首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In CA1 pyramidal neurons, burst firing is correlated with hippocampally dependent behaviours and modulation of synaptic strength. One of the mechanisms underlying burst firing in these cells is the afterdepolarization (ADP) that follows each action potential. Previous work has shown that the ADP results from the interaction of several depolarizing and hyperpolarizing conductances located in the soma and the dendrites. By using patch-clamp recordings from acute rat hippocampal slices we show that D-type potassium current modulates the size of the ADP and the bursting of CA1 pyramidal neurons. Sensitivity to α-dendrotoxin suggests that Kv1-containing potassium channels mediate this current. Dual somato-dendritic recording, outside-out dendritic recordings, and focal application of dendrotoxin together indicate that the channels mediating this current are located in the apical dendrites. Thus, our data present evidence for a dendritic segregation of Kv1-like channels in CA1 pyramidal neurons and identify a novel action for these channels, showing that they inhibit action potential bursting by restricting the size of the ADP.  相似文献   

2.
1. We have developed a 19-compartment cable model of a guinea pig CA3 pyramidal neuron. Each compartment is allowed to contain six active ionic conductances: gNa, gCa, gK(DR) (where DR stands for delayed rectifier), gK(A), gK(AHP), and gK(C). THe conductance gCa is of the high-voltage activated type. The model kinetics for the first five of these conductances incorporate voltage-clamp data obtained from isolated hippocampal pyramidal neurons. The kinetics of gK(C) are based on data from bullfrog sympathetic neurons. The time constant for decay of submembrane calcium derives from optical imaging of Ca signals in Purkinje cell dendrites. 2. To construct the model from available voltage-clamp data, we first reproduced current-clamp records from a model isolated neuron (soma plus proximal dendrites). We next assumed that ionic channel kinetics in the dendrites were the same as in the soma. In accord with dendritic recordings and calcium-imaging data, we also assumed that significant gCa occurs in dendrites. We then attached sections of basilar and apical dendritic cable. By trial and error, we found a distribution (not necessarily unique) of ionic conductance densities that was consistent with current-clamp records from the soma and dendrites of whole neurons and from isolated apical dendrites. 3. The resulting model reproduces the Ca(2+)-dependent spike depolarizing afterpotential (DAP) recorded after a stimulus subthreshold for burst elicitation. 4. The model also reproduces the behavior of CA3 pyramidal neurons injected with increasing somatic depolarizing currents: low-frequency (0.3-1.0 Hz) rhythmic bursting for small currents, with burst frequency increasing with current magnitude; then more irregular bursts followed by afterhyperpolarizations (AHPs) interspersed with brief bursts without AHPs; and finally, rhythmic action potentials without bursts. 5. The model predicts the existence of still another firing pattern during tonic depolarizing dendritic stimulation: brief bursts at less than 1 to approximately 12 Hz, a pattern not observed during somatic stimulation. These bursts correspond to rhythmic dendritic calcium spikes. 6. The model CA3 pyramidal neuron can be made to resemble functionally a CA1 pyramidal neuron by increasing gK(DR) and decreasing dendritic gCa and gK(C). Specifically, after these alterations, tonic depolarization of the soma leads to adapting repetitive firing, whereas stimulation of the distal dendrites leads to bursting. 7. A critical set of parameters concerns the regulation of the pool of intracellular [Ca2+] that interacts with membrane channels (gK(C) and gK(AHP)), particularly in the dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
In hippocampal CA1 pyramidal neurons, action potentials are typically initiated in the axon and backpropagate into the dendrites, shaping the integration of synaptic activity and influencing the induction of synaptic plasticity. Despite previous reports describing action-potential propagation in the proximal apical dendrites, the extent to which action potentials invade the distal dendrites of CA1 pyramidal neurons remains controversial. Using paired somatic and dendritic whole cell recordings, we find that in the dendrites proximal to 280 microm from the soma, single backpropagating action potentials exhibit <50% attenuation from their amplitude in the soma. However, in dendritic recordings distal to 300 microm from the soma, action potentials in most cells backpropagated either strongly (26-42% attenuation; n = 9/20) or weakly (71-87% attenuation; n = 10/20) with only one cell exhibiting an intermediate value (45% attenuation). In experiments combining dual somatic and dendritic whole cell recordings with calcium imaging, the amount of calcium influx triggered by backpropagating action potentials was correlated with the extent of action-potential invasion of the distal dendrites. Quantitative morphometric analyses revealed that the dichotomy in action-potential backpropagation occurred in the presence of only subtle differences in either the diameter of the primary apical dendrite or branching pattern. In addition, action-potential backpropagation was not dependent on a number of electrophysiological parameters (input resistance, resting potential, voltage sensitivity of dendritic spike amplitude). There was, however, a striking correlation of the shape of the action potential at the soma with its amplitude in the dendrite; larger, faster-rising, and narrower somatic action potentials exhibited more attenuation in the distal dendrites (300-410 microm from the soma). Simple compartmental models of CA1 pyramidal neurons revealed that a dichotomy in action-potential backpropagation could be generated in response to subtle manipulations of the distribution of either sodium or potassium channels in the dendrites. Backpropagation efficacy could also be influenced by local alterations in dendritic side branches, but these effects were highly sensitive to model parameters. Based on these findings, we hypothesize that the observed dichotomy in dendritic action-potential amplitude is conferred primarily by differences in the distribution, density, or modulatory state of voltage-gated channels along the somatodendritic axis.  相似文献   

