首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims/hypothesis

While it is well known that diet-induced obesity causes insulin resistance, the precise mechanisms underpinning the initiation of insulin resistance are unclear. To determine factors that may cause insulin resistance, we have performed a detailed time-course study in mice fed a high-fat diet (HFD).

Methods

C57Bl/6 mice were fed chow or an HFD from 3 days to 16 weeks and glucose tolerance and tissue-specific insulin action were determined. Tissue lipid profiles were analysed by mass spectrometry and inflammatory markers were measured in adipose tissue, liver and skeletal muscle.

Results

Glucose intolerance developed within 3 days of the HFD and did not deteriorate further in the period to 12 weeks. Whole-body insulin resistance, measured by hyperinsulinaemic–euglycaemic clamp, was detected after 1 week of HFD and was due to hepatic insulin resistance. Adipose tissue was insulin resistant after 1 week, while skeletal muscle displayed insulin resistance at 3 weeks, coinciding with a defect in glucose disposal. Interestingly, no further deterioration in insulin sensitivity was observed in any tissue after this initial defect. Diacylglycerol content was increased in liver and muscle when insulin resistance first developed, while the onset of insulin resistance in adipose tissue was associated with increases in ceramide and sphingomyelin. Adipose tissue inflammation was only detected at 16 weeks of HFD and did not correlate with the induction of insulin resistance.

Conclusions/interpretation

HFD-induced whole-body insulin resistance is initiated by impaired hepatic insulin action and exacerbated by skeletal muscle insulin resistance and is associated with the accumulation of specific bioactive lipid species.  相似文献   

2.

Aims/hypothesis

Epidemiological studies have revealed that obesity and diabetes mellitus are independent risk factors for the development of non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma. However, the debate continues on whether insulin resistance as such is directly associated with NASH and liver tumourigenesis. Here, we investigated the incidence of NASH and liver tumourigenesis in Irs1 ?/? mice subjected to a long-term high-fat (HF) diet. Our hypothesis was that hepatic steatosis, rather than insulin resistance may be related to the pathophysiology of these conditions.

Methods

Mice (8 weeks old, C57Bl/6J) were given free access to standard chow (SC) or an HF diet. The development of NASH and liver tumourigenesis was evaluated after mice had been on the above-mentioned diets for 60 weeks. Similarly, Irs1 ?/? mice were also subjected to an HF diet for 60 weeks.

Results

Long-term HF diet loading, which causes obesity and insulin resistance, was sufficient to induce NASH and liver tumourigenesis in the C57Bl/6J mice. Obesity and insulin resistance were reduced by switching mice from the HF diet to SC, which also protected these mice against the development of NASH and liver tumourigenesis. However, compared with wild-type mice fed the HF diet, Irs1 ?/? mice fed the HF diet were dramatically protected against NASH and liver tumourigenesis despite the presence of severe insulin resistance and marked postprandial hyperglycaemia.

Conclusions/interpretation

IRS-1 inhibition might protect against HF diet-induced NASH and liver tumourigenesis, despite the presence of insulin resistance.  相似文献   

3.

Aims/hypothesis

Lysophosphatidic acid (LPA) is a lipid mediator produced by adipocytes that acts via specific G-protein-coupled receptors; its synthesis is modulated in obesity. We previously reported that reducing adipocyte LPA production in high-fat diet (HFD)-fed obese mice is associated with improved glucose tolerance, suggesting a negative impact of LPA on glucose homeostasis. Here, our aim was to test this hypothesis.

Methods

First, glucose tolerance and plasma insulin were assessed after acute (30 min) injection of LPA (50 mg/kg) or of the LPA1/LPA3 receptor antagonist Ki16425 (5 mg?kg?1?day?1, i.p.) in non-obese mice fed a normal diet (ND) and in obese/prediabetic (defined as glucose-intolerant) HFD mice. Glucose and insulin tolerance, pancreas morphology, glycogen storage, glucose oxidation and glucose transport were then studied after chronic treatment (3 weeks) of HFD mice with Ki16425.

