首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
Ren  S; Wong  BY; Li  J; Luo  XN; Wong  PM; Atweh  GF 《Blood》1996,87(6):2518-2524
The ability to generate stable high-titer vectors that give rise to high levels of expression of transduced globin genes in erythroid cells is a prerequisite for effective retroviral-mediated globin gene therapy. The human beta-globin gene with its immediate flanking sequences does not contain all the regulatory elements necessary for regulated high-level and position-independent expression in erythroid cells. The regulatory element known as the beta-globin locus control region (BetaLCR) can provide a linked Beta-globin gene with these properties. However, addition of BetaLCR sequences to a retrovirus carrying a beta-globin gene increases its genetic instability. We have developed a new generation of retroviral vectors in which a human gamma- globin gene is placed under the control of the alphaLCR, the major regulatory element of the alpha-globin gene cluster. We demonstrate that these retroviruses are genetically stable in producer cell lines and can be produced at high titers that exceed 5 x 10(6) colony-forming units (CFU)/mL. In addition, we show that the transduced gamma-globin gene can be expressed in the adult erythroid environment of mouse erythroleukemia (MEL) cells at a level comparable to that of a single endogenous Betamaj-globin gene. These retroviruses can also transduce primary murine bone marrow progenitor cells as efficiently as retroviruses that carry the neomycin resistance (neor) gene. This new generation of globin retroviral vectors may prove useful for gene therapy of human beta-globin gene disorders such as sickle cell disease and beta-thalassemia.  相似文献   

2.
The locus activation region (LAR) of the human beta-globin-like gene cluster is characterized by a group of four DNase I hypersensitive sites, which arise specifically in erythroid tissues and are required for a normal pattern of beta-globin-like gene expression. The hypersensitive sites are found at positions 6.1, 10.9, 14.7, and 18 kilobase pairs (kbp) 5' of the epsilon-globin gene. Recently functional assays of the LAR that tested determinants for all four hypersensitive sites showed that expression of the human beta-globin gene was increased to normal or near-normal levels in both transgenic mice and erythroid cells. We constructed retroviral vectors with a human beta-globin gene and the determinant for a single hypersensitive site and measured beta-globin gene expression after retroviral infection of murine erythroleukemia cells. Fragments for the hypersensitive sites at -18 or -10.9 kbp increased human beta-globin RNA levels respectively to 35% or 132% of the endogenous mouse beta maj-globin RNA level. In addition, greater expression was also observed for the neomycin phosphotransferase RNA, which was transcribed from the retroviral LTR, showing that the LAR fragments activated expression from a heterologous promoter. In the context of gene-transfer experiments ultimately aimed at gene therapy, our results show that LAR determinants lead to an increased level of human beta-globin RNA expression after retroviral transfer into erythroid cells. But inclusion of LAR determinants in retroviral vectors also entails the potential risk of activating the expression of nonglobin genes in erythroid cells.  相似文献   

3.
4.
5.
6.
The locus control region of the human beta-globin cluster consists of four major DNase I hypersensitive sites (HS). When linked to globin genes, the locus control region confers a high level of erythroid-specific expression of these genes in transgenic mice or transfected erythroid cell lines. We have examined the effect of one of these sites, HS2, on human beta-globin gene expression in a murine erythroleukemia cell line (MEL) after retrovirus-mediated gene transfer. We incorporated a 732- or 412-base-pair (bp) segment of HS2 in the retroviral construct carrying the human beta-globin gene. These fragments rendered the viruses unstable as the human beta-globin gene was rearranged or deleted in all the packaging cell lines examined. On the other hand, when a 36-bp fragment containing the NFE-2/AP-1 binding consensus in this region was inserted into the retroviral construct, we recovered 6 stable packaging cell lines of 12 examined, similar in percentage to the construct with the beta-globin gene alone. The virus titers of the packaging cell lines from these two constructs were similar. We infected MEL cells with viruses produced from three packaging cell lines of each of the two constructs and measured the ratio of human beta-globin to mouse alpha-globin mRNA after hexamethylenebisacetamide induction. The overall level of expression increased 2-fold from 6.0% to 12.7% with the addition of this 36-bp enhancer.  相似文献   

