首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report the use of spectral karyotyping (SKY) and comparative genomic hybridization (CGH) to describe the numerous genomic imbalances characteristic of stage IV clear cell renal cell carcinoma (CCRCC). SKY and CGH were performed on 10 cell lines established from nephrectomy specimens, and CGH on uncultured material from five of the primary renal tumors. The mutational status of VHL (3p25) and MET (7q31), genes implicated in renal carcinogenesis, were determined for each case. Each case showed marked aneuploidy, with an average number of copy alterations of 14.6 (+/-2.7) in the primary tumors and 19.3 (+/-4.6) in the cell lines. Both whole-chromosome and chromosome-segment imbalances were noted by CGH: consistent losses or gains included +5q23-->ter (100%), -3p14-->ter (80%), and +7 (70%). All VHL mutations and 83% of the genomic imbalances found in the primary tumors were also found in the cell lines derived from them. SKY showed many complex structural rearrangements that were undetected by conventional banding analysis in these solid tumors. All cases with VHL inactivation had 3p loss and 5q gain related primarily to unbalanced translocations between 3p and 5q. In contrast, gains of chromosome 7 resulted primarily from whole-chromosome gains and were not associated with mutations of MET. SKY and CGH demonstrated that genomic imbalances in advanced RCC were the result of either segregation errors [i.e., whole chromosomal gains and losses (7.8/case)] or chromosomal rearrangements (10.7/case), of which the majority were unbalanced translocations.  相似文献   

2.
Osteosarcoma (OS) is a highly malignant bone neoplasm of children and young adults. It is characterized by chaotic karyotypes with complex marker chromosomes. We applied a combination of molecular cytogenetic techniques including comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH) to decipher the chromosomal complexity in a panel of 25 tumors. Combined SKY and G-banding analysis identified several novel recurrent breakpoint clusters and 9 nonrecurrent reciprocal translocations. CGH identified several recurrent chromosomal losses including 2q, 3p, 9, 10p, 12q, 13q, 14q, 15q, 16, 17p, and 18q, gains including Xp, Xq, 5q, 6p, 8q, 17p, and 20q, and high-level chromosomal amplifications at Xp11.2, 1q21-q22, 4p11, 4q12, 5p15, 6p12.1, 8q13, 8q23, 10q11, 10q22, 11q13, 11q23, 12q13-q14, 13q21-q34, 16q22, 17p11.2, 17q21-q22, 18q22, 20p11.2, and 20q12. Frequent amplification and rearrangement involving chromosomal bands at 6p12-p21 and 17p11.2 were found in 28% and 32% of cases, respectively. In an attempt to identify the genes involved in these amplicons, we used three nonoverlapping BAC clones contained within each amplicon as probes for FISH analysis, leading to a more detailed characterization and quantification of the 6p and 17p amplicons.  相似文献   

3.
We investigated relationships between DNA copy number aberrations and chromosomal structural rearrangements in 11 different cell lines derived from oral squamous cell carcinoma (OSCC) by comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). CGH frequently showed recurrent chromosomal gains of 5p, 20q12, 8q23 approximately qter, 20p11 approximately p12, 7p15, 11p13 approximately p14, and 14q21, as well as losses of 4q, 18q, 4p11 approximately p15, 19p13, 8p21 approximately pter, and 16p11 approximately p12. SKY identified the following recurrent chromosomal abnormalities: i(5)(p10), i(5)(q10), i(8)(q10), der(X;1)(q10;p10), der(3;5)(p10;p10), and der(3;18)(q10;p10). In addition, breakpoints detected by SKY were clustered in 11q13 and around centromeric regions, including 5p10/q10, 3p10/q10, 8p10/q10 14q10, 1p10/1q10, and 16p10/16q10. Cell lines with i(5)(p10) and i(8)(q10) showed gains of the entire chromosome arms of 5p and 8q by CGH. Moreover, breakages near the centromeres of chromosomes 5 and 8 may be associated with 5p gain, 8q gain, and 8p loss in OSCC. FISH with a DNA probe from a BAC clone mapping to 5p15 showed a significant correlation between the average numbers of i(5)(p10) and 5p15 (R(2) = 0.8693, P< 0.01) in these cell lines, indicating that DNA copy number of 5p depends upon isochromosome formation in OSCC.  相似文献   

