首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SB-258585 (4-Iodo-N-[4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]-benzen esulphonamide) is a high affinity ligand at 5-HT(6) receptors. It displays over 100 fold selectivity for the 5-HT(6) receptor over all other 5-HT receptors tested so far. SB-258585 has been radiolabelled, to high specific activity, for its characterization as a 5-HT(6) receptor selective radioligand. [(125)I]-SB-258585 bound, with high affinity, to a single population of receptors in a cell line expressing human recombinant 5-HT(6) receptors. Kinetic and saturation binding experiments gave pK(D) values of 9.01+/-0.09 and 9.09+/-0.02, respectively. In membranes derived from rat or pig striatum and human caudate putamen, [(125)I]-SB-258585 labelled a single site with high levels (>60%) of specific binding. Saturation analysis revealed pK(D) values of 8.56+/-0.07 for rat, 8.60+/-0.10 for pig and 8.90+/-0.02 for human. B(max) values for the tissues ranged from 173+/-23 and 181+/-25 fmol mg(-1) protein in rat and pig striatum, respectively, to 215+/-41 fmol mg(-1) protein in human caudate putamen. The pK(i) rank order of potency for a number of compounds, determined in competition binding assays with [(125)I]-SB-258585, at human caudate putamen membranes was: SB-271046>SB-258585>SB-214111>methiothepin>clozapine>5-Me-OT>5-HT>Ro 04-6790>mianserin>ritanserin=amitriptyline>5-CT>mesulergine. Similar profiles were obtained from pig and rat striatal membranes and recombinant 5-HT(6) receptors; data from the latter correlated well with [(3)H]-LSD binding. Thus, [(125)I]-SB-258585 is a high affinity, selective radioligand which can be used to label both recombinant and native 5-HT(6) receptors and will facilitate further characterization of this receptor subtype in animal and human tissues.  相似文献   

2.
SB-271046, potently displaced [(3)H]-LSD and [(125)I]-SB-258585 from human 5-HT(6) receptors recombinantly expressed in HeLa cells in vitro (pK(i) 8.92 and 9.09 respectively). SB-271046 also displaced [(125)I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pK(i) 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT(6) receptor vs. 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT(6) receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA(2) of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of < or =0.1 mg kg(-1) p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC(50) of 0.16 microM) and brain concentrations of 0.01-0.04 microM at C(max). These data, together with the observed anticonvulsant activity of other selective 5-HT(6) receptor antagonists, SB-258510 (10 mg kg(-1), 2-6 h pre-test) and Ro 04-6790 (1-30 mg kg(-1), 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT(6) receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT(6) receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT(6) receptors.  相似文献   

3.
1 (6-((R)-2-[2-[4-(4-Chloro-phenoxy)-piperidin-1-yl]-ethyl]-pyrrolidine-1-sulphonyl)-1H-indole hydrochloride) (SB-656104-A), a novel 5-hydroxytryptamine (5-HT(7)) receptor antagonist, potently inhibited [(3)H]-SB-269970 binding to the human cloned 5-HT(7(a)) (pK(i) 8.7+/-0.1) and 5-HT(7(b)) (pK(i) 8.5+/-0.2) receptor variants and the rat native receptor (pK(i) 8.8+/-0.2). The compound displayed at least 30-fold selectivity for the human 5-HT(7(a)) receptor versus other human cloned 5-HT receptors apart from the 5-HT(1D) receptor ( approximately 10-fold selective). 2 SB-656104-A antagonised competitively the 5-carboxamidotryptamine (5-CT)-induced accumulation of cyclic AMP in h5-HT(7(a))/HEK293 cells with a pA(2) of 8.5. 3 Following a constant rate iv infusion to steady state in rats, SB-656104 had a blood clearance (CL(b)) of 58+/-6 ml min(-1) kg(-1) and was CNS penetrant with a steady-state brain : blood ratio of 0.9 : 1. Following i.p. administration to rats (10 mg kg(-1)), the compound displayed a t(1/2) of 1.4 h with mean brain and blood concentrations (at 1 h after dosing) of 0.80 and 1.0 micro M, respectively. 4 SB-656104-A produced a significant reversal of the 5-CT-induced hypothermic effect in guinea pigs, a pharmacodynamic model of 5-HT(7) receptor interaction in vivo (ED(50) 2 mg kg(-1)). 5 SB-656104-A, administered to rats at the beginning of the sleep period (CT 0), significantly increased the latency to onset of rapid eye movement (REM) sleep at 30 mg kg(-1) i.p. (+93%) and reduced the total amount of REM sleep at 10 and 30 mg kg(-1) i.p. with no significant effect on the latency to, or amount of, non-REM sleep. SB-269970-A produced qualitatively similar effects in the same study. 6 In summary, SB-656104-A is a novel 5-HT(7) receptor antagonist which has been utilised in the present study to provide further evidence for a role for 5-HT(7) receptors in the modulation of REM sleep.  相似文献   

