首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal recessive nonsyndromic sensorineural hearing impairment (ARNSHI) comprises 80% of familial hearing loss cases. Approximately half result from mutations in the connexin 26 (Cx26) gene, GJB2, in Caucasian populations. Heterozygous mutations in GJB2 occasionally co-occur with a deletion of part of GJB6 (connexin 30; Cx30). It is estimated that approximately 1% of deafness is maternally inherited, due to mutations in mitochondrial DNA (mtDNA). Few studies have focused on the frequency of mutations in connexins or mtDNA in African American (AA) and Caribbean Hispanic (CH) admixture populations. In this study, we performed bidirectional sequencing of the GJB2 gene and polymerase chain reaction (PCR) screening for the common GJB6 deletion, as well as PCR/RFLP analysis for three mutations in mtDNA (A1555G, A3243G, A7445G), in 109 predominantly simplex AA and CH individuals. Variations found were a 101T > C (M34T; 1/101 cases), 109G > A (V37I; 1/101), 35delG (mutation; 4/101, (3/4) of non-AA/CH ethnicity), 167delT (mutation; 1/101), 139G > T (mutation; E47X; 1/101 homozygote, consanguineous), -15C > T (1/101), 79G > A (V27I; 9/101), 380G > A (R127H; 4/101; Guyana, India, Pakistan ethnicity), 670A > C (Indeterminate; K224Q; 1/101), 503A > G (novel; K168R; 3/101) and 684C > A (novel; 1/101). All but one of the AA and CH patients had monoallelic variations. There were no hemizygous GJB6 deletions in those with monoallelic GJB2 variations. We also did not identify any patients with the three mutations in mtDNA. Bidirectional sequencing of the GJB2 gene was performed in 187 AA and Hispanic healthy individuals. Our results reveal that GJB2 mutations, GJB6 deletions, and mtDNA mutations may not be significant in these minority admixture populations.  相似文献   

2.
Mutations in the gene for connexin 26, GJB2, are the most common cause of hearing loss in American and European populations, with a carrier rate of about 3%-a rate similar to that for cystic fibrosis. A single mutation, 35delG, is responsible for most of this autosomal recessive hearing loss, DFNB1. A broad spectrum of mutations in GJB2 has been found to be associated with hearing loss, including another deletion mutation, 167delT, which has a carrier rate of about 4% in the Ashkenazi Jewish population. Mutations in GJB2 have also been found to be associated with dominant nonsyndromic hearing loss, DFNA3. Clinical studies have shown that the recessive hearing loss can vary from mild to profound, even within the same sibship. This type of hearing loss is nonsyndromic and is accompanied by normal vision, vestibular responses, and no malformations of the inner ear detectable by computed tomography scanning. Progressive and asymmetrical hearing loss has been noted in some cases, but it accounts for fewer than one-third of the cases of this type of hearing loss. The discovery of mutations in GJB2 that cause hearing loss has profound implications in the early diagnosis of hearing loss in general. The relative ease of diagnosis by genetic testing of Cx26 permits early identification of children with GJB2/DFNB1 hearing loss. This testing, coupled with hearing loss diagnosed by infant auditory brainstem response audiometry, will ensure that hearing-impaired children and their parents receive proper medical, audiologic, genetic, and educational counseling. Am. J. Med. Genet. (Semin. Med. Genet.) 89:130-136, 1999.  相似文献   

3.
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.  相似文献   

4.
Recently, a 342-kb deletion involving GJB6 was associated with autosomal-recessive non-syndromic hearing loss (NSHL) and in combination with a GJB2 mutation with digenic NSHL. This deletion was the second most common mutation causing prelingual NSHL in Spain, and was frequently observed in patients from France and Israel. We screened 393 patients with NSHL being negative or heterozygous for GJB2 mutations for this GJB6 deletion using a multiplex PCR. Most patients were of Austrian (84.2%), and the other patients were of Turkish, Serbian, and Bosnian origin. None of these patients was carrying the deletion in GJB6 indicating that the occurrence of this deletion is restricted to certain populations.  相似文献   

