   

18.
Replication of bovine papilloma virus (BPV) DNA requires two virus-encoded proteins, E1 and E2, while all other proteins are supplied by the host cell. Here, we describe the isolation of the E1 protein and show that it is a multifunctional protein. Purified E1 protein was required for the in vitro replication of BPV origin-containing DNA by extracts of mouse cells, as reported [Yang, L., Li, R., Mohr, I. J., Clark, R. & Botchan, M. R. (1991) Nature (London) 353, 628-632]. In addition, the E1 protein cosedimented with a number of other activities including (i) DNA helicase activity, (ii) BPV origin-containing DNA-specific binding activity, (iii) DNA-dependent ATPase activity, and (iv) BPV origin-specific unwinding of superhelical DNA. The E1 protein, acting as a helicase, moved in the 3'-->5' direction, like simian virus 40 (SV40) large tumor antigen, which plays a pivotal role in SV40 DNA replication. However, unlike the SV40 large tumor antigen, the helicase activity of E1 was stimulated 5-fold by the presence of a fork structure at the junction between single-stranded and double-stranded DNA and was supported efficiently by all eight nucleoside triphosphates. The E1-catalyzed ATPase activity required the presence of single-stranded or double-stranded DNAs.  相似文献   

19.
Activator 1 (A1; also called replication factor C), in conjunction with proliferating-cell nuclear antigen (PCNA), is essential for the elongation of primed DNA templates by DNA polymerases delta and epsilon. A1 contains five distinct subunits of 145, 40, 38, 37, and 36.5 kDa. Here we describe the isolation, sequence, and bacterial expression of a cDNA coding for the 40-kDa subunit. In keeping with the presence of an ATP-binding motif, the bacterially expressed 40-kDa subunit binds ATP. The interaction between the 40-kDa subunit and ATP was reduced by the addition of PCNA. In addition, antibodies raised against the 40-kDa subunit abolished the A1- and PCNA-dependent synthesis of DNA catalyzed by polymerase delta. The putative amino acid sequence of the 40-kDa subunit of A1 revealed significantly homology with the bacteriophage T4 gene 44 protein and, to a lesser degree, with the tau and gamma subunits of Escherichia coli DNA polymerase III holoenzyme.  相似文献   

20.
A 120-kDa protein that blocks DNA termini has been purified from extracts of HeLa cells. This protein inhibits the action of a number of enzymes that catalyze reactions involving the 5' and 3' ends of DNA (DNA ligase, 3' and 5' exonucleases, and DNA polymerase alpha). The 120-kDa protein blocks the synthesis of long DNA chains that are normally formed during simian virus 40 DNA replication, causing the accumulation of small DNA fragments. The effects of this protein can be reversed by the addition of proliferating cell nuclear antigen and other protein fractions (activators).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号