4.
In this work we aimed to re-examine the 5-HT6 receptor role, by testing the selective antagonists SB-357134 (1-30 mg/kg p.o.) and SB-399885 (1-30 mg/kg p.o.) during memory consolidation of conditioned responses (CR%), in an autoshaping Pavlovian/instrumental learning task. Bioavailability, half-life and minimum effective dose to induce inappetence for SB-357134 were 65%, 3.4 h, and 30 mg/kg p.o., and for SB-399885 were 52%, 2.2 h, and 50 mg/kg p.o., respectively. Oral acute and chronic administration of either SB-357134 or SB-399885 improved memory consolidation compared to control groups. Acute administration of SB-357134, at 1, 3, 10 and 30 mg/kg, produced a CR% inverted-U curve, eliciting the latter dose a 7-fold increase relative to saline group. Acute injection of SB-399885 produced significant CR% increments, being 1 mg/kg the most effective dose. Repeated administration (7 days) of either SB-357134 (10 mg/kg) or SB-399885 (1 mg/kg) elicited the most significant CR% increments. Moreover, modeling the potential therapeutic benefits of 5-HT6 receptor blockade, acute or repeated administration of SB-399885, at 10 mg/kg reversed memory deficits produced by scopolamine or dizocilpine, and SB-357134 (3 and 10 mg/kg) prevented amnesia and even improved performance. These data support the notion that endogenously 5-HT acting, via 5-HT6 receptor, improves memory consolidation.  相似文献   

5.
RATIONALE: 5-HT(6) receptors are predominantly located in the brain and may be involved in cognitive processes. The aim of this study was to assess the effects of two potent and selective 5-HT(6) receptor antagonists, SB-271046-A and SB-357134-A, on learning and memory in the rat. METHODS: Spatial learning and memory was assessed by testing the effects of SB-271046-A and SB-357134-A on acquisition and retention of a water maze task. RESULTS: In the water maze, administration of SB-271046-A or SB-357134-A (3 or 10 mg/kg) had no effect on learning per se. At 10 mg/kg, however, both compounds produced a significant improvement in retention of a previously learned platform position when tested 7 days after training. By contrast, the acetylcholinesterase inhibitor, Aricept (donepezil, 0.1, 0.3 mg/kg PO) had no effect in this task. CONCLUSIONS: This study demonstrates that systemic administration of SB-271046-A and SB-357134-A produces improvements in retention of a water maze task in the rat. These data indicate that 5-HT(6) receptor antagonism may be involved in cognitive function.  相似文献   