5.
Mutations in the GJB2 gene are the most common cause of prelingual, autosomal recessive, sensorineural hearing loss worldwide. Nevertheless, 10% to 50% of patients with prelingual nonsyndromic deafness only carry one mutation in the GJB2 gene. Recently a large 342 kb deletion named Δ(GJB6‐D13S1830) involving the GJB6 gene was reported in Spanish and French deafness patients, either in a homozygous state or in combination with a monoallelic GJB2 mutation. No data have been reported about the frequency of this mutation in central Europe. Thirteen Czech patients with prelingual nonsyndromic sensorineural deafness carrying only one pathogenic mutation in the GJB2 gene were tested for the presence of the Δ(GJB6‐D13S1830) mutation. One patient with a GJB2 mutation (313del14) also carried the Δ(GJB6‐D13S1830). This is the first reported Czech case, and probably also the first central European case, of prelingual deafness due to mutations involving both the GJB2 and GJB6 genes. In addition, the Δ(GJB6‐D13S1830) was not detected in 600 control chromosomes from Czech individuals with normal hearing. We show that in the Czech Republic the Δ(GJB6‐D13S1830) is not the second most common causal factor in deafness patients heterozygous for a single GJB2 mutation, and that Δ(GJB6‐D13S1830) is very rare in central Europe compared to reports from Spain, France and Israel.  相似文献   

6.
Mutations in the connexin 26 gene (GJB2), which encodes a gap-junction protein and is expressed in the inner ear, have been shown to be responsible for a major part of nonsyndromic hereditary prelingual (early-childhood) deafness in Caucasians. We have sequenced the GJB2 gene in 39 Japanese patients with prelingual deafness (group 1), 39 Japanese patients with postlingual progressive sensorineural hearing loss (group 2), and 63 Japanese individuals with normal hearing (group 3). Three novel mutations were identified in group 1: a single nucleotide deletion (235delC), a 16-bp deletion (176-191 del (16)), and a nonsense mutation (Y136X) in five unrelated patients. The 235delC mutation was most frequently observed, accounting for seven alleles in 10 mutant alleles. Screening of 203 unrelated normal individuals for the three mutations indicated that the carrier frequency of the 235delC mutation was 2/203 in the Japanese population. No mutation was found in group-2 patients. We also identified two novel polymorphisms (E114G and I203T) as well as two previously reported polymorphisms (V27I andV37I). Genotyping with these four polymorphisms allowed normal Japanese alleles to be classified into seven haplotypes. All 235delC mutant alleles identified in four patients resided only on haplotype type 1. These findings indicate that GJB2 mutations are also responsible for prelingual deafness in Japan.  相似文献   

7.
Mutations in the GJB2 (connexin 26, Cx26) gene are the major cause of nonsyndromic hearing impairment in many populations. Genetic testing offers opportunities to determine the cause of deafness and predict the course of hearing, enabling the prognostication of language development. In the current study, we compared severity of hearing impairment in 60 patients associated with biallelic GJB2 mutations and assessed the correlation of genotypes and phenotypes. Within a spectrum of GJB2 mutations found in the Japanese population, the phenotype of the most prevalent mutation, 235delC, was found to show more severe hearing impairment than that of V37I, which is the second most frequent mutation. The results of the present study, taken together with phenotypes caused by other types of mutations, support the general rule that phenotypes caused by the truncating GJB2 mutations are more severe than those caused by missense mutations. The present in vitro study further confirmed that differences in phenotypes could be explained by the protein expression pattern.  相似文献   

8.
Prevalent connexin 26 gene (GJB2) mutations in Japanese   总被引:19,自引:0,他引:19  
The gene responsible for DNFB1 and DFNA3, connexin 26 (GJB2), was recently identified and more than 20 disease causing mutations have been reported so far. This paper presents mutation analysis for GJB2 in Japanese non-syndromic hearing loss patients compatible with recessive inheritance. It was confirmed that GJB2 mutations are an important cause of hearing loss in this population, with three mutations, 235delC, Y136X, and R143W, especially frequent. Of these three mutations, 235delC was most prevalent at 73%. Surprisingly, the 35delG mutation, which is the most common GJB2 mutation in white subjects, was not found in the present study. Our data indicated that specific combinations of GJB2 mutation exist in different populations.  相似文献   

