首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
 In our experience, patients with neuroblastoma who undergo transplantation with CD34+ cells following high-dose chemotherapy have prolonged delays in platelet recovery. In vitro expansion of megakaryocyte (MK) cells may provide a complementary transplant product able to enhance platelet production in the recipient. We investigated the ability of a combination of various hematopoietic growth factors to generate ex vivo MK progenitors. Immunoselected CD34+ cells from peripheral blood stems cells (PBSCs) were cultured in media with or without serum, supplemented by IL-3, IL-6, IL-11, SCF, TPO, Flt-3 ligand, and MIP-1α. In terms of MK phenotypes, we observed a maximal expansion of CD61+, CD41+, and CD42a of 69-, 60-, and 69-fold, respectively, i.e., 8–10 times greater than the expansion of total cell numbers. Whereas the absolute increment of CD34+ cells was slightly elevated (fourfold) we showed increases of 163-, 212-, and 128-fold for CD34+/CD61+, CD34+/CD41+, and CD34+/CD42a+ cells, respectively. We obtained only a modest expansion of CFU-MKs after only 4 days of culture (fourfold) and similar levels of CFU-MKs were observed after 7 days (fivefold). Morphology and immunohistochemistry CD41+ analyses confirmed expansion of a majority of CD41+ immature cells on days 4 and 7, while on day 10 mature cells began to appear. These results show that primarily MK progenitors are expanded after 4 days of culture, whereas MK precursor expansion occurs after 7 days. When we compared the two culture media (with and without serum) we observed that increases of all specific phenotypes of the MK lineage were more elevated in serum-free culture than in medium with serum. This difference was especially marked for CD34+/CD61+ and CD34+/CD41+ (163 vs 42 and 212 vs 36, respectively). We contaminated CD34+ cells with a neuroblastoma cell line and we observed no expansion of malignant cells in our culture conditions (RT-PCR for tyrosine hydroxylase positive at day 4 and negative at day 7). With our combination of hematopoietic growth factors we are able to sufficiently expand ex vivo MK late progenitor cells to be used as complementary transplant products in neuroblastoma patients who undergo transplantation with CD34+ cells. It is possible that these committed MK late progenitors could accelerate short-term platelet recovery in the recipient until more primitive progenitor cells have had time to engraft. Received: February 1, 1999 / Accepted: June 1, 1999  相似文献   

3.
In a search for a mechanism to explain the impaired growth of progenitor cells in patients with myelodysplastic syndromes (MDS), marrow CD34+ cells were purified up to 94.9% +/- 4.2% for normal individuals and 88.1% +/- 17.6% for MDS patients, using monoclonal antibodies and immunomagnetic microspheres (MDS CD34+ cells). Phenotypic subpopulations of these CD34+ cells were analyzed for CD38, HLA-DR, CD33, CD13, CD14, CD41 and CD3 plus CD19, in association with proliferative and differentiative capacities. The 15 studies performed included 12 MDS patients. Coexpression rate of CD13 significantly increased in the MDS CD34+ cell population with a value of 91.4% +/- 11.6% and ranging from 60.3% to 100%, and exceeded 99% in four studies, whereas that of normal CD34+ cells was 49.9% +/- 15.8%, ranging from 28.2% to 70.1% (P < .001). Coexpression rate of CD38, HLA-DR, CD33, CD14, and CD3 plus CD19 in MDS CD34+ cells did not significantly differ from that of normal CD34+ cells. The total number of colonies and clusters grown from 100 normal marrow CD34+ cells was 40.4 +/- 8.6, the range being from 27.2 to 50.3; this varied in MDS marrow CD34+ cells with a value of 34.0 +/- 28.7, the range being 0 to 95.9. The lineage of colonies and clusters promoted by MDS marrow CD34+ cells was predominantly committed to nonerythroid with impaired differentiation in 13 of 15 studies (87%). CD13 is first expressed during hematopoiesis by colony-forming unit granulocyte-macrophage and is absent in erythroid progenitors. Therefore, this study provides direct evidence for the lineage commitment of MDS CD34+ cells to nonerythroid with impaired differentiation and explains the mechanism of nil or low colony expression of MDS progenitor cells to erythroid lineage.  相似文献   