4.
The role of voltage-dependent channels in shaping subthreshold excitatory postsynaptic potentials (EPSPs) in neocortical layer 5 pyramidal neurons from rat medial prefrontal cortex (PFC) was investigated using patch-clamp recordings from visually identified neurons in brain slices. Small-amplitude EPSPs evoked by stimulation of superficial layers were not affected by the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonopentanoic acid but were abolished by the AMPA receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione, suggesting that they were primarily mediated by AMPA receptors. AMPA receptor-mediated EPSPs (AMPA-EPSPs) evoked in the apical dendrites were markedly enhanced, or increased in peak and duration, at depolarized holding potentials. Enhancement of AMPA-EPSPs was reduced by loading the cells with lidocaine N-ethylbromide (QX-314) and by local application of the Na(+) channel blocker tetrodotoxin (TTX) to the soma but not to the middle/proximal apical dendrite. In contrast, blockade of Ca(2+) channels by co-application of Cd(2+) and Ni(2+) to the soma or apical dendrite did not affect the AMPA-EPSPs. Like single EPSPs, EPSP trains were shaped by Na(+) but not Ca(2+) channels. EPSPs simulated by injecting synaptic-like current into proximal/middle apical dendrite (simEPSPs) were enhanced at depolarized holding potentials similarly to AMPA-EPSPs. Extensive blockade of Ca(2+) channels by bath application of the Cd(2+) and Ni(2+) mixture had no effects on simEPSPs, whereas bath-applied TTX removed the depolarization-dependent EPSP amplification. Inhibition of K(+) currents by 4-aminopyridine (4-AP) and TEA increased the TTX-sensitive EPSP amplification. Moreover, strong inhibition of K(+) currents by high concentrations of 4-AP and TEA revealed a contribution of Ca(2+) channels to EPSPs that, however, seemed to be dependent on Na(+) channel activation. Our results indicate that in layer 5 pyramidal neurons from PFC, Na(+), and K(+) voltage-gated channels shape EPSPs within the voltage range that is subthreshold for somatic action potentials.  相似文献   

