首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kelsen JR  Wu GD 《Gut microbes》2012,3(4):374-382
The human gut microbiota is a complex community that provides important metabolic functions to the host. Consequently, alterations in the gut microbiota have been associated with the pathogenesis of several human diseases associated with a disturbance in metabolism, particularly those that have been increasing in incidence over the last several decades including obesity, diabetes and atherosclerosis. In this review, we explore how advances in deep DNA sequencing technology have provided us a greater understanding of the factors that influence that composition of the gut microbiota and its possible links to the pathogenesis of these diseases.  相似文献   

2.
Triclosan (TCS) is an antimicrobial compound incorporated into more than 2,000 consumer products. This compound is frequently detected in the human body and causes ubiquitous contamination in the environment, raising concerns about its impact on human health and environmental pollution. Our recent research showed that exposure to TCS exaggerates colonic inflammation and exacerbates development of colitis-associated colon tumorigenesis, via gut microbiome-dependent mechanisms. In this review, we discussed recent research about TCS, as well as other consumer antimicrobials, on the gut microbiome and gut health.  相似文献   

3.
ABSTRACT

Background

Little data are available on the subject of gut microbiota composition in endurance athletes as well as connections between diet and specific bacteria abundance. However, most studies suggest that athletes’ microbiota undergoes major alterations, which may contribute to increased physical performance. Therefore, we decided to investigate differences in gut microbiota between healthy controls and endurance athletes.  相似文献   

4.
Liver-gut communication is vital in fatty liver diseases, and gut microbes are the key regulators in maintaining liver homeostasis. Chronic alcohol abuse and persistent overnutrition create dysbiosis in gut ecology, which can contribute to fatty liver disease. In this review, we discuss the gut microbial compositional changes that occur in alcoholic and nonalcoholic fatty liver diseases and how this gut microbial dysbiosis and its metabolic products are involved in fatty liver disease pathophysiology. We also summarize the new approaches related to gut microbes that might help in the diagnosis and treatment of fatty liver disease.  相似文献   

5.
《Gut microbes》2013,4(4):562-570
Consistent with an important role for adaptive immunity in modulating interactions between intestinal bacteria and host, dramatic alteration in the composition of gut microbes during chronic HIV infection was recently reported by ourselves and independently by four other research groups. Here we evaluate our results in the context of these other studies and delve into the effects of antiretroviral therapy (ART). Although gut microbiota of HIV-positive individuals on ART usually does not resemble that of HIV-negative individuals, the degree to which ART restores health-associated prevalence varies across bacterial taxa. Finally, we discuss potential drivers and health consequences of gut microbiota alterations. We propose that understanding the mechanism of HIV-associated gut microbiota changes will elucidate the role of adaptive immunity in shaping gut microbiota composition, and lay the foundation for therapeutics targeting the microbiota to attenuate HIV disease progression and reduce the risk of gut-linked disease in people with HIV.  相似文献   

6.
《Gut microbes》2013,4(5):310-320
Shifts in the maternal gut microbiome have been implicated in metabolic adaptations to pregnancy. We investigated how pregnancy and diet interact to influence the composition of the maternal gut microbiota. Female C57BL/6 mice were fed either a control or a high fat diet for 8 weeks prior to mating. After confirmation of pregnancy, maternal weight gain and food intake were recorded. Fecal pellets were collected at 2 timepoints prior to mating (at the beginning of the experiment, and after 6 weeks of the specified diet) and at 4 timepoints during pregnancy (gestation day 0.5, 5.5, 10.5, and 15.5). The microbial composition and predicted metabolic functionality of the non-pregnant and pregnant gut was determined via sequencing of the variable 3 region of the 16S rRNA gene. Upon conception, differences in gut microbial communities were observed in both control and high fat-fed mice, including an increase in mucin-degrading bacteria. Control versus high fat-fed pregnant mice possessed the most profound changes to their maternal gut microbiota as indicated by statistically significant taxonomic differences. High fat-fed pregnant mice, when compared to control-fed animals, were found to be significantly enriched in microbes involved in metabolic pathways favoring fatty acid, ketone, vitamin, and bile synthesis. We show that pregnancy-induced changes in the female gut microbiota occur immediately at the onset of pregnancy, are vulnerable to modulation by diet, but are not dependent upon increases in maternal weight gain during pregnancy. High fat diet intake before and during pregnancy results in distinctive shifts in the pregnant gut microbiota in a gestational-age dependent manner and these shifts predict significant differences in the abundance of genes that favor lipid metabolism, glycolysis and gluconeogenic metabolic pathways over the course of pregnancy.  相似文献   