4.
5.
Conventional cytogenetic and comparative genomic hybridization (CGH) studies have shown that osteosarcomas (OSs) are characterized by complex structural and numerical chromosomal alterations and gene amplification. In this study, we used high-resolution CGH to investigate recurrent patterns of genomic imbalance by use of DNA derived from nine OS tumors hybridized to a 19,200-clone cDNA microarray. In six OSs, there was copy number gain or amplification of 6p, with a minimal region of gain centering on segment 6p12.1. In seven OSs, the pattern of amplification affecting chromosome arm 8q showed high-level gains of 8q12-21.3 and 8q22-q23, with amplification of the MYC oncogene at 8q24.2. Seven OSs showed copy number gain or amplification of 17p between the loci bounded by GAS7 and PMI (17p11.2-17p12), and three of these tumors also showed small losses at 17p13, including the region containing TP53. An in silico analysis of the distribution of segmental duplications (duplicons) in this region identified a large number of tracts consisting of paralogous sequences mapping to the 17p region, encompassing the region of deletions and amplifications in OS. Interestingly, within this same region there were clusters of duplicons and several genes that are expressed during bone morphogenesis and in OS. In summary, microarray CGH analysis of the chromosomal imbalances of OS confirm the overall pattern observed by use of metaphase CGH and provides a more precise refinement of the boundaries of genomic gains and losses that characterize this tumor.  相似文献   

6.
Several nonrandom recurrent chromosomal changes are observed in uveal melanoma. Some of these abnormalities, e.g., loss of chromosome 3, gain of the q arm of chromosome 8, and chromosome 6 abnormalities, are of prognostic value. Cytogenetic analysis and/or fluorescence in situ hybridization (FISH) are used to detect these changes. In some cases, however, detailed cytogenetic analysis is not possible due to the presence of complex abnormalities. To define more accurately these cytogenetic changes, we have applied comparative genomic hybridization (CGH) and/or spectral karyotyping (SKY) to two uveal melanoma cell lines and five primary uveal melanomas, with partially defined and/or complex abnormalities. SKY provided additional information on 34/39 partially defined aberrant chromosomes and revealed a new abnormality, a der(17)t(7;17)(?;q?), that had not been recognized by conventional cytogenetics. Additionally, using SKY, abnormalities involving chromosome 6 or 8 were found to be twice as common as observed with cytogenetic analysis. CGH was especially useful in assigning the abnormalities identified by SKY to specific chromosomal regions and, in addition, resulted in the detection of a small deletion of chromosome region 3q13 approximately 21. We conclude that SKY and CGH, as methods complementary to cytogenetic and FISH analysis, provide more complete information on the chromosomal abnormalities occurring in uveal melanoma.  相似文献   

7.
Nasopharyngeal carcinoma (NPC) cell lines and xenografts represent valuable models for functional and therapeutic studies on this common malignancy in Southeast Asia. The karyotypic information in most NPC cell lines and xenografts, however, remains largely unclear to date. We have characterized the chromosomal aberrations in six commonly used human NPC cell lines and xenografts using the molecular cytogenetic technique of comparative genomic hybridization (CGH). Genomic imbalances identified in cell lines were further correlated with structural abnormalities indicated from spectral karyotyping (SKY) analysis. CGH revealed consistent overrepresentations of 8q (six out of six cases) with a smallest overlapping region identified on 8q21.1q22. Other common gains included 7p (4/6 cases), 7q (4/6 cases), 12q (4/6), and 20q (4/6 cases), where minimal overlapping regions were suggested on 7p15p14, 7q11.2q21, and 12q22q24.1. Common losses were detected on 3p12p21 (4/6 cases) and 11q14qter (4/6 cases). Although SKY analysis on cell lines revealed predominantly unbalanced rearrangements, reciprocal translocations that involved chromosome 2 [i.e., t(1;2), t(2;3), and t(2;4)] were suggested. Furthermore, SKY examination illustrated additional breakpoints on a number of apparently balanced chromosomes. These breakpoints included 3p21, 3q26, 5q31, 6p21.1p25, 7p14p22, and 8q22. Our finding of regional gains and losses and breakpoints represents information that may contribute to NPC studies in vitro.  相似文献   

