首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in priming immune responses to tumor. Interleukin (IL)-23 can act directly on DC to promote immunogenic presentation of tumor peptide in vitro. Here, we evaluated the combination of bone marrow-derived DC and IL-23 on the induction of antitumor immunity in a mouse intracranial glioma model. DCs can be transduced by an adenoviral vector coding single-chain mouse IL-23 to express high levels of bioactive IL-23. Intratumoral implantation of IL-23-expressing DCs produced a protective effect on intracranial tumor-bearing mice. The mice consequently gained systemic immunity against the same tumor rechallenge. The protective effect of IL-23-expressing DCs was comparable with or even better than that of IL-12-expressing DCs. IL-23-transduced DC (DC-IL-23) treatment resulted in robust intratumoral CD8(+) and CD4(+) T-cell infiltration and induced a specific TH1-type response to the tumor in regional lymph nodes and spleen at levels greater than those of nontransduced DCs. Moreover, splenocytes from animals treated with DC-IL-23 showed heightened levels of specific CTL activity. In vivo lymphocyte depletion experiments showed that the antitumor immunity induced by DC-IL-23 was mainly dependent on CD8(+) T cells and that CD4(+) T cells and natural killer cells were also involved. In summary, i.t. injection of DC-IL-23 resulted in significant and effective systemic antitumor immunity in intracranial tumor-bearing mice. These findings suggest a new approach to induce potent tumor-specific immunity to intracranial tumors. This approach may have therapeutic potential for treating human glioma.  相似文献   

3.
PURPOSE: To evaluate the feasibility and safety of intratumoral injection of an adenoviral vector encoding human interleukin-12 genes (Ad.IL-12) and secondarily, its biologic effect for the treatment of advanced digestive tumors. PATIENTS AND METHODS: Ad.IL-12 was administered in doses ranging from 2.5 x 10(10) to 3 x 10(12) viral particles, to seven cohorts of patients with advanced pancreatic, colorectal, or primary liver malignancies. Patients were thoroughly assessed for toxicity, and antitumor response was evaluated by imaging techniques, tumor biopsy, and hypersensitivity skin tests. Patients with stable disease and no serious adverse reactions were allowed to receive up to 3 monthly doses of Ad.IL-12. RESULTS: Twenty-one patients (nine with primary liver, five with colorectal, and seven with pancreatic cancers) received a total of 44 injections. Ad.IL-12 was well tolerated, and dose-limiting toxicity was not reached. Frequent but transient adverse reactions, including fever, malaise, sweating, and lymphopenia, seemed to be related to vector injection rather than to transgene expression. No cumulative toxicity was observed. In four of 10 assessable patients, a significant increase in tumor infiltration by effector immune cells was apparent. A partial objective remission of the injected tumor mass was observed in a patient with hepatocellular carcinoma. Stable disease was observed in 29% of patients, mainly those with primary liver cancer. CONCLUSION: Intratumoral injection of up to 3 x 10(12) viral particles of Ad.IL-12 to patients with advanced digestive malignancies is a feasible and well-tolerated procedure that exerts only mild antitumor effects.  相似文献   

4.
Bone marrow-derived dendritic cells (BM-DCs) retrovirally transduced with genes encoding murine interleukin (IL)-12 stably expressed bioactive IL-12 protein at high levels. Intratumoral injection with IL-12 gene-modified BM-DCs resulted in regression of day 7 established weakly immunogenic tumors (MCA205, B16, and D122). This antitumor effect was substantially better than that of IL-12-transduced syngeneic fibroblasts or nontransduced BM-DCs. Furthermore, intratumoral injection with IL-12-transduced dendritic cells (DCs) induced specific TH1-type responses to the tumor in regional lymph nodes and spleen at levels greater than those of IL-12-transduced fibroblasts or nontransduced BM-DCs. Trafficking studies confirmed that intratumorally injected IL-12-transduced DCs, but not fibroblasts, could migrate to the draining lymph node to the same extent as nontransduced BM-DCs. This strategy designed to deliver genetically modified DCs to tumor sites is associated with systemic and therapeutic antitumor immunity and is an alternative approach to those that use delivery of DCs loaded with tumor antigen. These results support the clinical application of IL-12 gene-modified DCs in patients with cancer.  相似文献   