6.
The novel 5-HT(7) receptor antagonist, SB-269970-A, potently displaced [(3)H]-5-CT from human 5-HT(7(a)) (pK(i) 8.9+/-0.1) and 5-HT(7) receptors in guinea-pig cortex (pK(i) 8.3+/-0.2). 5-CT stimulated adenylyl cyclase activity in 5-HT(7(a))/HEK293 membranes (pEC(50) 7.5+/-0.1) and SB-269970-A (0.03 - 1 microM) inhibited the 5-CT concentration-response with no significant alteration in the maximal response. The pA(2) (8.5+/-0.2) for SB-269970-A agreed well with the pK(i) determined from [(3)H]-5-CT binding studies. 5-CT-stimulated adenylyl cyclase activity in guinea-pig hippocampal membranes (pEC(50) of 8.4+/-0.2) was inhibited by SB-269970-A (0.3 microM) with a pK(B) (8.3+/-0.1) in good agreement with its antagonist potency at the human cloned 5-HT(7(a)) receptor and its binding affinity at guinea-pig cortical membranes. 5-HT(7) receptor mRNA was highly expressed in human hypothalamus, amygdala, thalamus, hippocampus and testis. SB-269970-A was CNS penetrant (steady-state brain : blood ratio of ca. 0.83 : 1 in rats) but was rapidly cleared from the blood (CLb=ca. 140 ml min(-1) kg(-1)). Following a single dose (3 mg kg(-1)) SB-269970 was detectable in rat brain at 30 (87 nM) and 60 min (58 nM). In guinea-pigs, brain levels averaged 31 and 51 nM respectively at 30 and 60 min after dosing, although the compound was undetectable in one of the three animals tested. 5-CT (0.3 mg kg(-1) i.p.) induced hypothermia in guinea-pigs was blocked by SB-269970-A (ED(50) 2.96 mg kg(-1) i.p.) and the non-selective 5-HT(7) receptor antagonist metergoline (0.3 - 3 mg kg(-1) s.c.), suggesting a role for 5-HT(7) receptor stimulation in 5-CT induced hypothermia in guinea-pigs. SB-269970-A (30 mg kg(-1)) administered at the start of the sleep period, significantly reduced time spent in Paradoxical Sleep (PS) during the first 3 h of EEG recording in conscious rats.  相似文献   

7.
A novel compound, SB-272183 (5-Chloro-2, 3-dihydro-6-[4-methylpiperazin-1-yl]-1[4-pyridin-4-yl]napth-1-ylaminocarbonyl]-1H-indole), has been shown to have high affinity for human 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors with pK(i) values of 8.0, 8.1 and 8.7 respectively and is at least 30 fold selective over a range of other receptors. [(35)S]-GTPgammaS binding studies showed that SB-272183 acts as a partial agonist at human recombinant 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors with intrinsic activities of 0.4, 0.4 and 0.8 respectively, compared to 5-HT. SB-272183 inhibited 5-HT-induced stimulation of [(35)S]-GTPgammaS binding at human 5-HT(1A) and 5-HT(1B) receptors to give pA(2) values of 8.2 and 8.5 respectively. However, from [(35)S]-GTPgammaS autoradiographic studies in rat and human dorsal raphe nucleus, SB-272183 did not display intrinsic activity up to 10 microM but did block 5-HT-induced stimulation of [(35)S]-GTPgammaS binding. From electrophysiological studies in rat raphe slices in vitro, SB-272183 did not effect cell firing rate up to 1 microM but was able to attenuate (+)8-OH-DPAT-induced inhibition of cell firing to give an apparent pK(b) of 7.1. SB-272183 potentiated electrically-stimulated [(3)H]-5-HT release from rat and guinea-pig cortical slices at 100 and 1000 nM, similar to results previously obtained with the 5-HT(1B) and 5-HT(1D) receptor antagonist, GR127935. Fast cyclic voltammetry studies in rat dorsal raphe nucleus showed that SB-272183 could block sumatriptan-induced inhibition of 5-HT efflux, with an apparent pK(b) of 7.2, but did not effect basal efflux up to 1 microM. These studies show that, in vitro, SB-272183 acts as an antagonist at native tissue 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors.  相似文献   

8.
1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.5 to 20.7+/-3.6 nM at rodent, feline and primate recombinant UT receptors and K(i) 5.4+/-0.4 nM at the endogenous UT receptor in SJRH30 cells). 2. Prior exposure to SB-706375 (1 microM, 30 min) did not alter [(125)I]hU-II binding affinity or density in recombinant cells (K(D) 3.1+/-0.4 vs 5.8+/-0.9 nM and B(max) 3.1+/-1.0 vs 2.8+/-0.8 pmol mg(-1)) consistent with a reversible mode of action. 3. The novel, nonpeptidic radioligand [(3)H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (K(D) 2.6+/-0.4 nM, B(max) 0.86+/-0.12 pmol mg(-1)) in a manner that was inhibited by both U-II isopeptides and SB-706375 (K(i) 4.6+/-1.4 to 17.6+/-5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. 4. SB-706375 was a potent, competitive hU-II antagonist across species with pK(b) 7.29-8.00 in HEK293-UT receptor cells (inhibition of [Ca(2+)](i)-mobilization) and pK(b) 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (K(app) approximately 20 nM). 5. SB-706375 was a selective U-II antagonist with >/=100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (K(i)/IC(50)>1 microM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 microM). 6. In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals.  相似文献   