8.
Genomic copy number changes are detectable in many malignancies, including neuroblastoma, using techniques such as comparative genomic hybridization (CGH), microsatellite analysis, conventional karyotyping, and fluorescence in situ hybridization (FISH). We report the use of 10K single nucleotide polymorphism (SNP) microarrays to detect copy number changes and allelic imbalance in six neuroblastoma cell lines (IMR32, SHEP, NBL-S, SJNB-1, LS, and SKNBE2c). SNP data were generated using the GeneChip DNA Analysis and GeneChip chromosome copy number software (Affymetrix). SNP arrays confirmed the presence of all previously reported cytogenetic abnormalities in the cell lines, including chromosome 1p deletion, MYCN amplification, gain of 17q and 11q, and 14q deletions. In addition, the SNP arrays revealed several chromosome gains and losses not detected by CGH or karyotyping; these included gain of 8q21.1 approximately 24.3 and gain of chromosome 12 in IMR-32 cells; loss at 4p15.3 approximately 16.1 and loss at 16p12.3 approximately 13.2, 11q loss with loss of heterozygosity (LOH) at 11q14.3 approximately 23.3 in SJNB-1 cells; and loss at 8p21.2 approximately 23.3 and 9p21.3 approximately 22.1 with corresponding LOH in SHEP cells. The SNP arrays refined the mapping of the 2p amplicons in LS, BE2c, and IMR-32 cell lines, the 12q amplicon in LS cells, and also identified an 11q13 amplicon in LS cells. There was good concordance among SNP arrays, CGH, and karyotyping. SNP array analysis is a powerful tool for the detection of allelic imbalance in neuroblastoma and also allows identification of LOH without changes in copy number (uniparental disomy).  相似文献   

9.
Breast cancer cell lines have been widely used as models in functional and therapeutical studies, but their chromosomal alterations are not well known. We characterized the chromosomal aberrations in 15 commonly used human breast carcinoma cell lines (BT-474, BT-549, CAMA-1, DU4475, MCF7, MDA-MB-134, MDA-MB-157, MDA-MB-361, MDA-MB-436, MPE600, SK-BR-3, T-47D, UACC-812, UACC-893, and ZR-75-1) by comparative genomic hybridization (CGH) and spectral karyotyping (SKY). By CGH the most frequent gains were detected at 1q, 8q, 20q, 7, 11q13, 17q, 9q, and 16p, whereas losses were most common at 8p, 11q14-qter, 18q, and Xq. SKY revealed a multitude of structural and numerical chromosomal aberrations. Simple translocations, typically consisting of entire translocated chromosome arms, were the most common structural aberrations. Complex marker chromosomes included material from up to seven different chromosomes. Evidence for a cytogenetic aberration not previously described in breast cancer, the isoderivative chromosome, was found in two cell lines. Translocations t(8;11), t(12;16), t(1;16), and t(15;17) were frequently found, although the resulting derivative chromosomes and their breakpoints were strikingly dissimilar. The chromosomes most frequently involved in translocations were 8, 1, 17, 16, and 20. An excellent correlation was found between the number of translocation events found by SKY in the individual cell lines, and the copy number gains and losses detected by CGH, indicating that the majority of translocations are unbalanced. Genes Chromosomes Cancer 28:308-317, 2000.  相似文献   