Results

In ND and HFD mice, LPA acutely impaired glucose tolerance by inhibiting glucose-induced insulin secretion. These effects were blocked by pre-injection of Ki16425 (5 mg/kg, i.p.). Inhibition of glucose-induced insulin secretion by LPA also occurred in isolated mouse islets. Plasma LPA was higher in HFD mice than in ND mice and Ki16425 transiently improved glucose tolerance. The beneficial effect of Ki16425 became permanent after chronic treatment and was associated with increased pancreatic islet mass and higher fasting insulinaemia. Chronic treatment with Ki16425 also improved insulin tolerance and increased liver glycogen storage and basal glucose use in skeletal muscle.

Conclusions/interpretation

Exogenous and endogenous LPA exerts a deleterious effect on glucose disposal through a reduction of plasma insulin; pharmacological blockade of LPA receptors improves glucose homeostasis in obese/prediabetic mice.  相似文献   

4.

Background

Inulin-type fructan ameliorates metabolic diseases associated with obesity in animals. However, relatively little information is available on the comparative effects of inulins with different degree of polymerization (DP) on the lipid or glucose metabolism.

Aim

The objective of this study was to investigate the effect of inulins with various DP on metabolic disorders associated with obesity in rats fed a high-fat diet under food restriction.

Methods

Rats were fed a high-fat diet supplemented with 5 % inulin-GR (Raftiline GR), inulin-Tokachi (Tokachi), or inulin-HP (Raftiline HP) without cellulose for 28 days at normal energy intakes or 14.5 % energy restriction.

Results

Under food restriction, the dietary inulin-Tokachi (mean DP 15) and -HP (mean DP 24), but not -GR (mean DP 10), reduced (p < 0.05) the serum cholesterol and triglyceride levels, and liver triglyceride concentration in rats, compared to the control diet. The cecal neutral steroid, bile acid, and propionate concentrations in the Tokachi and HP groups were higher (p < 0.05) than in the CONT group, and the cecal Bifidobacterium count in the Tokachi group was higher (p < 0.05) than in the other groups.

Conclusions

Findings suggest that, depending on DP, dietary supplementation with inulin (DP 15 or DP 24) in rats fed a high-fat diet, regardless of food intake, positively modulates lipid metabolism and fecal microbiota but not glucose metabolism.  相似文献   

5.

Aims/hypothesis

Endoplasmic reticulum (ER) stress has been detected in pancreatic beta cells and in insulin-sensitive tissues, such as adipose and liver, in obesity-linked rodent models of type 2 diabetes. The contribution of ER stress to pancreatic beta cell dysfunction in type 2 diabetes is unclear. We hypothesised that increased chaperone capacity protects beta cells from ER stress and dysfunction caused by obesity and improves overall glucose homeostasis.

Methods

We generated a mouse model that overproduces the resident ER chaperone GRP78 (glucose-regulated protein 78 kDa) in pancreatic beta cells under the control of a rat insulin promoter. These mice were subjected to high-fat diet (HFD) feeding for 20 weeks and metabolic variables and markers of ER stress in islets were measured.

Results

As expected, control mice on the HFD developed obesity, glucose intolerance and insulin resistance. In contrast, GRP78 transgenic mice tended to be leaner than their non-transgenic littermates and were protected against development of glucose intolerance, insulin resistance and ER stress in islets. Furthermore, islets from transgenic mice had a normal insulin content and normal levels of cell-surface GLUT2 (glucose transporter 2) and the transgenic mice were less hyperinsulinaemic than control mice on the HFD.

Conclusions/interpretation

These data show that increased chaperone capacity in beta cells provides protection against the pathogenesis of obesity-induced type 2 diabetes by maintaining pancreatic beta cell function, which ultimately improves whole-body glucose homeostasis.  相似文献   

6.
7.

Aims/hypothesis

Maternal obesity leads to increased adiposity, hyperlipidaemia and glucose intolerance in offspring. The analogue of glucagon-like peptide-1, exendin-4 (Ex-4), has been shown to induce weight loss in both adolescence and adulthood. We hypothesised that, in rats, daily injection of Ex-4 would reduce body fat and improve metabolic disorders in offspring from obese dams, especially those consuming a high-fat diet (HFD).

Methods

Female Sprague Dawley rats were fed chow or an HFD for 5 weeks before mating, and throughout gestation and lactation. At postnatal day 20, male pups from HFD-fed mothers were weaned onto chow or HFD and those from chow-fed mothers were fed chow. Within each dietary group, half of the pups were injected with Ex-4 (15 μg/kg/day i.p.) for 6 weeks, while the other half received saline.