5.
We investigated the nature of afterdepolarizing potentials in AH neurons from the guinea-pig duodenum using whole-cell patch-clamp recordings in intact myenteric ganglia. Afterdepolarizing potentials were minimally activated following action-potential firing under normal conditions, but after application of charybdotoxin (40 nM) or tetraethyl ammonium (TEA; 10-20 mM) to the bathing solution, prominent afterdepolarizing potentials followed action potentials. The whole-cell current underlying afterdepolarizing potentials (I(ADP)) in the presence of TEA (10-20 mM) reversed at -38 mV and was not voltage-dependent. Reduction of NaCl in the bathing (Krebs) solution to 58 mM shifted the reversal potential of the I(ADP) to -58 mV, suggesting that the current underlying the afterdepolarizing potential was carried by a mixture of cations. The relative contributions of Na(+) and K(+) to this current were estimated to be about 1:5. Substitution of external Na(+) with N-methyl D-glucamine blocked the current while replacement of internal Cl(-) with gluconate did not block the I(ADP). The I(ADP) was also inhibited when CsCl-filled patch pipettes were used. The I(ADP) was blocked or substantially decreased in amplitude in the presence of N-type Ca(2+) channel antagonists, omega-conotoxin GVIA and omega-conotoxin MVIIC, respectively, and was eliminated by external Cd(2+), indicating that it was dependent on Ca(2+) entry. The I(ADP) was also inhibited by ryanodine (10-20 microM), indicating that Ca(2+)-induced Ca(2+) release was involved in its activation. Niflumic acid consistently inhibited the I(ADP) with an IC(50) of 63 microM. Using antibodies against the pore-forming subunits of L-, N- and P/Q-type voltage-gated Ca(2+) channels, we have demonstrated that myenteric AH neurons express N- and P/Q, but not L-type voltage-gated Ca(2+) channels. We conclude that the ADP in myenteric AH neurons, in the presence of an L-type Ca(2+)-channel blocker, is generated by the opening of Ca(2+)-activated non-selective cation channels following action potential-mediated Ca(2+) entry mainly through N-type Ca(2+) channels. Ca(2+) release from ryanodine-sensitive stores triggered by Ca(2+) entry contributes significantly to the activation of this current.  相似文献   

6.
The intrinsic firing modes of adult CA1 pyramidal cells vary along a continuum of "burstiness" from regular firing to rhythmic bursting, depending on the ionic composition of the extracellular milieu. Burstiness is low in neurons exposed to a normal extracellular Ca(2+) concentration ([Ca(2+)](o)), but is markedly enhanced by lowering [Ca(2+)](o), although not by blocking Ca(2+) and Ca(2+)-activated K(+) currents. We show, using intracellular recordings, that burstiness in low [Ca(2+)](o) persists even after truncating the apical dendrites, suggesting that bursts are generated by an interplay of membrane currents at or near the soma. To study the mechanisms of bursting, we have constructed a conductance-based, one-compartment model of CA1 pyramidal neurons. In this neuron model, reduced [Ca(2+)](o) is simulated by negatively shifting the activation curve of the persistent Na(+) current (I(NaP)) as indicated by recent experimental results. The neuron model accounts, with different parameter sets, for the diversity of firing patterns observed experimentally in both zero and normal [Ca(2+)](o). Increasing I(NaP) in the neuron model induces bursting and increases the number of spikes within a burst but is neither necessary nor sufficient for bursting. We show, using fast-slow analysis and bifurcation theory, that the M-type K(+) current (I(M)) allows bursting by shifting neuronal behavior between a silent and a tonically active state provided the kinetics of the spike generating currents are sufficiently, although not extremely, fast. We suggest that bursting in CA1 pyramidal cells can be explained by a single compartment "square bursting" mechanism with one slow variable, the activation of I(M).  相似文献   

7.
Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons   总被引:3,自引:0,他引:3  
The properties and distribution of voltage-gated ion channels contribute to electrical signaling in neuronal dendrites. The apical dendrites of CA1 pyramidal neurons in hippocampus express a wide variety of sodium, calcium, potassium, and other voltage-gated channels. In this report, we provide some new evidence for the role of the delayed-rectifier K+ channel in shaping the dendritic action potential at different membrane potentials.  相似文献   