10.
Osteosarcomas (OS) are aggressive tumors of the bone and often have a poor prognosis. The tumors exhibit karyotypes with a high degree of complexity, which has made it difficult to determine whether any recurrent chromosomal aberrations characterize OS. To address inherent difficulties associated with classical cytogenetic analysis, comparative genomic hybridization (CGH) was applied to OS tissue. Forty-one pediatric OS specimens were analyzed by a CGH technique: 24 female and 17 male patients, with a median age of 12 years and 4 months. Chromosomal abnormalities were highly diverse and variable, including gains of chromosome 1p, 2p, 3q, 5q, 5p, and 6p and losses of 14q (50% in 14q11.2), 15q, and 16p. A high level of losses of chromosome 21 was present (26/41 cases; P = 0.008), most often loss of the 21q11.2 approximately 21 region. These novel findings in chromosome 21 of pediatric OS tumors suggest that specific sequences mapping to these chromosomal regions are likely to play a role in the development of OS.  相似文献   

11.
Chromosomal regions involved in the pathogenesis of osteosarcomas   总被引:6,自引:0,他引:6  
The comparative genomic hybridization technique (CGH) was used to identify common chromosomal imbalances in osteosarcomas (OS), which frequently display complex karyotypic changes. We analyzed 13 high-grade primary tumors, 5 corresponding cell lines, 2 primary tumors grade 2, and 1 recurrent tumor from a total of 16 patients. Some of the CGH results have been verified by fluorescence in situ hybridization (FISH) studies. Gains of chromosomal material were more frequent than losses. Most common gains were observed at 8q (11 cases), 4q (9 cases), 7q (8 cases), 5p (7 cases), and 1p (8 cases). The smallest regions of overlap have been narrowed down to 8q23 (10 cases), 4q12-13 (8 cases), 5p13-14 (7 cases), 7q31-32 (7 cases), 8q21 (7 cases), and 4q28-31 (5 cases). These data demonstrate that a number of chromosomal regions and even two distinct loci on 4q and 8q are involved in the pathogenesis of OS, with gain of 4q12-13 chromosomal material representing a newly identified locus. Seven of 16 cases displayed, besides gain of 8q23 sequences, gain of MYC copies in CGH and FISH. Previous CGH reports confined gain of 8q material to 8cen-q13, 8q21.3-8q22, and 8q23-qter, whereas our data suggest that the loci 8q21 and 8q23-24 are affected in the development of OS. In contrast to recent reports, copy number increases at 8q and 1q21 did not have an unfavorable impact on prognosis in the present series. Genes Chromosomes Cancer 28:329-336, 2000.  相似文献   

12.
The overall pattern of chromosomal changes detected by spectral karyotype (SKY) analysis of two cell lines of each major histological subtype of NSCLC, namely squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), indicated a greater degree of chromosomal rearrangement, than was present or predicted by either comparative genomic hybridization (CGH) or G-banding analysis alone. To investigate these observations, CGH was used to screen DNA derived from 8 primary tumors and 15 cell lines. The results indicated that the most frequently gained chromosome arms were 5p (70%), 8q (65%), 15q (52%), 20q (48%), 1q (43%), 19q (39%), 3q (35%), and 11q (35%). Chromosomal losses were less frequently observed, and included 18q (39%), 9 (35%), 6q (30%), 13q (21%), 5q12-q32 (17%), and 19p (17%). Amplifications were found on 2p23-p24, 3q24-q27, 5p, 6cen-p21.1, 6q26, 7p21, 7q31, 8q, 11q13-qter, 20q12-q13.2. Comparison between CGH findings of the two major histological subtypes showed that gains at 1q22-q32.2, 15q, 20q, and losses at 6q, 13q, and 18q was common in ADCs, whereas SQCCs exhibited gains/amplifications at 3q. Distal 8q was gained by CGH in 65% of tumors of both subtypes. Low level MYCC amplification was confirmed by direct fluorescence in situ hybridization (FISH) analysis. The pattern of overall chromosomal changes detected using combinations of molecular cytogenetic analytical methods suggests that it will be easier to detect recurrent subtype-dependent aberrations in NSCLC.  相似文献   