Results

Maternal obesity alone or combined with postweaning HFD consumption led to increased adiposity, hyperinsulinaemia, hyperlipidaemia, inflammation and impaired regulation of hypothalamic appetite regulators by glucose in offspring, while glucose intolerance was only observed in HFD-fed rats from obese dams. Ex-4 injection significantly reduced adiposity, hyperlipidaemia and insulin resistance in HFD-fed rats from obese dams. It also restored glucose tolerance and the lipid-lowering effect of blood glucose. However, Ex-4 did not change hypothalamic appetite regulation or the response of appetite regulators to hyperglycaemia. Liver and adipose inflammatory cytokine expression was significantly reduced by Ex-4.

Conclusions/interpretation

Ex-4 reversed the detrimental impact of maternal obesity on lipid and glucose metabolism in offspring regardless of diet, supporting its potential application in reducing metabolic disorders in high-risk populations.  相似文献   

8.

Aims/hypothesis

The NAD+-dependent protein deacetylase sirtuin (SIRT)1 is thought to be a key regulator of skeletal muscle metabolism. However, its precise role in the regulation of insulin sensitivity is unclear. Accordingly, we sought to determine the effect of skeletal muscle-specific overexpression of SIRT1 on skeletal muscle insulin sensitivity and whole-body energy metabolism.

Methods

At 10 weeks of age, mice with muscle-specific overexpression of SIRT1 and their wild-type littermates were fed a standard diet with free access to chow or an energy-restricted (60% of standard) diet for 20 days. Energy expenditure and body composition were measured by indirect calorimetry and magnetic resonance imaging, respectively. Skeletal muscle insulin-stimulated glucose uptake was measured ex vivo in soleus and extensor digitorum longus muscles using a 2-deoxyglucose uptake technique with a physiological insulin concentration of 360 pmol/l (60 μU/ml).

Results

Sirt1 mRNA and SIRT1 protein levels were increased by approximately 100- and 150-fold, respectively, in skeletal muscle of mice with SIRT1 overexpression compared with wild-type mice. Despite this large-scale overexpression of SIRT1, body composition, whole-body energy expenditure, substrate oxidation and voluntary activity were comparable between genotypes. Similarly, skeletal muscle basal and insulin-stimulated glucose uptake were unaltered with SIRT1 overexpression. Finally, while 20 days of energy restriction enhanced insulin-stimulated glucose uptake in skeletal muscles of wild-type mice, no additional effect of SIRT1 overexpression was observed.

Conclusions/interpretation

These results demonstrate that upregulation of SIRT1 activity in skeletal muscle does not affect whole-body energy expenditure or enhance skeletal muscle insulin sensitivity in young mice on a standard diet with free access to chow or in young mice on energy-restricted diets.  相似文献   

9.

Aims/hypothesis

High sodium (HS) effects on hypertension are well established. Recent evidence implicates a relationship between HS intake and insulin resistance, even in the absence of hypertension. The aim of the current study was to determine whether loss of the vascular actions of insulin may be the driving factor linking HS intake to insulin resistance.

Methods

Sprague Dawley rats were fed a control (0.31% wt/wt NaCl) or HS (8.00% wt/wt NaCl) diet for 4 weeks and subjected to euglycaemic–hyperinsulinaemic clamp (10 mU min?1 kg?1) or constant-flow pump-perfused hindlimb studies following an overnight fast. A separate group of HS rats was given quinapril during the dietary intervention and subjected to euglycaemic–hyperinsulinaemic clamp as above.

Results

HS intake had no effect on body weight or fat mass or on fasting glucose, insulin, endothelin-1 or NEFA concentrations. However, HS impaired whole body and skeletal muscle glucose uptake, in addition to a loss of insulin-stimulated microvascular recruitment. These effects were present despite enhanced insulin signalling (Akt) in both liver and skeletal muscle. Constant-flow pump-perfused hindlimb experiments revealed normal insulin-stimulated myocyte glucose uptake in HS-fed rats. Quinapril treatment restored insulin-mediated microvascular recruitment and muscle glucose uptake in vivo.

Conclusions/interpretation

HS-induced insulin resistance is driven by impaired microvascular responsiveness to insulin, and is not due to metabolic or signalling defects within myocytes or liver. These results imply that reducing sodium intake may be important not only for management of hypertension but also for insulin resistance, and highlight the vasculature as a potential therapeutic target in the prevention of insulin resistance.  相似文献   

10.