8.
Long-lasting, dendritic, Ca(2+)-dependent action potentials (plateaus) were investigated in layer 5 pyramidal neurons from rat neocortical slices visualized by infrared-differential interference contrast microscopy to understand the role of dendritic Ca(2+) spikes in the integration of synaptic input. Focal glutamate iontophoresis on visualized dendrites caused soma firing rate to increase linearly with iontophoretic current until dendritic Ca(2+) responses caused a jump in firing rate. Increases in iontophoretic current caused no further increase in somatic firing rate. This limitation of firing rate resulted from the inability of increased glutamate to change evoked plateau amplitude. Similar nonlinear patterns of soma firing were evoked by focal iontophoresis on the distal apical, oblique, and basal dendrites, whereas iontophoresis on the soma and proximal apical dendrite only evoked a linear increase in firing rate as a function of iontophoretic current without plateaus. Plateau amplitude recorded in the soma decreased as the site of iontophoresis was moved farther from the soma, consistent with decremental propagation of the plateau to the soma. Currents arriving at the soma summed if plateaus were evoked on separate dendrites or if subthreshold responses were evoked from sites on the same dendrite. If plateaus were evoked at two sites on the same dendrite, only the proximal plateau was seen at the soma. Just-subthreshold depolarizations at two sites on the same dendrite could sum to evoke a plateau at the proximal site. We conclude that the plateaus prevent current from ligand-gated channels distal to the plateau-generating region from reaching the soma and directly influencing firing rate. The implications of plateau properties for synaptic integration are discussed.  相似文献   

9.
Apical dendrites of layer 5 pyramidal cells in a slice preparation of rat sensorimotor cortex were depolarized focally by long-lasting glutamate iontophoresis while recording intracellularly from their soma. In most cells the firing pattern evoked by the smallest dendritic depolarization that evoked spikes consisted of repetitive bursts of action potentials. During larger dendritic depolarizations initial burst firing was followed by regular spiking. As dendritic depolarization was increased further the duration (but not the firing rate) of the regular spiking increased, and the duration of burst firing decreased. Depolarization of the soma in most of the same cells evoked only regular spiking. When the dendrite was depolarized to a critical level below spike threshold, intrasomatic current pulses or excitatory postsynaptic potentials also triggered bursts instead of single spikes. The bursts were driven by a delayed depolarization (DD) that was triggered in an all-or-none manner along with the first Na+ spike of the burst. Somatic voltage-clamp experiments indicated that the action current underlying the DD was generated in the dendrite and was Ca2+ dependent. Thus the burst firing was caused by a Na+ spike-linked dendritic Ca2+ spike, a mechanism that was available only when the dendrite was adequately depolarized. Larger dendritic depolarization that evoked late, constant-frequency regular spiking also evoked a long-lasting, Ca2+-dependent action potential (a "plateau"). The duration of the plateau but not its amplitude was increased by stronger dendritic depolarization. Burst-generating dendritic Ca2+ spikes could not be elicited during this plateau. Thus plateau initiation was responsible for the termination of burst firing and the generation of the constant-frequency regular spiking. We conclude that somatic and dendritic depolarization can elicit quite different firing patterns in the same pyramidal neuron. The burst and regular spiking observed during dendritic depolarization are caused by two types of Ca2+-dependent dendritic action potentials. We discuss some functional implications of these observations.  相似文献   