13.
Comparative genomic hybridization (CGH) and conventional cytogenetic karyotyping were used to screen for losses and gains of DNA sequences along all chromosome arms in 16 bladder tumors. Cytogenetic results were highly complex. The most frequently affected chromosomes were 5, 8, 9, 21, and Y as determined by karyotyping. There was close correlation between the CGH data and cytogenetic results in near-diploid tumors with simple karyotypes. However, some unexpected results were observed by CGH in tumors with several composite clones. Common amplification of copy numbers of DNA sequences by CGH were seen at 1q, 3q, 4q, 5p, 6p/q, 7p, 8q, 11q, 12q, 13q, 17q, 18q, and 20p/q (more than 20% of cases). High level amplification was noted at 1p32, 3p21, 3q24, 4q26, 8q21-qter, 11q1422, 12q1521, 12q2124, 13q2131, 17q22, and 18q22. Deletions were noted at 2q21qter, 4q1323, 5q, 8p1222, 9p/q, and 11p1315 (more than 20% of cases). Although most amplifications and deletions have been previously described in the literature, our study showed some intriguing and uncommon regions, different from those found in past studies. These were the amplification of 7p, 8q, 11q14qter 12q2424, 13q2131, and 18q22, and deletion on 4q1323, even though loss of heterozygosity was not detected at this locus. In spite of the very complex pattern of genetic changes in bladder tumors, most of these uncommon aberrations have to be implicated in bladder tumors, and further molecular genetic methods are necessary to establish whether the chromosomal regions contain candidate genes which contributed to the initiation and progression of bladder tumors.  相似文献   

14.
We characterized the chromosomal alterations in eight osteosarcoma cell lines (OST, HOS, U-2 OS, ZK-58, MG-63, SJSA-1, Saos-2, and MNNG) by comparative genomic hybridization (CGH); gains and losses of DNA sequences were defined as chromosomal regions with a fluorescence ratio, wherein all of the 95% confidence interval was above 1.25 and below 0.75, respectively. In four of 8 cell lines, multicolor karyotyping (MK) was added. CGH revealed the average number of aberrations per cell line was 20.8 (range: 10–31); the average numbers of gains and losses were 11.1 and 9.6, respectively. The frequent gains were identified on 1p21q24, 1q25q31, 7p21, 7q31, 8q23q24, and 14q21; frequent losses were at 18q21q22, 18q12, 19p, and 3p12p14. High-level gains were observed on 8q23q24, 5p, and 1p21p22. MK revealed the most common translocations in the four cell lines were t(8;9), t(1;3), t(3;5), t(1;13), t(2;6), t(3;17), t(1;15), t(10;20), and t(6;20). Chromosomes 1, 3, 8, 9, and 20 were most frequently involved in translocation events. The concordance rate of aberrations in CGH and translocations in MK was 76%. MK was useful to identify the chromosomal alterations and as a supplement to the CGH results in three of four chromosomes.  相似文献   