Aims/hypothesis

Incretin-based therapies improve glycaemic control in patients with type 2 diabetes. In animal models of diabetes, glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase beta cell mass. GLP-1RAs are also evaluated in non-diabetic individuals with obesity and cardiovascular disease. However, their effect on beta cell mass in normoglycaemic conditions is not clear. Here, we investigate the effects of the GLP-1RA liraglutide on beta cell mass and function in normoglycaemic mice.

Methods

C57BL/6J mice were treated with the GLP-1RA liraglutide or PBS and fed a control or high-fat diet (HFD) for 1 or 6 weeks. Glucose and insulin tolerance tests were performed after 6 weeks. BrdU was given to label proliferating cells 1 week before the animals were killed. The pancreas was taken for either histology or islet isolation followed by a glucose-induced insulin-secretion test.

Results

Treatment with liraglutide for 6 weeks led to increased insulin sensitivity and attenuation of HFD-induced insulin resistance. A reduction in beta cell mass was observed in liraglutide-treated control and HFD-fed mice at 6 weeks, and was associated with a lower beta cell proliferation rate after 1 week of treatment. A similar reduction in alpha cell mass occurred, resulting in an unchanged alpha to beta cell ratio. In contrast, acinar cell proliferation was increased. Finally, islets isolated from liraglutide-treated control mice had enhanced glucose-induced insulin secretion.

Conclusions/interpretation

Our data show that GLP-1RA treatment in normoglycaemic mice leads to increases in insulin sensitivity and beta cell function that are associated with reduced beta cell mass to maintain normoglycaemia.  相似文献   

11.

Aims/hypothesis

Endogenous NO inhibits insulin release in isolated beta cells and insulin-degrading enzyme activity in hepatocytes, while NO release from endothelial cells has been suggested to enhance insulin action. We assessed the overall effect of systemic inhibition of endogenous NO synthesis on glucose homeostasis in humans.

Methods

Twenty-four non-diabetic volunteers underwent two hyperglycaemic (+7 mmol/l) clamps with either saline or L-NG-nitroarginine methyl ester (l-NAME, at rates of 2.5, 5, 10 and 20 μg?min?1?kg?1) infusion. Another five volunteers underwent an OGTT with either saline or l-NAME (20 μg?min?1?kg?1) infusion. Blood pressure and heart rate were measured to monitor NO blockade; during the OGTT, endothelial function was assessed by peripheral arterial tonometry and insulin secretion by C-peptide deconvolution and insulin secretion modelling.

Results

Compared with saline, l-NAME at the highest dose raised mean blood pressure (+20?±?2 mmHg), depressed heart rate (?12?±?2 bpm) and increased insulin clearance (+50%). First-phase insulin secretion was impaired, but insulin sensitivity (M/I index) was unchanged. During the OGTT, l-NAME raised 2 h plasma glucose by 1.8 mmol/l (p?<?0.01), doubled insulin clearance and impaired beta cell glucose sensitivity while depressing endothelial function.

Conclusions/interpretation

In humans, systemic NO blockade titrated to increase blood pressure and induce endothelial dysfunction does not affect insulin action but significantly impairs glucose tolerance by increasing plasma insulin clearance and depressing insulin secretion, namely first-phase and beta cell glucose sensitivity.  相似文献   

12.

Aims/hypothesis

Studies have shown that dipeptidyl peptidase-4 (DPP4) inhibitors stimulate insulin secretion and increase beta cell mass in rodents. However, in these models hyperglycaemia has been induced early on in life and the treatment periods have been short. To explore the long-term effects of DPP4 inhibition on insulin secretion and beta cell mass, we have generated a high-fat diet (HFD)-induced-obesity model in mice of advanced age (10 months old).

Methods

After 1 month of HFD alone, the mice were given the DPP4 inhibitor vildagliptin for a further 11 months. At multiple time points throughout the study, OGTTs were performed and beta cell area and long-term survival were evaluated.

Results

Beta cell function and glucose tolerance were significantly improved by vildagliptin with both diets. In contrast, in spite of the long treatment period, beta cell area was not significantly different between vildagliptin-treated mice and controls. Mice of advanced age chronically fed an HFD displayed clear and extensive pancreatic inflammation and peri-insulitis, mainly formed by CD3-positive T cells, which were completely prevented by vildagliptin treatment. Chronic vildagliptin treatment also improved survival rates for HFD-fed mice.