5.
PURPOSE: We investigated whether an armed viral platform, where lytic property of a viral infection is coupled to viral-mediated delivery of therapeutic genes, could increase the therapeutic potential of a viral-based therapy. EXPERIMENTAL DESIGN: We generated interleukin (IL)-12-expressing oncolytic adenovirus (YKL-IL-12) and IL-12- and B7-1-expressing (YKL-IL12/B7) oncolytic adenovirus. Therapeutic efficacy of these newly engineered adenoviruses was then evaluated in vivo using an immunocompetent mouse bearing murine melanoma B16-F10 tumors. Overall survival was assessed with the Kaplan-Meier method. The induction of immune cell cytotoxicity was assessed by CTL assay, IFN-gamma enzyme-linked immunospot assay, and immunohistochemical studies. RESULTS: YKL-IL12/B7 oncolytic adenovirus, expressing both IL-12 and B7-1, showed a higher incidence of complete tumor regression compared with the analogous oncolytic adenovirus, YKL-1, or IL-12-expressing, YKL-IL12. Significant survival advantage was also seen in response to YKL-IL12/B7. Moreover, IL-12 and IFN-gamma levels produced in tumors treated with YKL-IL12/B7 was significantly greater than those treated with YKL-IL12. The enhanced survival advantage was mediated by the induction of immune cell cytotoxicity. In agreement with these results, massive infiltration of CD4(+) and CD8(+) T cells into tissues surrounding the necrotic area of the tumor was observed following in situ delivery of YKL-IL12/B7. CONCLUSION: Combination of oncolysis and the enhancement of antitumor immune response by oncolytic adenovirus expressing both IL-12 and B7-1 elicits potent antitumor effect and survival advantage.  相似文献   

6.
CONSTRUCTIONOFTHEDICISTRONICADENOVIRUSVECTOREXPRESSINGBIOACTIVEHUMANINTERLEUKIN12ZhangWeiping章卫平CaoXuetao曹雪涛HirofumiHamad...  相似文献   

7.
BACKGROUND: Interleukin 12 (IL-12) is a proinflammatory cytokine with antitumor activity. Plasmid-based intratumoral gene therapy for treating malignancy with IL-12 or other genes is safe, inexpensive, and simple to carry out. However, effective delivery methods for injecting DNA plasmid into a tumor to generate therapeutic levels of gene product are lacking. To overcome this obstacle, we used electroporation to deliver the IL-12 gene intratumorally in a murine squamous cell carcinoma (SCC) model, SCCVII. METHODS: Plasmids with or without mouse IL-12 gene were injected into SCCVII tumors of C3H/HeJ mice (n = 5 per group). Electric pulses were then applied to the tumors, a process termed electro-gene therapy. The first treatment was administered when the tumor reached 4-6 mm in diameter, and the second treatment followed a week later. The tumor size, survival, and ability to generate systemic antitumor memory were assessed at various time intervals. Changes in gene expression were measured using northern blot analysis, and vessel density and T-cell infiltration were examined by immunostaining. The results were analyzed by two-sided Student's t tests. RESULTS: Electroporation of 20 microg or 40 microg of IL-12 DNA plasmid eradicated tumors in 40% of mice (P =.031 and.022, respectively). A total of six mice from two separate experiments with regressed tumors were challenged with homologous SCCVII tumor cells multiple times; three of six mice showed no tumor growth for more than 11 months and thus indicated the generation of antitumor memory in these mice. IL-12 electro-gene therapy was associated with increased expression of IL-12, interferon-gamma, monokine induced by interferon-gamma, and interferon-inducible protein 10. IL-12 electro-gene therapy was also associated with decreased vessel density and increased infiltration of CD8(+) T cells after the second administration (P =.02 and.03, respectively). CONCLUSION: IL-12 electro-gene therapy appears to be effective in reducing tumor growth by triggering both antiangiogenic effects and an immune response. The antitumor memory was seen to last more than 11 months. Because IL-12 electro-gene therapy is easy to administer and is effective, it could potentially be applicable in the treatment of electrode-accessible malignancies, such as head and neck SCCs.  相似文献   

8.
An alternative technology for the local and sustained delivery of cytokines to tumors for cancer immunotherapy was evaluated and shown here to induce tumor regression, suppression of metastasis, and development of systemic antitumor immunity. Treatment of tumor-bearing BALB/c mice with a single intratumoral injection of biodegradable polylactic acid microspheres loaded with recombinant interleukin-12 (IL-12) promoted complete regression of the primary tumor and prevented the metastatic spread to the lung. Mice that experienced tumor regression after being treated rejected a subsequent challenge with live tumor cells, which indicated the development of systemic antitumor immunity. In situ tumor vaccination, ie., injection of IL-12 microspheres into existing tumors, was superior to vaccination of mice with mixtures of tumor cells (live or irradiated) and IL-12 microspheres in inducing systemic antitumor immunity. The sustained release of IL-12 from the microspheres was superior to bolus injection of free IL-12, and intratumoral delivery of microspheres was more effective than other routes of administration. These studies establish the utility of biodegradable polymer microspheres as a clinically feasible alternative to systemic cytokine therapy and cytokine gene-modified cell vaccines for the treatment of neoplastic disease.  相似文献   