9.
PURPOSE: The aim of the study was to determine the actual GJB2 and GJB6 mutation frequencies in North America after several years of generalized testing for autosomal recessive nonsyndromic sensorineural hearing loss to help guide diagnostic testing algorithms, especially in light of molecular diagnostic follow-up to universal newborn hearing screening. METHODS: Mutation types, frequencies, ethnic distributions, and genotype-phenotype correlations for GJB2 and GJB6 were assessed in a very large North American cohort. RESULTS: GJB2 variants were identified in 1796 (24.3%) of the 7401 individuals examined, with 399 (5.4%) homozygous and 429 (5.8%) compound heterozygous. GJB6 deletion testing was performed in 12.0% (888/7401) of all cases. The >300-kb deletion was identified in only nine individuals (1.0%), all of whom were compound heterozygous for mutations in GJB2 and GJB6. Among a total of 139 GJB2 variants identified, 53 (38.1%) were previously unreported, presumably representing novel pathogenic or benign variants. CONCLUSIONS: The frequency and distribution of sequence changes in GJB2 and GJB6 in North America differ from those previously reported, suggesting a considerable role for loci other than GJB2 and GJB6 in the etiology of autosomal recessive nonsyndromic sensorineural hearing loss, with minimal prevalence of the GJB6 deletion.  相似文献   

10.
Congenital sensorineural hearing loss affects approximately 1/1,000 live births. Mutations in the gene encoding connexin26 (GJB2) have been described as a major cause of genetic nonsyndromic hearing impairment. Additionally, another gap junction gene, connexin30 (GJB6), was found to be responsible for hereditary hearing loss. We have studied 134 patients with severe to profound hearing loss or deafness and 13 patients with mild to moderate nonsyndromic sensorineural hearing loss in order to evaluate the prevalence of connexin26 and connexin30 mutations in Germany. Mutations in the connexin26 gene were found in 30 patients (22%) with profound to severe hearing impairment whereas only one novel single nucleotide polymorphism (396G-->A) in the connexin30 gene was detected. Among the 13 patients with mild to moderate hearing loss neither mutations in the connexin26 nor in the connexin30 gene could be detected. These results demonstrate that mutations in the connexin26 gene are also a frequent cause of hereditary non-syndromic hearing loss in Germany. Therefore a screening of mutations in the connexin26 gene should be performed in every case of non-syndromic hearing loss of unknown origin.  相似文献   

11.
Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co‐segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene.  相似文献   

12.
Recent investigations identified a large deletion of the GJB6 gene in trans to a mutation of GJB2 in deaf patients. We looked for GJB2 mutations and GJB6 deletions in 255 French patients presenting with a phenotype compatible with DFNB1. 32% of the patients had biallelic GJB2 mutations and 6% were a heterozygous for a GJB2 mutation and a GJB6 deletion. Biallelic GJB2 mutations and combined GJB2/GJB6 anomalies were more frequent in profoundly deaf children. Based on these results, we are now assessing GJB6 deletion status in cases of prelingual hearing loss.  相似文献   

13.
Connexin26 gene ( GJB2): prevalence of mutations in the Chinese population   总被引:5,自引:0,他引:5  
Liu Y  Ke X  Qi Y  Li W  Zhu P 《Journal of human genetics》2002,47(12):688-690
The connexin26 gene ( GJB2) has been shown to be responsible for DFNB1 and DFNA3 (Autosomal Recessive Hereditary Nonsyndromic Deafness Locus 1 and Autosomal Dominant Hereditary Nonsyndromic Deafness Locus 3). Two hundred ten independently ascertained Chinese probands with nonsyndromic hearing loss (NSHL) were evaluated for mutations in GJB2, including 43 probands from families with more than one sib with NSHL, likely indicating dominant inheritance, and sporadic cases of NSHL, compatible with recessive inheritance. Of the 210 probands, 43 (20%) were homozygous or heterozygous for mutations in GJB2. Four different mutations were identified: 35delG, 109G-A, 235delC, and 299-300delAT. It was confirmed that GJB2 mutations are an important cause of hearing loss in this population. Of these four mutations, 235delC was the most prevalent at 93%; yet the 35delG mutation, which is the most common GJB2 mutation in Caucasian subjects (Europeans and Americans), was found in low frequency in the present study. It appears from our limited data and reports from other East Asians that 235delC is the most prevalent GJB2 mutation in these populations. GJB2 mutations are consistent with ethnic predilections.  相似文献   