Conclusions/interpretation

In a unique advanced-aged HFD-induced-obesity mouse model, insulin secretion was improved and the extensive peri-insulitis prevented by chronic DPP4 inhibition. The improved survival rates for obese mice chronically treated with vildagliptin suggest that chronic DPP4 inhibition potentially results in additional quality-adjusted life-years for individuals with type 2 diabetes, which is the primary goal of any diabetes therapy.  相似文献   

13.

Background

The gastrointestinal tract (GI) is important for detection and transport of consumed nutrients and has been implicated in susceptibility to diet-induced obesity in various rat strains.

Aims

The current studies investigated the regulation of CD36, a receptor which facilitates uptake of long-chain fatty acids, in the GI tract of obesity-prone Osborne–Mendel and obesity-resistant S5B rats fed a high-fat diet.

Methods

Osborne–Mendel and S5B rats consumed a high-fat diet (HFD, 55 % kcal from fat) or a low-fat diet (10 % kcal from fat) for either 3 or 14 days. CD36 messenger RNA (mRNA) levels were measured from circumvallate papillae of the tongue and from duodenal enterocytes.

Results

In Osborne–Mendel rats, consumption of HFD for 3 and 14 days led to an increase in CD36 mRNA on circumvallate papillae and in duodenal enterocytes. CD36 mRNA levels were positively correlated with body weight gain and kilocalories consumed at 3 days. In S5B rats, consumption of HFD for 3 days did not alter CD36 mRNA levels on circumvallate papillae or in the duodenum. Duodenal CD36 levels were elevated in S5B rats following 14 days of HFD consumption. CD36 mRNA levels in the duodenum were positively correlated with body weight gain and kilocalories consumed at 14 days.

Conclusions

These data support the differential sensing of nutrients by two regions of the GI tract of obesity-prone and obesity-resistant rats consuming HFD and suggest a role for CD36 in the strain-specific susceptibility to obesity.  相似文献   

14.

Aims/hypothesis

Obesity is associated with aldosterone excess, hypertension and the metabolic syndrome, but the relative contribution of aldosterone to obesity-related complications is debated. We previously demonstrated that aldosterone impairs insulin secretion, and that genetic aldosterone deficiency increases glucose-stimulated insulin secretion in vivo. We hypothesised that elimination of endogenous aldosterone would prevent obesity-induced insulin resistance and hyperglycaemia.

Methods

Wild-type and aldosterone synthase-deficient (As ?/?) mice were fed a high-fat (HF) or normal chow diet for 12 weeks. We assessed insulin sensitivity and insulin secretion using clamp methodology and circulating plasma adipokines, and examined adipose tissue via histology.

Results

HF diet induced weight gain similarly in the two groups, but As ?/? mice were protected from blood glucose elevation. HF diet impaired insulin sensitivity similarly in As ?/? and wild-type mice, assessed by hyperinsulinaemic–euglycaemic clamps. Fasting and glucose-stimulated insulin were higher in HF-fed As ?/? mice than in wild-type controls. Although there was no difference in insulin sensitivity during HF feeding in As ?/? mice compared with wild-type controls, fat mass, adipocyte size and adiponectin increased, while adipose macrophage infiltration decreased. HF feeding significantly increased hepatic steatosis and triacylglycerol content in wild-type mice, which was attenuated in aldosterone-deficient mice.

Conclusions/interpretation

These studies demonstrate that obesity induces insulin resistance independently of aldosterone and adipose tissue inflammation, and suggest a novel role for aldosterone in promoting obesity-induced beta cell dysfunction, hepatic steatosis and adipose tissue inflammation.  相似文献   

15.

Aims/hypothesis

Roux-en-Y gastric bypass (RYGB) improves glycaemic control in part by increasing postprandial insulin secretion through exaggerated glucagon-like peptide (GLP)-1 release. However, it is unknown whether islet cell responsiveness to i.v. glucose, non-glucose (arginine) and incretin hormones, including GLP-1, is altered.

Methods

Eleven severely obese glucose-tolerant individuals underwent three hyperglycaemic clamps with arginine bolus and co-infusion of either GLP-1, glucose-dependent insulinotropic polypeptide (GIP) or saline before, and at 1 week and 3 months after RYGB. In addition, an OGTT was performed before and 3 months after surgery.