9.
Our group recently described a novel two-step Fc(gamma1) fusion protein transfer method, which entails the docking of Fc(gamma1) fusion proteins onto cells precoated with chemically palmitated protein A (pal-prot A). In the present study, we have adapted this protein transfer method, originally used in an ex vivo context, for in situ tumor cell engineering, and in so doing, we have evaluated its utility for the induction of antitumor immunity via combinatorial costimulator protein transfer on to tumor cell surfaces. The feasibility of "painting" cells with preformed conjugates of a murine B7-1 costimulator derivative, B7-1.Fc(gamma1), and pal-prot A in a single step was first established ex vivo. Next, B7-1.Fc(gamma1):pal-prot A transfer was accomplished in vivo by directly injecting the preformed conjugates into highly aggressive L5178Y-R lymphomas grown intradermally in syngeneic mice. The presence of cell surface-associated B7-1 epitopes on cells of the injected tumors was documented by flow cytometric analysis of cells recovered subsequently from the injected tumors. B7-1.Fc(gamma1), along with Fc(gamma1) fusion protein derivatives of three additional costimulators (Fc(gamma1).4-1BBL, CD48.Fc(gamma1), and Fc(gamma1).CD40L) geared toward a variety of immune effectors, were together preconjugated with pal-prot A and injected directly into tumor beds. Significantly, this "tetra-costimulator" combination, delivered intratumorally, induced complete tumor regression in approximately 45% of treated mice, whereas control injections of pal-prot A alone had no therapeutic effect. Furthermore, there was evidence for systemic antitumor immunity in that tumor-specific CTLs were detected in spleens recovered from cured mice, and these mice were uniformly protected against tumor rechallenge at distant tumor sites. Hence, combinatorial costimulator transfer, coupled to intratumoral delivery, may have special advantages for the induction of antitumor immunity.  相似文献   

10.
11.
Intratumoral (i.t.) injections of an adenovirus encoding the human interleukin-2 (IL-2) under the control of the RSV (Ad-pRSV-IL-2) or CMV (Ad-pCMV-IL-2) promoter were performed in established mastocytoma P815 tumors in B6D2 mice. Both early and long-term survival were found increased in mice treated with Ad-pCMV-IL-2 as compared with those obtained with Ad-pRSV-IL-2: tumor regression was observed in 30--50% of mice for the former and 5--15% for the latter. Difference in efficacy between the two vectors was directly correlated to the amount of IL-2 produced i.t. between 24 and 48 hours postinjection, which reached 10--20 ng/tumor for Ad-pCMV-IL-2 and 0.3--0.5 ng/tumor for Ad-pRSV-IL-2. In both cases, expression in the tumor was clearly detectable for a period of 7--10 days postinjection. Serum IL-2 was not detectable in mice treated with Ad-pRSV-IL-2, whereas expression peaked at a total of 1--2 ng at 24 hours but declined very rapidly in the Ad-pCMV-IL-2-treated group. Constant production of IL-2 inside the tumor was necessary for successful therapy because i.t. injections of recombinant IL-2 at levels up to 1 microg for five consecutive days did not lead to antitumoral activity. Evidence of induced systemic immunity following Ad-pCMV-IL-2 injections was obtained from rechallenge experiments in which tumor-free mice after treatment rejected a subsequent contralateral injection of a lethal dose of P815 tumor cells and from the observation that regression of nontreated tumors occurred in animals bearing bilateral tumors that were treated i.t. in a single tumor with Ad-pCMV-IL-2. P815-specific cytotoxic T lymphocytes (CTL) were found specifically in spleen cells from cured mice or rechallenged mice but not in control mice. Interestingly, limiting dilution analysis of anti-P815 CTL precursor (CTLp) frequency revealed a significant increase in mice cured of their tumor as compared to that obtained in naive mice or control mice treated or not with Ad-IL-2 but whose tumor was growing. In vivo depletion of T-cell subsets, as well as natural killer cells at the time of i.t. injections with Ad-pCMV-IL-2, demonstrated that both CD8(+) T cells and natural killer cells, but not CD4(+) T cells, were required for successful therapy. Finally, mice preimmunized with Ad-null viruses were severely compromised in their capacity to eradicate established P815 tumors after Ad-pCMV-IL-2 therapy, at least when neutralizing antibody titers reached a critical level.  相似文献   