9.
5-Hydroxytryptamine 6 (5-HT6) receptors are involved in learning and memory processes and are discussed as promising targets for the treatment of cognitive impairment in central nervous system disorders. A number of 5-HT6 antagonists are currently in the clinical development for schizophrenia and Alzheimer's disease (AD). There is some discrepancy regarding cognitive efficacy in subjects, and only limited data are available on the role of the 5-HT6 receptor in animal models of psychosis. The aim of this study was to investigate the efficacy of the selective 5-HT6 antagonists, Ro-4368554 (1-10 mg/kg, intraperitoneally) and SB-258585 (3-30 mg/kg, intraperitoneally), in animal models for schizophrenia and AD. Both compounds showed cognition-enhancing effects in object recognition, whereas only SB-258585 was able to prevent the scopolamine-induced deficit in the Morris water-maze test. Neither Ro-4368554 nor SB-258585 prevented scopolamine-induced impairment in contextual fear conditioning. Similarly, both compounds were ineffective on MK-801-induced deficits in contextual fear conditioning and spatial working memory. Ro-4368554, but not SB-258585 reversed the apomorphine-induced deficit in prepulse inhibition. Amphetamine-induced hyperlocomotion was not affected by either compound. Taken together, the overall efficacy of Ro-4368554 and SB-258585 in animal models for AD and schizophrenia is rather limited. These data show moderate efficacy in some models for AD but do not support the therapeutic potential of 5-HT6 antagonists for schizophrenia.  相似文献   

10.
Rationale The delay in onset and treatment resistance of subpopulations of depressed patients to conventional serotonin reuptake inhibitors has lead to new drug development strategies to produce agents with improved antidepressant efficacy. Objectives We report the in vivo characterization of the novel 5-HT1A/1B autoreceptor antagonist/5-HT transporter inhibitor (6-[(1-{2-[(2-methyl-5-quinolinyl)oxy]ethyl}-4-piperidinyl)methyl]-2H-1,4-benzoxazin-3(4H)-one), SB-649915-B. Materials and methods Ex vivo binding was used to ascertain 5-HT1A receptor and serotonin transporter occupancy. 8-OH-DPAT-induced hyperlocomotion and SKF-99101-induced elevation of seizure threshold were used as markers of central blockade of 5-HT1A and 5-HT1B receptors, respectively. In vivo electrophysiology in the rat dorsal raphe and microdialysis in freely moving guinea pigs and rats were used to evaluate the functional outcome of SB-649915-B. Results SB-649915-B (1–10 mg/kg p.o.) produced a dose-related inhibition of 5-HT1A receptor radioligand binding and inhibited ex vivo [3H]5-HT uptake in both guinea pig and rat cortex. SB-649915-B (0.1–10 mg/kg p.o.) reversed both 8-OH-DPAT-induced hyperlocomotor activity and SKF-99101-induced elevation of seizure threshold in the rat, demonstrating in vivo blockade of both 5-HT1A and 5-HT1B receptors, respectively. SB-649915-B (0.1–3 mg/kg i.v.) produced no change in raphe 5-HT neuronal cell firing per se but attenuated the inhibitory effect of 8-OH-DPAT. Acute administration of SB-649915-B resulted in increases (approximately two- to threefold) in extracellular 5-HT in the cortex of rats and the dentate gyrus and cortex of guinea pigs. Conclusions Based on these data, one may speculate that the 5-HT autoreceptor antagonist/5-HT transport inhibitor SB-649915-B will have therapeutic efficacy in the treatment of affective disorders with the potential for a faster onset of action compared to current selective serotonin reuptake inhibitors.  相似文献   