15.
Deletions of 3p25, gains of chromosomes 7 and 10, and isochromosome 17q are known cytogenetic aberrations in sporadic renal cell carcinoma (RCC). In addition, a majority of RCCs have loss of heterozygosity (LOH) of the Von Hippel-Lindau (VHL) gene located at chromosome band 3p25. Patients who inherit a germline mutation of the VHL gene can develop multifocal RCCs and other solid tumors, including malignancies of the pancreas, adrenal medulla, and brain. VHL tumors follow the two-hit model of tumorigenesis, as LOH of VHL, a classic tumor suppressor gene, is the critical event in the development of the neoplastic phenotype. In an attempt to define the cytogenetic aberrations from early tumors to late RCC further, we applied spectral karyotyping (SKY) to 23 renal tumors harvested from 6 unrelated VHL patients undergoing surgery. Cysts and low-grade solid lesions were near-diploid and contained 1-2 reciprocal translocations, dicentric chromosomes, and/or isochromosomes. A variety of sole numerical aberrations included gains of chromosomes 1, 2, 4, 7, 10, 13, 21, and the X chromosome, although no tumors had sole numerical losses. Three patients shared a breakpoint at 2p21-22, and three others shared a dicentric chromosome 9 or an isochromosome 9q. In contrast to the near-diploidy of the low-grade lesions, a high-grade lesion and its nodal metastasis were markedly aneuploid, revealed loss of VHL by fluorescence in situ hybridization (FISH), and contained recurrent unbalanced translocations and losses of chromosome arms 2q, 3p, 4q, 9p, 14q, and 19p as demonstrated by comparative genomic hybridization (CGH). By combining SKY, CGH, and FISH of multiple tumors from the same VHL kidney, we have begun to identify chromosomal aberrations in the earliest stages of VHL-related renal cell tumors. Our current findings illustrate the cytogenetic heterogeneity of different VHL lesions from the same kidney, which supports the multiclonal origins of hereditary RCCs. Published 2001 Wiley-Liss, Inc.  相似文献   

16.
We investigated 31 malignant peripheral nerve sheath tumors (MPNSTs) from 23 patients by means of comparative genomic hybridization (CGH) in order to study quantitative genomic aberrations of these tumors. Twenty-one of the 23 patients revealed changes, with a mean value of 11 aberrations per sample (range 2-29). The minimal common regions of the most frequent gains were 8q23-q24.1 (12 cases), 5p14 (11 cases), and 6p22-pter, 7p15-p21, 7q32-q35, 8q21.1-q22, 8q24.2-qter, and 17q22-qter (10 cases each). Seventeen high-level amplifications were detected in eight of the 21 samples. In three cases, the high-level amplifications involved 8q24.1-qter, and in two cases each the high-level amplifications involved regions 5p14, 7p14-pter, 8q21.1-q23, and 13q32-q33. The minimal common region of frequent losses was 14q24.3-qter (five cases). The gain of 8q as a single common change in the primary tumor, the recurrence, and the metastasis from the same patient suggests that this aberration is an early change in the tumorigenesis of MPNSTs. Comparable aberrations were observed in separate tumors of the same patients affected by Recklinghausen's disease, indicating a limited number of accidental secondary changes. In sporadic MPNSTs, the most frequent gains were narrowed down predominantly to 5p, 6, 8q, and 20q, whereas in MPNSTs from patients with Recklinghausen's disease, there was most often a gain in 7q, 8q, 15q, and 17q. The occurrence of gain of both 7p15-p21 and 17q22-qter was associated with a statistically significant poor overall survival rate (P = 0.0096).  相似文献   

17.
Conventional cytogenetic studies have shown that osteosarcomas (OSs) are often highly aneuploid, with a large number of both structural and numerical chromosomal alterations. To investigate the complexity of OS karyotypes in detail, we applied spectral karyotyping (SKY) to a series of 14 primary OS tumors and four established OS cell lines. A total of 531 rearrangements were identified by SKY, of which 300 breakpoints could be assigned to a specific chromosome band. There was an average of 38.5 breakpoints identified by SKY per primary tumor. Chromosome 20 was involved in a disproportionately high number of structural rearrangements, with 38 different aberrations being detected. Chromosomal rearrangements between chromosomes 20 and 8 were evident in four tumors. FISH analysis using a 20q13 subtelomeric probe identified frequent involvement of 20q in complex structural rearrangements of OS cell lines. Characterization of the structural aberrations of chromosomes 8 and 17 by use of SKY demonstrated frequent duplication or partial gains of chromosome bands 8q23-24 and 17p11-13. Other chromosomes frequently involved in structural alteration were chromosomes 1 (47 rearrangements) and 6 (38 rearrangements). Centromeric rearrangements often involving chromosomes 1, 6, 13, 14, 17, and 20 were present. Four of the 14 primary OS tumors were characterized by nonclonal changes that included both structural and numerical alterations. In summary, OS tumors have a very high frequency of structural and numerical alterations, compounded by gross changes in ploidy. This intrinsic karyotype instability leads to a diversity of rearrangements and the acquisition of composite chromosomal rearrangements, with the highest frequency of alteration leading to gain of 8q23-24 and 17p11-13 and rearrangement of 20q. These findings suggest that specific sequences mapping to these chromosomal regions will likely have a role in the development and progression of OS.  相似文献   