12.
The antitumor effects of biological response modifiers (BRMs) in an experimental mouse model using a double grafted tumor system were analyzed. Some BRMs prevented metastases by utilizing the anti-tumor immunological cascade reactions, which activate macrophages in the body. The following BRMs were analyzed: PSK was a hot water extract of cultured mycelia from Coliolus versicolor and a protein bound beta-glucan. Lentinan was purified from fruit bodies of Lentinus erodes and is a beta-glucan. The agaricus preparation was extracted from fruit bodies of Agaricus blazei and a protein-bound alpha-, beta-glucan. The M2 fraction was extracted from mycelia of Tricholoma matsutake and was a protein bound alpha-glucan. M1 fraction was purified from mycelia of T. matsutake and was an alpha-glucan. PSK cured both primary and metastatic tumors in the double grafted tumor system. Lentinan did not inhibit the growth of either primary or metastatic tumors. Agaricus preparation cured a primary tumor and inhibited the growth of a metastatic tumor. The M2 fraction prepared from Matsutake inhibited the growth of both primary and metastatic tumors. The M1 fraction did not inhibit either primary or metastatic tumors. Immunosuppressive acidic protein (IAP) is produced by activated macrophages. The PSK, Agaricus preparation and M2 fraction of the Matsutake preparation induced IAP but the lentinan and M1 fraction did not.  相似文献   

13.
Interleukin-10 (IL-10) is a T helper type 2 (Th2) cytokine that suppresses Th1-mediated, cell-mediated immune responses and reciprocally enhances antibody-mediated responses. Previous studies, however, demonstrated that forced expression of the IL-10 gene in tumor cells could unexpectedly produce antitumor effects. We then examined whether tumor-derived IL-10 could modulate systemic immune responses. Murine colon carcinoma (Colon 26) cells that were retrovirally transduced with the murine IL-10 gene (Colon 26/IL-10) were inoculated in syngeneic immunocompetent or T cell-defective nude mice. Growth of Colon 26/IL-10 tumors was augmented in immunocompetent and, to less extent, in nude mice compared with that of wild-type tumors developed in respective mice. Growth of wild-type tumors was accelerated to the same level as that of Colon 26/IL-10 tumors when wild type and Colon 26/IL-10 cells were respectively inoculated in different flanks of the same immunocompetent mice. This enhanced growth of wild-type tumors was not observed in nude mice. Immunocompetent mice that had rejected IL-2- or IL-12-secreting Colon 26 cells developed protective immunity and became completely resistant to wild-type Colon 26 cells subsequently challenged. However, some of the mice that had rejected IL-2 or IL-12 producers developed Colon 26/IL-10 tumors inoculated thereafter. The present study showed that production of IL-10 from tumor cells impaired T cell- and non-T cell-mediated systemic antitumor immunity in hosts.  相似文献   

14.
15.
As they should enhance tumor-specific antigen presentation by dendritic cells, tumor cell lines genetically modified to express CD154 molecules have been used in an attempt to induce protective antitumor immunity. Two murine models were used: the major histocompatibility complex (MHC) class I negative melanoma B16F10 and the MHC class I positive mammary adenocarcinoma TS/A. CD154 or mock-transfected B16F10 or TS/A cells were injected subcutaneously into H-2-compatible B6D2 mice. CD154 expression by tumor cells induced a complete rejection (in the TS/A model) or a striking reduction (in the B16F10 model) of modified tumors growth, but also a significant protection against the growth of mock tumor cells injected simultaneously, either mixed with the CD154-expressing tumor cells, or in the other flank of mice. Thirty days after CD154-expressing tumor rejection, splenic lymphocytes from surviving tumor-free mice were able to inhibit tumor proliferation in vitro and significant amounts of IFN-gamma were detected in the sera of these mice. Growth kinetics of mock and CD154-expressing tumors in immunocompetent versus nude mice suggest that T lymphocytes and natural killer cells responses are implicated in this antitumor immunity. The injection of CD154-expressing tumor cell induced an antitumor protective response, both locally and distant from the injection site. The effect was most pronounced in MHC class I expressing TS/A tumor model.  相似文献   