11.
SB-710411 (Cpa-c[d-Cys-Pal-d-Trp-Lys-Val-Cys]-Cpa-amide) inhibited [(125)I]urotensin-II rat and monkey UT receptor binding (pK(i)s 7.50+/-0.07 and 6.82+/-0.06). However, whereas SB-710411 antagonized urotensin-II-induced inositol phosphate formation at the rat UT receptor (pK(b) 6.54+/-0.05), this ligand functioned as an agonist at the monkey UT receptor (pEC(50) 6.56+/-0.35, E(max) 5.27+/-0.65-fold over basal). Indeed, in contrast to the rat UT receptor (and rat isolated arteries), SB-710411 exhibited intrinsic activity in monkey arteries acting as an efficacious vasoconstrictor (pEC(50)s 5.03+/-0.18 to 5.71+/-0.21, E(max)s 101+/-4 to 218+/-58% KCl). These data demonstrate that caution must be taken when extrapolating the pharmacology of a specific ligand(s) between the rodent and primate UT receptors.  相似文献   

12.
1. The presence of 5-HT(7) receptor mRNA and protein in 5-HT neurons suggests that this receptor may act as a 5-HT autoreceptor. In this study, the effect of the 5-HT(7) receptor antagonist, SB-269970 ((R)-1-[3-hydroxy phenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine), was investigated on 5-HT release in the guinea-pig and rat cortex and the rat dorsal raphe nucleus (DRN), using the techniques of in vitro [(3)H]-5-HT release or fast cyclic voltammetry, respectively. 2. Cortical slices were loaded with [(3)H]-5-HT and release was evoked by electrical stimulation. 5-CT inhibited the evoked release of [(3)H]-5-HT in a concentration-dependent manner. SB-269970 had no significant effect on [(3)H]-5-HT release while the 5-HT(1B) receptor antagonist, SB-224289 significantly potentiated [(3)H]-5-HT release. In addition, SB-269970 was unable to attenuate the 5-CT-induced inhibition of release while SB-224289 produced a rightward shift of the 5-CT response, generating estimated pK(B) values of 7.8 and 7.6 at the guinea-pig and rat terminal 5-HT autoreceptors respectively. 3. Rat DRN slices were electrically stimulated and the evoked 5-HT efflux detected by voltammetric analysis. 8-OH-DPAT inhibited evoked 5-HT efflux and was fully reversed by WAY 100635. SB-269970 had no effect on either 5-HT efflux per se or 8-OH-DPAT-induced inhibition of 5-HT efflux. In addition, 5-CT inhibited 5-HT efflux in a concentration-dependent manner. SB-269970 was unable to attenuate the 5-CT-induced inhibition of 5-HT efflux. 4. In conclusion, we were unable to provide evidence to suggest a 5-HT autoreceptor role for 5-HT(7) receptors. However, investigations with more selective 5-HT(7) receptor agonists are needed to confirm the data reported here.  相似文献   

13.
GSK207040 (5-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-2-pyrazinecarboxamide) and GSK334429 (1-(1-methylethyl)-4-({1-[6-(trifluoromethyl)-3-pyridinyl]-4-piperidinyl}carbonyl)hexahydro-1H-1,4-diazepine) are novel and selective non-imidazole histamine H(3) receptor antagonists from distinct chemical series with high affinity for human (pK(i)=9.67+/-0.06 and 9.49+/-0.09, respectively) and rat (pK(i)=9.08+/-0.16 and 9.12+/-0.14, respectively) H(3) receptors expressed in cerebral cortex. At the human recombinant H(3) receptor, GSK207040 and GSK334429 were potent functional antagonists (pA(2)=9.26+/-0.04 and 8.84+/-0.04, respectively versus H(3) agonist-induced changes in cAMP) and exhibited inverse agonist properties (pIC(50)=9.20+/-0.36 and 8.59+/-0.04 versus basal GTPgammaS binding). Following oral administration, GSK207040 and GSK334429 potently inhibited cortical ex vivo [(3)H]-R-alpha-methylhistamine binding (ED(50)=0.03 and 0.35 mg/kg, respectively). Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50)=0.02 and 0.11 mg/kg p.o. for GSK207040 and GSK334429, respectively). In more pathophysiologically relevant pharmacodynamic models, GSK207040 (0.1, 0.3, 1 and 3mg/kg p.o.) and GSK334429 (0.3, 1 and 3mg/kg p.o.) significantly reversed amnesia induced by the cholinergic antagonist scopolamine in a passive avoidance paradigm. In addition, GSK207040 (0.1, 0.3 and 1mg/kg p.o.) and GSK334429 (3 and 10mg/kg p.o.) significantly reversed capsaicin-induced reductions in paw withdrawal threshold, suggesting for the first time that blockade of H(3) receptors may be able to reduce tactile allodynia. Novel H(3) receptor antagonists such as GSK207040 and GSK334429 may therefore have therapeutic potential not only in dementia but also in neuropathic pain.  相似文献   