Results

After RYGB, insulin sensitivity improved at 1 week and 3 months, while insulin stimulation and glucagon suppression in response to the clamp with saline co-infusion were largely unaltered. The influence of i.v. GLP-1 and GIP on insulin and glucagon secretion was also unchanged postoperatively. In response to the postoperative OGTT at 3 months, insulin and GLP-1, but not GIP, secretion increased. Furthermore, the glucose profile during the OGTT was altered, with a substantial reduction in 2 h plasma glucose and a paradoxical hypersecretion of glucagon.

Conclusions/interpretation

After RYGB, insulin hypersecretion is linked to the oral, but not the i.v., route of administration and is associated with exaggerated release and preserved insulinotropic action of GLP-1, while both the secretion and action of GIP are unchanged. The results highlight the importance of increased GLP-1 secretion for improving postoperative glucose metabolism.

Trial registration

ClinicalTrials.gov NCT01559779.  相似文献   

16.

Aims

We sought to evaluate the effects of probucol on steatohepatitis and associated molecular mechanisms in a rat model of nonalcoholic steatohepatitis (NASH) induced by high-fat diet (HFD).

Methods

Forty male rats weighing 100–120 g were randomly assigned to the following treatments (n = 10 for each treatment): standard diet + normal saline (NC group), standard diet + 500 mg/kg/day probucol (NP group), HFD + normal saline (HD group), and HFD + 500 mg/kg/day probucol (HP group). All animals received the above treatments for 15 weeks. Lipid metabolism and steatohepatitis were assessed. Systemic insulin resistance, oxidative stress status, serum tumor necrosis factor-alpha (TNF-α) and adiponectin levels, and gene expression were examined.

Results

High-fat feeding resulted in macrovesicular steatosis, lobular inflammation, and hepatocellular ballooning degeneration in the liver, coupled with increased concentrations of serum aspartate aminotransferase and alanine aminotransferase. Probucol exposure attenuated the biochemical and histological changes comparable with NASH. Moreover, probucol treatment significantly prevented the elevations of serum total cholesterol, low-density lipoprotein, and high-density lipoprotein and the increase in the expression of numerous lipid metabolism-related genes in HFD-fed rats. There were increased insulin sensitivity and serum adiponectin levels and enhanced hepatic AMP-activated protein kinase phosphorylation in the HP group. Probucol lessened the HFD-induced elevation of serum TNF-α and hepatic malondialdehyde and reduced antioxidant enzymatic activities.

Conclusions

Probucol shows beneficial effects on HFD-induced steatohepatitis by improving insulin resistance and attenuating oxidative stress and systemic inflammation.  相似文献   

17.

Background and Aims

Studies investigating insulin resistance (IR) in chronic hepatitis C virus (HCV) infection have used surrogate measures of IR that have limited reliability. We aimed to describe the distribution and risk factors associated with IR and its change over time in HCV using direct measurement.

Methods

One hundred two non-cirrhotic, non-diabetic, HCV-infected subjects underwent clinical, histologic, and metabolic evaluation, and 27 completed repeat evaluation at 6 months. Insulin-mediated glucose uptake was measured by steady-state plasma glucose (SSPG) concentration during the insulin suppression test.

Results

Three subjects with diabetes were excluded and 95 completed all testing. SSPG ranged from 39 to 328 mg/dL (mean 135 mg/dL) and was stable over time (mean SSPG change ?0.3 mg/dL). SSPG was associated with Latino ethnicity (Coef 67, 95 % CI 37–96), BMI (Coef 19 per 5 kg/m2, 95 % CI 5–32), ferritin (Coef 1.4 per 10 ng/ml, 95 % CI 0.2–2.5), male gender (Coef ?48, 95 % CI ?80 to ?16), and HDL (Coef ?16, 95 % CI ?28 to ?5 mg/dL). Current tobacco use (Coef 55, 95 % CI 19–90), steatosis (Coef ?44, 95 % CI ?86 to ?3), and increases in BMI (Coef 30 per 5 kg/m2, 95 % CI 6–53) and triglyceride (Coef 3.5 per 10 mg/dL, 95 % CI 0.3–6.7) predicted change in SSPG.

Conclusions

There was a wide spectrum of insulin resistance in our HCV population. Host factors, rather than viral factors, appeared to more greatly influence insulin action and its change in HCV.  相似文献   

18.