4.
S Serke  D Huhn 《Blood》1992,80(6):1628-1630
  相似文献   

5.
To further characterize hematopoietic "replicative stress" induced by bone marrow transplantation (BMT), the cell-cycle status of CD90+/- subsets of marrow CD34+ cells obtained 2 to 6 months after transplantation from 11 fully chimeric recipients was examined. Cycling profiles, derived by flow cytometry after staining with Hoechst 33342 and pyronin Y, were compared with those of 14 healthy marrow donors. Primitive CD34+CD90+ cells represented a smaller proportion of CD34+ cells in recipients (10% +/- 4% versus 19.6% +/- 5.3% in donors; P <.0001) and were more mitotically active, with the proportion of cells in S/G2/M nearly 4-fold higher than in donors (15.6% +/- 3% and 4.4% +/- 1.6%, respectively; P <.0001). By comparison, there was a modest increase in the proportion of CD34+CD90- progenitors in S/G2/M after BMT (10.9% +/- 1% vs 9.6% +/- 2% in donors; P =.04). Replicative stress after BMT is borne predominantly by cells in a diminished CD34+CD90+ population.  相似文献   

6.
7.
8.
The characteristics of hematopoietic progenitor and stem cell (HPC/HSC) populations in mammals vary according to their ontogenic stage. In humans, HPC/HSCs from umbilical cord blood (CB) are increasingly used as an alternative to HPC/HSCs from adult bone marrow (BM) for the treatment of various hematologic disorders. How the hematopoietic activity of progenitor and stem cells in CB differs from that in adult BM remains unclear, however. We compared CD34+ cells, a hematopoietic cell population, in CB with those in adult BM using phenotypic subpopulations analyzed by flow cytometry, the colony-forming activity in methylcellulose clonal cultures, and the repopulating ability of these cells in NOD/Shi-scid (NOD/SCID) mice. Although the proportion of CD34+ cells was higher in adult BM than in CB mononuclear cells, the more immature subpopulations, CD34+ CD33- and CD34+ CD38- cells, were present in higher proportions in CD34+ CB cells. Clonal culture assay showed that more multipotential progenitors were present in CD34+ CB cells. When transplanted into NOD/SCID mice. CD34+ adult BM cells could not reconstitute human hematopoiesis in recipient BM, but CD34+ CB cells achieved a high level of engraftment, indicating that CD34+ CB cells possess a greater repopulating ability. These results demonstrated that human hematopoiesis changes with development from fetus to adult. Furthermore, CD34+ CB cells contained a greater number of primitive hematopoietic cells, including HSCs, than did adult BM, suggesting the usefulness of CD34+ CB cells not only as a graft for therapeutic HSC transplantation but also as a target cell population for ex vivo expansion of transplantable HSCs and for gene transfer in gene therapy.  相似文献   

9.
BACKGROUND AND OBJECTIVE: The aim of the present study was to evaluate the correlation between the number of CD34+ cells transfused and the duration of hypoplasia, and the relationship between various CD34+ subsets (CD34+/33-; CD34+/38-; CD34+/ HLA-DR-; CD34+/Thy-1+) and engraftment kinetics in a series of patients with breast cancer treated with high doses of thiotepa and melphalan. DESIGN AND METHODS: We treated 42 consecutive patients: 19 in an adjuvant context (>= 4 positive axillary nodes) and 23 for metastatic disease. A combination of thiotepa 600 mg/m(2) and melphalan 140-160 mg/m(2) was administered as the conditioning regimen. All patients received peripheral blood progenitor cells (PBPC) and growth factors for hematopoietic rescue. RESULTS: In univariate analysis, we found a significant relationship between the number of CD34+ cells reinfused and the time to hematologic recovery and the duration of hospital stay. We observed an inverse correlation between the number of CD34+ cells reinfused and the units of platelets transfused. Cox multivariate analysis confirmed that the number of CD34+ cells reinfused is the most effective predictor of time to hematologic recovery. CFU-GM resulted to be a better predictor of the duration of hospitalization. INTERPRETATION AND CONCLUSIONS: We found a significant relationship between the number of PBPC reinfused and the time to hematologic recovery after high doses of thiotepa and melphalan. In our experience, the numbers of subsets of CD34+ cells infused did not give compared additional information to that provided by the total number of CD34+ cells infused.  相似文献   