7.
Shifts in the maternal gut microbiome have been implicated in metabolic adaptations to pregnancy. We investigated how pregnancy and diet interact to influence the composition of the maternal gut microbiota. Female C57BL/6 mice were fed either a control or a high fat diet for 8 weeks prior to mating. After confirmation of pregnancy, maternal weight gain and food intake were recorded. Fecal pellets were collected at 2 timepoints prior to mating (at the beginning of the experiment, and after 6 weeks of the specified diet) and at 4 timepoints during pregnancy (gestation day 0.5, 5.5, 10.5, and 15.5). The microbial composition and predicted metabolic functionality of the non-pregnant and pregnant gut was determined via sequencing of the variable 3 region of the 16S rRNA gene. Upon conception, differences in gut microbial communities were observed in both control and high fat-fed mice, including an increase in mucin-degrading bacteria. Control versus high fat-fed pregnant mice possessed the most profound changes to their maternal gut microbiota as indicated by statistically significant taxonomic differences. High fat-fed pregnant mice, when compared to control-fed animals, were found to be significantly enriched in microbes involved in metabolic pathways favoring fatty acid, ketone, vitamin, and bile synthesis. We show that pregnancy-induced changes in the female gut microbiota occur immediately at the onset of pregnancy, are vulnerable to modulation by diet, but are not dependent upon increases in maternal weight gain during pregnancy. High fat diet intake before and during pregnancy results in distinctive shifts in the pregnant gut microbiota in a gestational-age dependent manner and these shifts predict significant differences in the abundance of genes that favor lipid metabolism, glycolysis and gluconeogenic metabolic pathways over the course of pregnancy.  相似文献   

8.
ABSTRACT

Introduction: The human microbiome plays a critical role in human health, having metabolic, protective, and trophic functions, depending upon its’ exact composition. This composition is affected by a number of factors, including the genetic background of the individual, early life factors (including method of birth, length of breastfeeding) and nature of the diet and other environmental exposures (including cigarette smoking) and general life habits. It plays a key role in the control of inflammation, and in turn, its’ composition is significantly influenced by inflammation.

Areas covered: We consider metabolic, protective, and trophic functions of the microbiome and influences through the lifespan from post-partum effects, to diet later in life in healthy older adults, the effects of aging on both its’ composition, and influence on health and potential therapeutic targets that may have anti-inflammatory effects.

Expert commentary: The future will see the growth of more effective therapies targeting the microbiome particularly with respect to the use of specific nutrients and diets personalized to the individual.  相似文献   

9.
10.
Aims/IntroductionTo investigate the changes in the gut microbiome in the second trimester of pregnancy associated with later‐diagnosed gestational diabetes mellitus (GDM) and their relationship with fasting serum levels of metabolites, especially glucose.Materials and MethodsWe carried out a case–control study with 110 GDM patients and 220 healthy pregnant women who provided fecal samples for 16S ribosomal ribonucleic acid sequencing in the second trimester of pregnancy.ResultsOur results showed that GDM patients had lower α‐diversity that was significantly associated with glycemic traits. Principal coordinates analysis showed significantly different microbial communities, as within GDM patients, seven genera within the phylum Firmicutes and two within the phylum Actinobacteria were significantly decreased, and four genera within phylum Bacteroidetes were increased. In addition, microbiota co‐occurrence network analysis was carried out, and decreased genera within the phylum Firmicutes in GDM patients showed a significant negative correlation with oral glucose tolerance test values. Finally, microbial gene functions related to glycan biosynthesis and metabolism were found to be enriched in GDM patients.ConclusionsOur results show the relationship between changed gut microbiota composition in the second trimester of pregnancy before the diagnosis of GDM and fasting serum levels of metabolites, which might inform the diagnosis, prevention and treatment of GDM.  相似文献   

11.
Immunotherapy is widely used to treat a large variety of malignancies and has revolutionized the therapeutic approach to cancer. Major efforts are ongoing to identify biomarkers that predict response to immunotherapy as well as new strategies to improve ICI efficacy and clinical outcomes. Studies have shown that the gut microbiome determines the extent to which ICIs may invigorate the anticancer immune response. Here, the authors review recent studies that have described the effects of the gut microbiota on the efficacy of CTLA-4 and PD-1 inhibitors and outline potential future clinical directions of these findings.  相似文献   

12.
Microbial colonization of mammals is an evolution-driven process that modulate host physiology, many of which are associated with immunity and nutrient intake. Here, we report that colonization by gut microbiota impacts mammalian brain development and subsequent adult behavior. Using measures of motor activity and anxiety-like behavior, we demonstrate that germ free (GF) mice display increased motor activity and reduced anxiety, compared with specific pathogen free (SPF) mice with a normal gut microbiota. This behavioral phenotype is associated with altered expression of genes known to be involved in second messenger pathways and synaptic long-term potentiation in brain regions implicated in motor control and anxiety-like behavior. GF mice exposed to gut microbiota early in life display similar characteristics as SPF mice, including reduced expression of PSD-95 and synaptophysin in the striatum. Hence, our results suggest that the microbial colonization process initiates signaling mechanisms that affect neuronal circuits involved in motor control and anxiety behavior.  相似文献   