16.
Malignant melanoma is one of the most lethal and aggressive human malignancies. Suppressed apoptosis and extraordinary invasiveness are the distinctive features that contribute to malignant melanoma. The alkylating agent temozolomide (TMZ) is one of the most effective single chemotherapeutic agents for patients with malignant melanoma, but resistance develops quickly and with high frequency. We constructed a dual-regulated oncolytic adenovirus expressing interleukin 24 (IL-24) gene (Ki67-ZD55-IL-24) by utilizing the Ki67 promoter to replace the native viral promoter of E1A gene. We investigated whether a combination of Ki67-ZD55-IL-24-mediated gene virotherapy and chemotherapy using TMZ produces increased cytotoxicity against human melanoma cells via the induction of apoptosis. Our data indicate that this novel strategy thus holds promising potentials for further developing an effective approach to treat malignant melanoma.  相似文献   

17.
ONYX-015 is an E1B-deleted adenovirus that replicates in and causes lysis of p53-deficient cancer cells selectively. To study the efficiency of intratumoral (i.t.) spread by ONYX-015, we infected specific fractions of tumor cells (two p53-deficient tumor lines and one p53 functional line) in vitro before subcutaneous inoculation into nude mice. Infection of as few as 5% of p53- tumor cells prevented tumor development in all cases; infection of 1% of p53- tumor cells resulted in significant growth inhibition but did not prevent tumor formation. In contrast, infection with ONYX-015 had no significant effect on p53+ tumor formation. These data suggested that replication-dependent tumor cell lysis and spread was occurring, but that tumor destruction might be improved by increasing i.t. virus distribution. Two treatment parameters were then varied to determine whether virus distribution, and consequently efficacy, could be improved. Divided i.t. injections of virus were more efficacious than a single injection of the same total dose. Likewise, increasing the volume of the viral suspension for i.t. injection allowed better distribution within the tumor mass and increased efficacy. These results have implications for the treatment of cancer patients with viral agents.  相似文献   

18.
Interleukin 2 (IL-2) expressing plasmid and interleukin 6 (IL-6)-expressing plasmid were encapsulated in liposome and administrated intratumoraly into tumor-bearing mice 4 days after subcutaneous inoculation of B16F10 melanoma cells. The results showed that treatment of tumor-bearing mice with IL-2 gene or IL-6 gene transfer inhibited the growth of subcutaneous tumor and prolonged the survival of tumor-bearing mice significantly when compared with the treatment of PBS or control gene transfer mediated by liposome (P < 0.01). Combined transfer of IL-2 gene and IL-6 gene was found to elicit inhibitory effects on the growth of B16F10 tumor more significantly and prolonged the survival period of tumor-bearing mice more obviously. We investigated the local immunity in tumor microenvironment and found that IL-2 and IL-6 gene transfer could significantly increase the expression of lymphocyte function-associated antigen-1 on tumor infiltrating lymphocytes (TIL) and MHC-I molecule on tumor cells freshly isolated from the tumor mass. The NK and CTL activity of TIL increased markedly after the combined transfer of these two cytokine genes. We also observed the systemic antitumor immune response in the tumor-bearing mice and demonstrated that NK and CTL activity of splenocytes and the production of IL-2, tumor necrosis factor and interferon-gamma from splenocytes increased obviously in mice after the combined transfer of IL-2 and IL-6 gene. In conclusion, local and systemic antitumor immunity of the tumor-bearing host could be induced efficiently after the combined gene transfer. The enhanced specific and non-specific antitumor immunity might be responsible for the more potent antitumor effects of the combined gene therapy.  相似文献   

19.
20.
Pre-existing anti-adenovirus neutralizing antibodies (AdNAbs) are a major barrier in clinical gene therapy using adenovirus vectors; however, the transduction profile of adenovirus vectors in the presence of AdNAbs following intratumoral injection has not been fully examined, although such vectors are often intratumorally injected in clinical studies. In this study, we evaluated the correlation between the titer of AdNAbs in the serum and the transduction profiles in the tumor and the liver following intratumoral administration into mice possessing various titers of AdNAbs. Adenovirus vector-mediated transduction in the tumor was inhibited by AdNAbs; however, when the titer of AdNAbs was less than 200, the levels of inhibition in the transduction efficiencies within the tumor ranged from approximately 2- to 100-fold. A more than 2500-fold reduction of adenovirus vector-mediated transduction was found in most of the mice when the titers of AdNAbs were >200. On the other hand, the transduction efficiencies in the liver were largely reduced almost to the levels of the mock-transduced mice even at the low titers of AdNAbs. These results provide crucial information for the clinical use of adenovirus vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号