14.
The GJB2 gene located on chromosome 13q12 and encoding the connexin 26 (Cx26) protein, a transmembrane protein involved in cell-cell attachment of almost all tissues, including the skin, causes autosomal recessive and sometimes dominant nonsyndromic sensorineural hearing loss. GJB2 mutations have also been identified in syndromic disorders exhibiting hearing loss associated with skin problems. Recently, a new mutation, p.G130V in the GJB2 gene has been reported as causative for Vohwinkel syndrome. In this case the p.G130V mutation was found in two patients (son and father) with palmoplantar keratoderma. The father also showed also skin constrictions of the 2nd and 3rd toes of the right foot. Here, we report on another family with palmoplantar keratoderma associated with a dominant form of hearing loss confirming the genotype-phenotype correlation between the mutation p.G130V and the skin abnormalities observed in syndromic disorders with hearing loss as described by [Snoeckx et al. (2005) Hum Mutat 26:60-65].  相似文献   

15.
Mutations in GJB2 are the most common cause of hereditary congenital hearing loss in many countries and are found in about half of persons with severe-to-profound congenital autosomal recessive non-syndromic hearing loss (ARNSHL). We report the results of GJB2 mutation screening in 209 consecutive persons with congenital deafness of indeterminate etiology using an allele-specific polymerase chain reaction assay, single-strand conformational polymorphism analysis, and direct sequencing. GJB2 allele variants were detected in 74 of 209 deaf individuals (35%). Over one-fourth of screened individuals were either homozygous (n=31) or heterozygous (n=24) for the 35delG mutation. Of those with the 35delG mutation, 51 (92.7%) were diagnosed with GJB2-related deafness. Nineteen persons were identified with other GJB2 allele variants - two novel deafness-causing mutations (R32C, 645-648delTAGA), one mutation of unknown significance (E47K), and one benign polymorphism (I128I). While these data enable health care professionals to provide parents and patients with improved genetic counseling data, difficulty still exists is determining whether some missense mutations compromise auditory function and are deafness-causing.  相似文献   

16.
Mutations in the Cx26 gene have been shown to cause autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNB1 locus on chromosome 13q12. Using direct sequencing, we screened the Cx26 coding region of affected and nonaffected members from seven ARNSHL families either linked to the DFNB1 locus or in which the ARNSHL phenotype cosegregated with markers from chromosome 13q12. Cx26 mutations were found in six of the seven families and included two previously described mutations (W24X and W77X) and two novel Cx26 mutations: a single base pair deletion of nucleotide 35 resulting in a frameshift and a C-to-T substitution at nucleotide 370 resulting in a premature stop codon (Q124X). We have developed and optimized allele-specific PCR primers for each of the four mutations to rapidly determine carrier and noncarrier status within families. We also have developed a single stranded conformational polymorphism (SSCP) assay which covers the entire Cx26 coding region. This assay can be used to screen individuals with nonsyndromic hearing loss for mutations in the CX26 gene. Hum Mutat 11:387–394, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
We report a mutation in the connexin 26 gene (Cx26) in a consanguineous Moroccan family linked to the DFNA3/DFNB1 locus on human chromosome 13q11-q12. Affected subjects display congenital, bilateral, sensorineural hearing loss. We have previously identified Cx26 mutations in consanguineous Pakistani families. This current finding indicates that Cx26 mutations are not restricted to ethnically and geographically distinct populations. This is an important observation since it will help to determine the overall contribution of connexin 26 mutations to autosomal deafness in different populations.  相似文献   