10.
11.
12.
Link  H; Arseniev  L; Bahre  O; Kadar  JG; Diedrich  H; Poliwoda  H 《Blood》1996,87(11):4903-4909
Pluripotent stem cells of hematopoiesis and lymphopoiesis are among the CD34+ cells in blood or bone marrow. After granulocyte-colony stimulating factor (G-CSF) treatment, 1% to 2% of the mononuclear cells in blood are CD34+ cells, which can be procured by leukapheresis. We investigated the potential of CD34+ blood cells for reconstituting hematopoiesis and lymphopoiesis after allogeneic transplantation. HLA- identical sibling donors of 10 patients with hematologic malignancies were treated with G-CSF (filgrastim), 5 microgram/kg subcutaneously twice daily for 5 to 7 days. CD34+ cells were selected from the apheresis concentrates by immunoadsorption, concomitantly the number of T cells was reduced 100- to 1,000-fold. After transplantation, five patients received cyclosporine A for graft-versus-host disease (GvHD) prophylaxis (group I); five patients additionally received methotrexate (group II). G-CSF and erythropoietin were given to all patients. Mean numbers of 7.45 x 10(6) CD34+ and 1.2 x 10(6) CD3+ cells per kilogram were transplanted. In group I, the median times of neutrophil recovery to 100, 500, and 1,000 per mm3 were 10, 10, and 11 days, respectively. Group II patients reached these neutrophil levels after 10, 14, and 15 days, respectively. Platelet transfusions were administered for a median of 18 days in group I and 30 days in group II, and red blood cells for 9 and 12 days, respectively. Between day 30 and 60, lymphocytes reached levels of 353 +/- 269 cells per mm3. The median grades of acute GvHD were III in group I and I in group II. Two patients in group I died from acute GvHD. Two leukemic relapses occurred in group II. Complete and stable donor hematopoiesis was shown in all patients with a median follow up of 370 (45 to 481) days. Allogeneic blood CD34+ cells can successfully reconstitute hematopoiesis and lymphopoiesis. Reduction of T cells by CD34+ blood cell enrichment and cyclosporine A alone might not be sufficient for prophylaxis of severe acute GvHD.  相似文献   

13.
14.
The transmembrane glycoprotein CD34 is expressed on human hematopoietic stem cells and committed progenitors in the bone marrow, and CD34-positive selection currently is used to isolate bone marrow repopulating cells in clinical transplantation protocols. Recently, CD34- hematopoietic stem cells were described in both humans and mice, and it was suggested that CD34+ murine bone marrow cells may lack long-term reconstituting ability. In this study, the long-term repopulating ability of CD34+Lin- vs CD34-Lin- cells was compared directly using syngeneic murine bone marrow transplantation. Highly purified populations of CD34+Lin- and CD34-Lin- cells each are able to reconstitute bone marrow, confirming that both populations contain hematopoietic stem cells; however, the number of hematopoietic stem cells in the CD34+Lin- fraction is approximately 100-fold greater than the number in the CD34-Lin- fraction. In competitive repopulation experiments, CD34+ stem cells are better able to engraft the bone marrow than are CD34- cells. CD34+Lin- cells provide both short- and long-term engraftment, but the CD34-Lin- cells are capable of only long-term engraftment. Ex vivo, the CD34+Lin- stem cells expand over 3 days in culture and maintain the ability to durably engraft animals in a serial transplant model. In contrast, when CD34-Lin- cells are cultured using the same conditions ex vivo, the cell number decreases, and the cells do not retain the ability to repopulate the bone marrow. Thus, the CD34+Lin- and CD34-Lin- cells constitute two functionally distinct populations that are capable of long-term bone marrow reconstitution.  相似文献   