10.
Action potentials are the end product of synaptic integration, a process influenced by resting and active neuronal membrane properties. Diversity in these properties contributes to specialized mechanisms of synaptic integration and action potential firing, which are likely to be of functional significance within neural circuits. In the hippocampus, the majority of subicular pyramidal neurons fire high-frequency bursts of action potentials, whereas CA1 pyramidal neurons exhibit regular spiking behavior when subjected to direct somatic current injection. Using patch-clamp recordings from morphologically identified neurons in hippocampal slices, we analyzed and compared the resting and active membrane properties of pyramidal neurons in the subiculum and CA1 regions of the hippocampus. In response to direct somatic current injection, three subicular firing types were identified (regular spiking, weak bursting, and strong bursting), while all CA1 neurons were regular spiking. Within subiculum strong bursting neurons were found preferentially further away from the CA1 subregion. Input resistance (R(N)), membrane time constant (tau(m)), and depolarizing "sag" in response to hyperpolarizing current pulses were similar in all subicular neurons, while R(N) and tau(m) were significantly larger in CA1 neurons. The first spike of all subicular neurons exhibited similar action potential properties; CA1 action potentials exhibited faster rising rates, greater amplitudes, and wider half-widths than subicular action potentials. Therefore both the resting and active properties of CA1 pyramidal neurons are distinct from those of subicular neurons, which form a related class of neurons, differing in their propensity to burst. We also found that both regular spiking subicular and CA1 neurons could be transformed into a burst firing mode by application of a low concentration of 4-aminopyridine, suggesting that in both hippocampal subfields, firing properties are regulated by a slowly inactivating, D-type potassium current. The ability of all subicular pyramidal neurons to burst strengthens the notion that they form a single neuronal class, sharing a burst generating mechanism that is stronger in some cells than others.  相似文献   

11.
Dendritic Ca2+ action potentials in neocortical pyramidal neurons have been characterized in brain slices, but their presence and role in the intact neocortex remain unclear. Here we used two-photon microscopy to demonstrate Ca2+ electrogenesis in apical dendrites of deep-layer pyramidal neurons of rat barrel cortex in vivo. During whisker stimulation, complex spikes recorded intracellularly from distal dendrites and sharp waves in the electrocorticogram were accompanied by large dendritic [Ca2+ ] transients; these also occurred during bursts of action potentials recorded from somata of identified layer 5 neurons. The amplitude of the [Ca 2+] transients was largest proximal to the main bifurcation, where sodium action potentials produced little Ca2+ influx. In some cases, synaptic stimulation evoked [Ca2+] transients without a concomitant action potential burst, suggesting variable coupling between dendrite and soma.  相似文献   

12.
The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, excitability. Using dendritic and somatic whole-cell and cell-attached recordings in rat hippocampal slices, we found that the anticonvulsant lamotrigine selectively reduced action potential firing from dendritic depolarization, while minimally affecting firing at the soma. This regional and input-specific effect resulted from an increase in the hyperpolarization-activated cation current (I(h)), a voltage-gated current present predominantly in dendrites. These results demonstrate that neuronal excitability can be altered by drugs acting selectively on dendrites, and suggest an important role for I(h) in controlling dendritic excitability and epileptogenesis.  相似文献   

13.
In hippocampal CA1 pyramidal neurons, action potentials generated in the axon back-propagate in a decremental fashion into the dendritic tree where they affect synaptic integration and synaptic plasticity. The amplitude of back-propagating action potentials (b-APs) is controlled by various biological factors, including membrane potential (Vm). We report that, at any dendritic location (x), the transition from weak (small-amplitude b-APs) to strong (large-amplitude b-APs) back-propagation occurs when Vm crosses a threshold potential, x. When Vm > x, back-propagation is strong (mostly active). Conversely, when Vm < x, back-propagation is weak (mostly passive). x varies linearly with the distance (x) from the soma. Close to the soma, x < resting membrane potential (RMP) and a strong hyperpolarization of the membrane is necessary to switch back-propagation from strong to weak. In the distal dendrites, x > RMP and a strong depolarization is necessary to switch back-propagation from weak to strong. At approximately 260 micrometer from the soma, 260 approximately RMP, suggesting that in this dendritic region back-propagation starts to switch from strong to weak. x depends on the availability or state of Na+ and K+ channels. Partial blockade or phosphorylation of K+ channels decreases x and thereby increases the portion of the dendritic tree experiencing strong back-propagation. Partial blockade or inactivation of Na+ channels has the opposite effect. We conclude that x is a parameter that captures the onset of the transition from weak to strong back-propagation. Its modification may alter dendritic function under physiological and pathological conditions by changing how far large action potentials back-propagate in the dendritic tree.  相似文献   