18.
Double minute chromosomes (dmin) are cytogenetic hallmarks of amplified genes. Using spectral karyotyping (SKY) and comparative genomic hybridization (CGH), we identified the origin of amplified DNA in a leukemic cell line, KY821, that harbors numerous dmin. The SKY revealed that the DNA sequences of dmin are derived from materials of chromosome 8, and CGH showed a high degree of overrepresentation only at 8q22–24, indicating that in KY821 only chromosomal material of 8q22–24, containing MYC, is amplified in dmin. An approach combining SKY with CGH should facilitate efforts to identify novel chromosomal regions of gene amplification and contribute information about genetic lesions that underly neoplastic tumors. Received: March 11, 1998 / Accepted April 9, 1998  相似文献   

19.
We analysed six malignant peripheral nerve sheath tumors (MPNSTs) from four patients using metaphase preparations and compared the results with those obtained by using comparative genomic hybridization (CGH). All six tumors showed structural and numerical chromosomal aberrations, mostly of chromosomes 1, 5, 7-10, 14-17, 19, 21, and 22. The number of chromosomes per tumor cell ranged from 42 to 104. We could not find a recurrent specific pattern of structural changes after comparing the MPNSTs of different patients. However, aberrations of different tumors from the same patient were nearly identical. In the four patients, we found a total of 117 breakpoints, mostly in 21q11.2 (seven times), in 8q11.2 and 14q10 (six times each), in 5q11.2 and 15q26 (four times each), in 8p11.2, 10q11.2, 16q22, 19q13.3, and 22q10 (three times each). In three MPNSTs, double minute chromosomes (dmin) we detected with metaphase investigations and high-level amplifications by using CGH, respectively. C-MYC gene amplification and loss of the P53 gene could be ruled out by locus-specific probes for the common gain of 8q and for losses of 17p. When comparing the CGH results with those of karyotyping an overlap in the most frequent gains in 7q, 8q, 15q, and 17q was observed. However, we found more frequent losses in 19q in the metaphase investigations.  相似文献   

20.
We applied a combination of molecular cytogenetic methods, including comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH), to characterize the genetic aberrations in eight widely used cervical cancer (CC) cell lines. CGH identified the most frequent chromosomal losses including 2q, 3p, 4q, 6q, 8p, 9p, 10p, 13q, and 18q; gains including 3q, 5p, 5q, 8q, 9q, 11q, 14q, 16q, 17q, and 20q; and high-level chromosomal amplification at 3q21, 7p11, 8q23-q24, 10q21, 11q13, 16q23-q24, 20q11.2, and 20q13. Several recurrent structural chromosomal rearrangements, including der(5)t(5;8)(p13;q23) and i(5)(p10); deletions affecting chromosome bands 5p11, 5q11, and 11q23; and breakpoint clusters at 2q31, 3p10, 3q25, 5p13, 5q11, 7q11.2, 7q22, 8p11.2, 8q11.2, 10p11.2, 11p11.2, 14q10, 15q10, 18q21, and 22q11.2 were identified by SKY. We detected integration of HPV16 sequences by FISH on the derivative chromosomes involving bands 18p10 and 18p11 in cell line C-4I, 2p16, 5q21, 5q23, 6q, 8q24, 10, 11p11, 15q, and 18p11 in Ca Ski, and normal chromosome 17 at 17p13 in ME-180. FISH analysis was also used further to determine the copy number changes of PIKA3CA and MYC. This comprehensive cytogenetic characterization of eight CC cell lines enhances their utility in experimental studies aimed at gene discovery and functional analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号