Background

Obesity and dietary fat are associated with increased risk of several malignancies including pancreatic cancer. The incidence of pancreatic cancer is increased in countries that consume diets high in fat.

Aim

The purpose of this study was to assess the relationship and mechanism of action between dietary fat and endogenous cholecystokinin (CCK) on pancreatic tumor growth and metastasis in an immunocompetent animal model.

Methods

C57BL/6 mice were placed on regular, low-fat, or high-fat diets for 8 weeks before establishment of Panc-02 orthotopic pancreatic tumors. Mice were then treated with a CCK-A receptor antagonist, devazepide, or vehicle for an additional 2.5 weeks. Pancreas tumors were weighed and metastases counted. Blood CCK levels were measured by radioimmunoassay (RIA). Tissues were examined histologically and studied for genes associated with metastasis by RT-PCR array. Effects of the CCK antagonist on Panc-02 cells invasiveness was assessed in a Matrigel invasion assay.

Results

Mice that received the high-fat diet had larger tumors and tenfold higher serum CCK levels by RIA compared to normal diet controls (p < 0.01). Pancreatic tumors in high-fat diet mice treated with the antagonist had fewer intravascular tumor emboli and metastases compared to controls. The reduction in tumor emboli correlated with decreased vascular endothelial growth factor-A (VEGF-A) expression in tumors (p < 6 × 10?9). In vitro invasiveness of Panc-02 cells also was reduced by CCK-A receptor antagonist treatment (p = 1.33 × 10?6).

Conclusion

CCK is a mediator of dietary fat-associated pancreatic cancer. CCK is also involved in the invasiveness of pancreatic tumors through a mechanism involving VEGF-A.  相似文献   

19.

Aims/hypothesis

Cre-loxP systems are frequently used in mouse genetics as research tools for studying tissue-specific functions of numerous genes/proteins. However, the expression of Cre recombinase in a tissue-specific manner often produces undesirable changes in mouse biology that can confound data interpretation when using these tools to generate tissue-specific gene knockout mice. Our objective was to characterise the actions of Cre recombinase in skeletal muscle, and we anticipated that skeletal muscle-specific Cre recombinase expression driven by the human α-skeletal actin (HSA) promoter would influence glucose homeostasis.

Methods

Eight-week-old HSA-Cre expressing mice and their wild-type littermates were fed a low- or high-fat diet for 12 weeks. Glucose homeostasis (glucose/insulin tolerance testing) and whole-body energy metabolism (indirect calorimetry) were assessed. We also measured circulating insulin levels and the muscle expression of key regulators of energy metabolism.

Results

Whereas tamoxifen-treated HSA-Cre mice fed a low-fat diet exhibited no alterations in glucose homeostasis, we observed marked improvements in glucose tolerance in tamoxifen-treated, but not corn-oil-treated, HSA-Cre mice fed a high-fat diet vs their wild-type littermates. Moreover, Cre dissociation from heat shock protein 90 and translocation to the nucleus was only seen following tamoxifen treatment. These improvements in glucose tolerance were not due to improvements in insulin sensitivity/signalling or enhanced energy metabolism, but appeared to stem from increases in circulating insulin.

Conclusions/interpretation

The intrinsic glycaemia phenotype in the HSA-Cre mouse necessitates the use of HSA-Cre controls, treated with tamoxifen, when using Cre-loxP models to investigate skeletal muscle-specific gene/protein function and glucose homeostasis.
  相似文献   

20.

Purpose of Review

This review aims to summarize and discuss the recent findings in the field of using HDL mimetics for the treatment of patients with coronary artery disease.

Recent Findings

Following the largely disappointing results with the cholesteryl ester transfer protein inhibitors, focus moved to HDL functionality rather than absolute HDL cholesterol values. A number of HDL/apoA-I mimicking molecules were developed, aiming to enhance reverse cholesterol transport that has been associated with an atheroprotective effect. Three HDL mimetics have made the step from bench-testing to clinical trials in humans and are discussed here: apoA-I Milano, CSL-112, and CER-001. Unfortunately, with the exception of CSL-112 where the results of the clinical trial are not yet known, none of the agents was able to demonstrate a clinical benefit.

Summary

HDL mimetics have failed to date to prove a beneficial effect in clinical practice. Reverse cholesterol transport remains a challenging therapeutic pathway to be explored.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号