14.
CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na(+) channel-mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na(+)-to-K(+) conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network.  相似文献   

15.
Dendrodendritic synapses, distributed along mitral cell lateral dendrites, provide powerful and extensive inhibition in the olfactory bulb. Activation of inhibition depends on effective penetration of action potentials into dendrites. Although action potentials backpropagate with remarkable fidelity in apical dendrites, this issue is controversial for lateral dendrites. We used paired somatic and dendritic recordings to measure action potentials in proximal dendritic segments (0-200 microm from soma) and action potential-generated calcium transients to monitor activity in distal dendritic segments (200-600 microm from soma). Somatically elicited action potentials were attenuated in proximal lateral dendrites. The attenuation was not due to impaired access resistance in dendrites or to basal synaptic activity. However, a single somatically elicited action potential was sufficient to evoke a calcium transient throughout the lateral dendrite, suggesting that action potentials reach distal dendritic compartments. Block of A-type potassium channels (I(A)) with 4-aminopyridine (10 mM) prevented action potential attenuation in direct recordings and significantly increased dendritic calcium transients, particularly in distal dendritic compartments. Our results suggest that I(A) may regulate inhibition in the olfactory bulb by controlling action potential amplitudes in lateral dendrites.  相似文献   

16.
In guinea pig hippocampal slices, 4-aminopyridine (4-AP) in concentrations of 100-500 microM reduced the adaptation of CA3 pyramidal neurons to depolarizing stimuli, resulting in a prolongation of repetitive firing during injection of long-lasting depolarizing currents. Concurrently, there was a decrease in the 'sag' of potential after spike bursts. Furthermore, 4-AP decreased or abolished the hyperpolarizing potential (the afterhyperpolarization) which normally followed repetitive firing of the neurons. The findings suggest that 4-AP could interfere with the Ca2+-activated K+ current in hippocampal CA3 pyramidal neurons.  相似文献   