18.
Mutations in the connexin 26 gene (GJB2) are responsible for the major part of nonsyndromic autosomal recessive or apparently sporadic prelingual deafness in Caucasians (DFNB1). We screened 228 German hearing-impaired persons for mutations in the GJB2 gene by sequence analysis. Homozygous or compound heterozygous GJB2 mutations were detected in 38/228 (16.7%) of hearing impaired persons. The most frequently occurring mutation was the c.35delG mutation, which was found in 71.1% of the mutated alleles. The next frequent mutation detected in the group of hearing impaired persons was the c.101T>C mutation (9/76 alleles; 11.8%). One new mutation, c.567delA, was observed. We further studied the presence of a 10bp deletion in the 5' UTR of the GJB2 gene (c.-493del10) which was assumed to occur together with the c.101T>C mutation. Ten out of thirteen patients (76.9%) were found to be carriers of both the c.101T>C mutation and the 10bp variant and in 7/14 alleles a linkage disequilibrium between c.101T>C and the 10bp deletion was proven. In 4/14 alleles the linkage was ruled out and for the remaining 3 cases the phase determination was not possible. Seventy one controls were screened for the prevalence of Cx26 mutations and for the c.-493del10 variant. Heterozygosity frequency in the control group was for c.35delG 4.2%, for c.101T>C 1.4% and for c.-493del10 it was 5.6%.  相似文献   

19.
Mutations in genes encoding gap- and tight-junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2[connexin 26 (Cx26)] mutation spectrum in 60 index patients from mostly large Turkish families with autosomal-recessive inherited non-syndromic sensorineural hearing loss (NSSHL). GJB2 mutations were found in 31.7% of the families, and the GJB2-35delG mutation accounted for 73.6% of all GJB2 mutations. The carrier frequency of GJB2-35delG in the normal Turkish population was found to be 1.17% (five in 429). In addition to the described W24X, 233delC, 120delE and R127H mutations, we also identified a novel mutation, Q80R, in the GJB2 gene. Interestingly, the Q80R allele was inherited on the same haplotype as V27I and E114G polymorphisms. As little is known about the mutation frequencies of most other recently identified gap- and tight-junction genes as a cause for hearing loss, we further screened our patients for mutations in GJB3 (Cx31), GJA1 (Cx43), DeltaGJB6-D13S1830 (Cx30) and the gene encoding the tight-junction protein, claudin 14 (CLDN14). Several novel polymorphisms, but no disease-associated mutations, were identified in the CLND14 and GJA1 genes, and we were unable to detect the DeltaGJB6-D13S1830 deletion. A novel putative mutation, P223T, was found in the GJB3 gene in heterozygous form in a family with two affected children. Our data shows that the frequency of GJB2 mutations in Turkish patients with autosomal-recessive NSSHL and the carrier rate of the GJB2-35delG mutation in the Turkish population, is much lower than described for other Mediterranean countries. Furthermore, mutations in other gap- and tight-junction proteins are not a frequent cause of hearing loss in Turkey.  相似文献   

20.
Mutations in four members of the connexin gene family have been shown to underlie distinct genetic forms of deafness, including GJB2 [connexin 26 (Cx26)], GJB3 (Cx31), GJB6 (Cx30) and GJB1 (Cx32). We have found that alterations in a fifth member of this family, GJA1 (Cx43), appear to cause a common form of deafness in African Americans. We identified two different GJA1 mutations in four of 26 African American probands. Three were homozygous for a Leu-->Phe substitution in the absolutely conserved codon 11, whereas the other was homozygous for a Val-->Ala transversion at the highly conserved codon 24. Neither mutation was detected in DNA from 100 control subjects without deafness. Cx43 is expressed in the cochlea, as is demonstrated by PCR amplification from human fetal cochlear cDNA and by RT-PCR of mouse cochlear tissues. Immunohistochemical staining of mouse cochlear preparations showed immunostaining for Cx43 in non-sensory epithelial cells and in fibrocytes of the spiral ligament and the spiral limbus. To our knowledge this is the first alpha connexin gene to be associated with non-syndromic deafness. Cx43 must also play a critical role in the physiology of hearing, presumably by participating in the recycling of potassium to the cochlear endolymph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号