15.
16.
OBJECTIVE: We investigated whether the expression of CD11b on precursors derived in vitro from CD34+ hematopoietic stem cells was related to their ability to generate CD11b- and CD11b+ Langerhans dendritic cells (LC). METHODS: Human CD34+ cells purified from cord blood were cultured with FLT3 ligand, thrombopoietin, and stem cell factor (FTS) for 2 weeks, analyzed, and sorted by FACS. Sorted fractions were cultured as above, or differentiated into LC with GM-CSF, IL-4, and TGF-beta1 (G4-TGF) for 6 days. The capacity of LC to internalize langerin and dextran was assessed. RESULTS: Ex vivo, human CD34+ cells were CD11b- and mostly CLA+. After 2 weeks of culture with FTS, CD34- CLA- CD11b- and CD34- CLA- CD11b+ cells emerged. CD11b- cells were the most ancestral because they were the only ones to proliferate with FTS, and constantly generated CD11b+ cells. Both CD11b- and CD11b+ sorted cells generated E-cadherin+ langerin+ LC after incubation with G4-TGF. The former fraction contained 46% +/- 15% of E-cadherin+ and 10% +/- 5% of langerin+ cells, whereas in the latter fraction these values reached respectively 66% +/- 23% and 30% +/- 16% (mean +/- SD, n = 7, p < 0.056). Looking at functional properties, CD11b- and CD11b+ LC were similar in terms of langerin and dextran endocytosis. By contrast, only CD11b+ LC internalized fluorescent LPS. CONCLUSION: Human CD34+ CD11b- cells differentiate in FTS culture into a CD34- CD11b- precursor that in turn generates CD34- CD11b+ cells. These cells are enriched in LC precursors compared to CD34- CD11b- cells. Both CD11b- and CD11b+ LC are generated in vitro, and each fraction may assume different functions in inflammatory situations.  相似文献   

17.
The purified CD34(+) cell fraction has been used for hematopoietic stem cell transplantation since they were demonstrated to have long-term reconstituting ability. Therefore, the potential effects of CD34(-) stem cells on the clinical course have been a major concern in recipients of CD34(+)-selected transplantation. To address this concern, we used an in vitro assay to determine whether transplant recipients have CD34(-)precursor population. Lin(-)CD34(-) cells were isolated from bone marrow cells in 11 transplant recipients including four CD34-selected transplantations, six standard bone marrow transplantations, and one T cell-depleted marrow transplantation. The frequency of the Lin(-)CD34(-) population in four CD34-enriched transplantation recipients was not different from those of normal donors or recipients of other modes of transplantation: 0.96 +/- 1.01% (mean +/- s.d., n = 4), 0.45 +/- 0.16% (n = 6), and 0.66 +/- 0.59% (n = 7), respectively. However, the Lin(-)CD34(-)population obtained from the recipients of CD34-enriched transplantation acquired neither CD34 expression nor colony-forming activity after 7 days of culture, whereas the cells from all the normal individuals and standard BMT recipients were able to differentiate into CD34(+) cells accompanied by the emergence of colony-forming activity.We conclude that recipients of CD34-enriched transplantation appear to have defects in their CD34(-) precursor population. The clinical significance of these defects will be determined in a life-long follow-up of these patients.  相似文献   