7.
8.
9.
DNA sequences located in a region 6-18 kilobases (kb) upstream from the human epsilon-globin gene are known as the locus-activating region (LAR) or dominant control region. This region is thought to play a key role in chromatin organization of the beta-like globin gene cluster during erythroid development. The beta-globin LAR activates linked globin genes in transiently or stably transfected erythroleukemia cells and in erythroid cells of transgenic mice. Since the human beta-globin LAR is functional in mice, we reasoned that critical LAR sequence elements might be conserved between mice and humans. We therefore cloned murine genomic sequences homologous to one portion of the human LAR (site II, positions -11,054 to -10,322 with respect to the human epsilon gene). We found that this murine DNA fragment (mouse LAR site II) and sequences homologous to human LAR sites I and III are located upstream from the mouse beta-like globin gene cluster and determined that their locations relative to the cluster are similar to that of their human counterparts. The homologous site II sequences are 70% identical between mice and humans over a stretch of approximately 800 base pairs. Multiple core sequences with greater than 80% identity were present within this region. Transient and stable transfection assays of K562 erythroleukemia cells demonstrated that both human and mouse LAR elements contain enhancer activity and confer hemin inducibility on a linked human gamma-globin promoter. These results suggest that primary structural elements--and the spatial organization of these elements--are important for function of the beta-globin LAR.  相似文献   

10.
11.
Since increased fetal hemoglobin diminishes the severity of beta-thalassemia and sickle cell anemia, a strategy using autologous, stem cell-targeted gene transfer of a gamma-globin gene may be therapeutically useful. We previously found that a gamma-globin lentiviral vector utilizing the beta-globin promoter and elements from the beta-globin locus control region (LCR) totaling 1.7 kb could correct murine beta-thalassemia. However, therapeutic consistency was compromised by chromosomal position effects on vector expression. In contrast, we show here that the majority of animals that received transplants of beta-thalassemic stem cells transduced with a new vector containing 3.2 kb of LCR sequences expressed high levels of fetal hemoglobin (17%-33%), with an average vector copy number of 1.3. This led to a mean 26 g/L (2.6 g/dL) increase in hemoglobin concentration and enhanced amelioration of other hematologic parameters. Analysis of clonal erythroid cells of secondary spleen colonies from mice that underwent transplantation demonstrated an increased resistance of the larger LCR vector to stable and variegating position effects. This trend was also observed for vector insertion sites located inside genes, where vector expression was often compromised, in contrast to intergenic sites, where higher levels of expression were observed. These data emphasize the importance of overcoming detrimental position effects for consistent therapeutic globin vector expression.  相似文献   

12.
13.
14.
15.
Increased expression of fetal hemoglobin can ameliorate the clinical severity of sickle cell disease. Whereas temporary induction of fetal hemoglobin can be achieved by pharmacologic therapy, gene transfer resulting in high-level expression of the fetal gamma-globin gene may provide a permanent cure for sickle cell disease. We had previously developed a high-titer, genetically stable retroviral vector in which the human gamma-globin gene was linked to HS-40, the major regulatory element of the human alpha-globin gene cluster. Based on experience in transgenic mice, the truncated promoter of the gamma-globin gene of this vector should be active in adult erythroid cells. Our earlier studies demonstrated that this retroviral vector can give rise to high-level expression of the human gamma-globin gene in murine erythroleukemia (MEL) cells. We have now utilized this vector to transduce murine bone marrow cells that were transplanted into W/W(v) recipient mice. Analysis of transduction of murine BFU-e's in vitro and peripheral blood cells from transplanted mice in vivo demonstrated efficient transfer of the human gamma-globin gene. However, in contrast to the high level of expression of the human gamma-globin gene of this vector in MEL cells, the gene was completely silent in vivo in all transplanted mice. These observations confirm that all the necessary regulatory elements responsible for the developmental stage-specific expression of the human gamma-globin gene reside in its proximal sequences. They also emphasize the differences between gene regulation in MEL cells, transgenic mice, and retroviral gene transfer vectors. For this form of globin gene therapy to succeed, the proximal regulatory elements of the human gamma-globin gene may have to be replaced with different regulatory elements that allow the expression of the gamma-globin coding sequences in adult red cells in vivo.  相似文献   

16.
17.
18.
19.
Gene therapy of severe hemoglobinopathies will require high-level expression of a transferred globin gene in erythroid cells. Distant regulatory elements flanking the beta-globin gene cluster, the locus control region, are needed for appropriate expression. We have explored the use of a human parvovirus, the adeno-associated virus (AAV), for globin gene transfer. The human A gamma-globin gene, linked to hypersensitivity site 2 from the locus control region of the beta-globin gene cluster, was subcloned into a plasmid (psub201) containing the AAV inverted terminal repeats. This construct was cotransfected with a helper plasmid containing trans-acting AAV genes into human 293 cells that had been infected with adenovirus. The recombinant AAV vector containing hypersensitivity site 2 stably introduced on average one or two unrearranged proviral copies into human K562 erythroleukemia cells. The transferred globin gene exhibited normal regulation upon hemin induction of erythroid maturation and was expressed at a level equivalent to a native chromosomal A gamma-globin gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号