17.
Uniform and non-uniform somato-dendritic distributions of the ion channels carrying the low-threshold Ca(2+) current (I(T)), the hyperpolarization-activated inward current (I(h)), the fast Na(+) current (I(Na)) and the delayed rectifier current (I(K)) were investigated in a multi-compartment model of a thalamocortical neuron for their suitability to reproduce the delta oscillation and the retinal excitatory post-synaptic potential recorded in vitro from the soma of thalamocortical neurons. The backpropagation of these simulated activities along the dendritic tree was also studied. A uniform somato-dendritic distribution of the maximal conductance of I(T) and I(K) (g(T) and g(K), respectively) was sufficient to simulate with acceptable accuracy: (i) the delta oscillation, and its phase resetting by somatically injected current pulses; as well as (ii) the retinal excitatory postsynaptic potential, and its alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate and/or N-methyl-D-aspartate components. In addition, simulations where the dendritic g(T) and g(K) were either reduced (both by up to 34%) or increased (both by up to 15%) of their respective value on the soma still admitted a successful reproduction of the experimental activity. When the dendritic distributions were non-uniform, models where the proximal and distal dendritic g(T) was up to 1.8- and 1. 2-fold larger, respectively, than g(T(s)) produced accurate simulations of the delta oscillation (and its phase resetting curves) as well as the synaptic potentials without need of a concomitant increase in proximal or distal dendritic g(K). Furthermore, an increase in proximal dendritic g(T) and g(K) of up to fourfold their respective value on the soma resulted in acceptable simulation results.Addition of dendritic Na(+) channels to the uniformly or non-uniformly distributed somato-dendritic T-type Ca(2+) and K(+) channels did not further improve the overall qualitative and quantitative accuracy of the simulations, except for increasing the number of action potentials in bursts elicited by low-threshold Ca(2+) potentials. Dendritic I(h) failed to produce a marked effect on the simulated delta oscillation and the excitatory postsynaptic potential.In the presence of uniform and non-uniform dendritic g(T) and g(K), the delta oscillation propagated from the soma to the distal dendrites with no change in frequency and voltage-dependence, though the dendritic action potential amplitude was gradually reduced towards the distal dendrites. The amplitude and rising time of the simulated retinal excitatory postsynaptic potential were only slightly decreased during their propagation from their proximal dendritic site of origin to the soma or the distal dendrites.These results indicate that a multi-compartment model with passive dendrites cannot fully reproduce the experimental activity of thalamocortical neurons, while both uniform and non-uniform somato-dendritic g(T) and g(K) distributions are compatible with the properties of the delta oscillation and the retinal excitatory postsynaptic potential recorded in vitro from the soma of these neurons. Furthermore, by predicting the existence of backpropagation of low-threshold Ca(2+) potentials and retinal postsynaptic potentials up to the distal dendrites, our findings suggest a putative role for the delta oscillation in the dendritic processing of neuronal activity, and support previous hypotheses on the interaction between retinal and cortical excitatory postsynaptic potentials on thalamocortical neuron dendrites.  相似文献   

18.
In layer 2/3 pyramidal neurons of barrel cortex in vivo, calcium ion concentration ([Ca2+]) transients in apical dendrites evoked by sodium action potentials are limited to regions close to the soma. To study the mechanisms underlying this restricted pattern of calcium influx, we combined two-photon imaging of dendritic [Ca2+] dynamics with dendritic membrane potential measurements. We found that sodium action potentials attenuated and broadened rapidly with distance from the soma. However, dendrites of layer 2/3 cells were electrically excitable, and direct current injections could evoke large [Ca2+] transients. The restricted pattern of dendritic [Ca2+] transients is therefore due to a failure of sodium action-potential propagation into dendrites. Also, stimulating subcortical activating systems by tail pinch can enhance dendritic [Ca2+] influx induced by a sensory stimulus by increasing cellular excitability, consistent with the importance of these systems in plasticity and learning.  相似文献   

19.
Understanding the intrinsic membrane properties of juxtaglomerular (JG) cells is a necessary step toward understanding the neural basis of olfactory signal processing within the glomeruli. We used patch-clamp recordings and two-photon Ca(2+) imaging in rat olfactory bulb slices to analyze a long-lasting plateau potential generated in JG cells and characterize its functional input-output roles in the glomerular network. The plateau potentials were initially generated by dendritic calcium channels. Bath application of Ni(2+) (250 microM to 1 mM) totally blocked the plateau potential. A local puff of Ni(2+) on JG cell dendrites, but not on the soma, blocked the plateau potentials, indicating the critical contribution of dendritic Ca(2+) channels. Imaging studies with two-photon microscopy showed that a dendritic Ca(2+) increase was always correlated with a dendritic but not a somatic plateau potential. The dendritic Ca(2+) conductance contributed to boosting the initial excitatory postsynaptic potentials (EPSPs) to produce the plateau potential that shunted and reduced the amplitudes of the following EPSPs. This enables the JG cells to act as low-pass filters to convert high-frequency inputs to low-frequency outputs. The low frequency (2.6 +/- 0.8 Hz) of rhythmic plateau potentials appeared to be determined by the intrinsic membrane properties of the JG cell. These properties of the plateau potential may enable JG cells to serve as pacemaker neurons in the synchronization and oscillation of the glomerular network.  相似文献   

20.
Dendritic properties of turtle pyramidal neurons   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号