18.
In view of the clinical and biological significance of leukemic heterogeneity we studied the efficacy of spontaneous apoptosis and cell cycle distribution in CD34+ and CD34 - leukemic subpopulations. Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) leukemic samples with CD34 heterogeneous expression were separated into CD34+ and CD34 - fractions using fluorescence activated cell sorting. Cell cycle distribution, and apoptosis of the sorted subpopulations were estimated. CD34+ leukemic subpopulations had lower ability to apoptosis than that of CD34 - fractions in 6 out of 8 ALL samples and in 4 out of 5 AML samples. CD34+ fractions showed a higher percentage of proliferating cells compared to CD34 - cells in T-lineage ALL. These differences may lead to a more resistant phenotype of one of the subpopulations and reappearance this population in relapse.  相似文献   

19.
Young  JC; Bruno  E; Luens  KM; Wu  S; Backer  M; Murray  LJ 《Blood》1996,88(5):1619-1631
Thrombopoietin (TPO) or MpI ligand is known to stimulate megakaryocyte (MK) proliferation and differentiation. To identify the earliest human hematopoietic cells on which TPO acts, we cultured single CD34+Thy- 1+Lin- adult bone marrow cells in the presence of TPO alone, with TPO and interleukin-3 (IL-3), or with TPO and c-kit ligand (KL) in the presence of a murine stromal cell line (Sys1). Two distinct growth morphologies were observed: expansion of up to 200 blast cells with subsequent differentiation to large refractile CD41b+ MKs within 3 weeks or expansion to 200-10,000 blast cells, up to 25% of which expressed CD34. The latter blast cell expansions occurred over a 3- to 6-week period without obvious MK differentiation. Morphological staining, analysis of surface marker expression, and colony formation analysis revealed that these populations consisted predominantly of cells committed to the myelomonocytic lineage. The addition of IL-3 to TPO-containing cultures increased the extent of proliferation of single cells, whereas addition of KL increased the percentage of CD34+ cells among the expanding cell populations. Production of multiple colony- forming unit-MK from single CD34+Thy-1+Lin- cells in the presence of TPO was also demonstrated. In limiting dilution assays of CD34+Lin- cells, TPO was found to increase the size and frequency of cobblestone areas at 4 weeks in stromal cultures in the presence of leukemia inhibitory factor and IL-6. In stroma-free cultures, TPO activated a quiescent CD34+Lin-Rhodamine 123lo subset of primitive hematopoietic progenitor cells into cycle, without loss of CD34 expression. These data demonstrate that TPO acts directly on and supports division of cells more primitive than those committed to the MK lineage.  相似文献   

20.
Data were analyzed on 178 consecutive patients (median age 43 years) who underwent autologous blood stem cell transplantation (ABSCT) at a single institution to determine if CD34+ subsets (CD34+38-, CD34+33-, CD34+33+, CD34+41+) or various clinical factors affect hematopoietic engraftment independent of the total CD34+ cell dose/kg. Using Cox proportional hazards models, the factors independently associated with rapid neutrophil engraftment were higher CD34+ dose/kg, use of G-CSF post-ABSCT, and conditioning regimen (single-agent melphalan +/- TBI slower). Factors independently associated with rapid platelet engraftment were higher CD34+ cell dose/kg, higher ratio of CD34+33-/total CD34+ cells infused, conditioning regimen (mitoxantrone, vinblastine, cyclophosphamide faster), and no CD34+ cell selection of the autograft. The CD34+ cell selection process seemed to deplete CD34+41+ cells to a greater extent than total CD34+ cells which may explain our observation that it resulted in slower platelet engraftment. In conclusion, the total CD34+ dose/kg was a better predictor of hematopoietic engraftment following ABSCT than the dose of any CD34+ subset. Platelet engraftment, however, was also influenced by the ratio of CD34+33-/total CD34+ cells for unmanipulated autografts, and possibly by the CD34+41+ dose for autografts manipulated by CD34+ selection. The use of CD34+ subsets requires further investigation in predicting engraftment of autografts which undergo ex vivo manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号