13.
14.
Human gut microbiota in obesity and after gastric bypass   总被引:5,自引:0,他引:5       下载免费PDF全文
Recent evidence suggests that the microbial community in the human intestine may play an important role in the pathogenesis of obesity. We examined 184,094 sequences of microbial 16S rRNA genes from PCR amplicons by using the 454 pyrosequencing technology to compare the microbial community structures of 9 individuals, 3 in each of the categories of normal weight, morbidly obese, and post-gastric-bypass surgery. Phylogenetic analysis demonstrated that although the Bacteria in the human intestinal community were highly diverse, they fell mainly into 6 bacterial divisions that had distinct differences in the 3 study groups. Specifically, Firmicutes were dominant in normal-weight and obese individuals but significantly decreased in post-gastric-bypass individuals, who had a proportional increase of Gammaproteobacteria. Numbers of the H2-producing Prevotellaceae were highly enriched in the obese individuals. Unlike the highly diverse Bacteria, the Archaea comprised mainly members of the order Methanobacteriales, which are H2-oxidizing methanogens. Using real-time PCR, we detected significantly higher numbers of H2-utilizing methanogenic Archaea in obese individuals than in normal-weight or post-gastric-bypass individuals. The coexistence of H2-producing bacteria with relatively high numbers of H2-utilizing methanogenic Archaea in the gastrointestinal tract of obese individuals leads to the hypothesis that interspecies H2 transfer between bacterial and archaeal species is an important mechanism for increasing energy uptake by the human large intestine in obese persons. The large bacterial population shift seen in the post-gastric-bypass individuals may reflect the double impact of the gut alteration caused by the surgical procedure and the consequent changes in food ingestion and digestion.  相似文献   

15.
Antibiotics have been hailed by many as “miracle drugs” that have been effectively treating infectious diseases for over a century, leading to a marked reduction in morbidity and mortality. However, with the increasing use of antibiotics, we are now faced not only with the increasing threat of antibiotic resistance, but also with a rising concern about potential long‐term effects of antibiotics on human health, including the development of obesity. The obesity pandemic continues to increase, a problem that affects both adults and children alike. Disruptions to the gut microbiome have been linked to a multitude of adverse conditions, including obesity, type 2 diabetes, inflammatory bowel diseases, anxiety, autism, allergies, and autoimmune diseases. This review focuses on the association between antibiotics and obesity, and the role of the gut microbiome. There is strong evidence supporting the role of antibiotics in the development of obesity in well‐controlled animal models. However, evidence for this link in humans is still inconclusive, and we need further well‐designed clinical trials to clarify this association.  相似文献   

16.

Objective

To assess the clinical efficacy of fucoidan-assisted standard quadruple therapy (SQT) in Helicobacter pylori (H. pylori) eradication and the improvement of gut microbiota.

Methods

An open-label randomized controlled trial was conducted at the Affiliated Hospital of Qingdao University in Shandong Province, China. Ninety patients who tested positive for H. pylori were randomized to the standard quadruple therapy (SQT) group (SQ), SQT + fucoidan combination group (SF), and fucoidan + sequential SQT group (FS), respectively. Stool samples were collected for gut microbiota composition at baseline and after treatment.

Results

After H. pylori eradication, the relative abundances of most conditional pathogens in the SQ decreased, while those of several beneficial bacteria increased or decreased (P < 0.05). In FS, the abundances of most beneficial bacteria increased gradually from baseline to week 12, while those of the conditional pathogens decreased (P < 0.05). The abundance of Bifidobacterium had a decreasing trend in SQ, but remained unchanged in SF and increased in FS (P < 0.05). The abundances of most beneficial bacteria were significantly higher in FS than in SQ and SF (P < 0.05). Addition of fucoidan enhanced symptom improvement during H. pylori eradication compared with SQT alone.

Conclusions

Fucoidan considerably improved gut dysbiosis during SQT for H. pylori eradication. Gut microbiota can be maintained by the addition of fucoidan before eradication therapy with SQT rather than by concomitant addition with therapy. Fucoidan-assisted SQT could relieve gastrointestinal symptoms during H. pylori eradication.  相似文献   

17.
The human gut microbiota has been studied for more than a century. However, of nonculture‐based techniques exploiting next‐generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short‐chain fatty acids and bile acids, that may modulate host metabolism. Obesity predisposes towards type 2 diabetes and cardiovascular disease. Recently, it has been established that levels of butyrate‐producing bacteria are reduced in patients with type 2 diabetes, whereas levels of Lactobacillus sp. are increased. Recent data suggest that the reduced levels of butyrate‐producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long‐term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated that an altered microbiota may contribute to the improved metabolic phenotype following this intervention. Thus, greater understanding of alterations of the gut microbiota, in combination with dietary patterns, may provide insights into how the gut microbiota contributes to disease progression and whether it can be exploited as a novel diagnostic, prognostic and therapeutic target.  相似文献   

18.
ABSTRACT

The gut microbiota is known to regulate multiple aspects of host physiology, including metabolism and behavior. Locomotion, which is closely intertwined with metabolism, is an important component of complex behaviors, such as foraging, mating, and evading predators. Our recent work revealed that certain bacterial species and their products modulate motor behavior in the fruit fly Drosophila melanogaster via metabolic and neuronal pathways. In the context of our previously published findings and recent work by others, I will discuss potential avenues for future research at the intersection of the microbiota, metabolism, and host behavior.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号