14.
The present study examined short- and long-term effects of MDMA (3,4-methylene-dioxymethamphetamine) on serotonin (5-HT2 and 5-HT1c) receptors in the brain of the rat. N1-Methyl-2-[125I]lysergic acid diethylamide ([125I]MIL) was used to label these receptors in vitro and in vivo. The usefulness of [125I]MIL for in vivo detection of changes in 5-HT2 receptors was confirmed in preliminary experiments in which rats were treated chronically with mianserin (5 mg/kg, once daily for 10 days). Decreases in specific in vivo binding of [125I]MIL, after treatment with mianserin were found to be of the same magnitude as those determined by others, using in vitro methods. The MDMA (8 doses; 5-20 mg/kg each) was administered to rats over a period of 4 days. At various times after administration of the last dose of MDMA, the binding of [125I]MIL was measured. Acutely, treatment with MDMA (20 mg/kg) reduced specific in vivo binding of [125I]MIL in all regions of brain studied. For example, in the frontal cortex, specific binding of [125I]MIL was decreased by 80% at 6 hr and by 62% at 24 hr, after cessation of treatment with MDMA. Twenty-one days after administration of MDMA however, the number of binding sites for [125I]MIL was back to control levels. Reductions in in vivo binding of [125I]MIL in frontal cortex were dependent on the dose of MDMA injected and were associated with decreases in the number of binding sites for [125I]MIL (Bmax values) in tissue homogenates of the same area. Autoradiographic studies of MDMA-treated rats confirmed the decreased density of 5-HT2 receptors and also suggested that the 5-HT1c receptor of the choroid plexus was not affected. These results indicate that repeated administration of MDMA caused transient down-regulation of 5-HT2 receptors in the brain of the rat. Further, they demonstrated that [125I]MIL is a suitable radioligand for labeling 5-HT2 receptors, both in vitro and in vivo. Once labeled with an appropriate radionuclide for SPECT (single photon emission computed tomography) or PET (positron emission tomography), MIL should prove useful for monitoring changes in the density of serotonin receptors in the living mammalian brain.  相似文献   

15.
An increase in brain 5-HT levels is thought to be the key mechanism of action which results in an antidepressant response. It has been proven that selective serotonin re-uptake inhibitors are effective antidepressants but the delay to therapeutic onset of these agents is thought to be due to the time required for 5-HT1A, and possibly 5-HT1B, autoreceptor desensitisation. Therefore an agent incorporating 5-HT re-uptake inhibition coupled with 5-HT1A and/or 5-HT1B autoreceptor antagonism may provide a fast acting clinical agent. The current studies describe the in vitro profile of SB-649915 (6-[(1-{2-[(2-methylquinolin-5-yl)oxy]ethyl}piperidin-4-yl)methyl]-2H-1,4-benzoxazin-3(4H)-one), a novel compound which has high affinity for human recombinant 5-HT1A, 5-HT1B and 5-HT1D receptors (pKi values of 8.6, 8.0, 8.8, respectively) and the human recombinant 5-HT transporter (pKi value of 9.3). SB-649915 also displays high affinity for rat, guinea pig, mouse and marmoset native tissue 5-HT1A, 5-HT1B and 5-HT1D receptors and rat native tissue 5-HT transporters (pKi values>or=7.5). In functional [35S]GTPgammaS binding studies, SB-649915 (up to 1 microM) does not display intrinsic activity in HEK293 cells expressing human recombinant 5-HT1A receptors but acts as a partial agonist at human recombinant 5-HT1B and 5-HT1D receptors with intrinsic activity values of 0.3 and 0.7, respectively, as compared to the full agonist 5-HT. From Schild analysis, SB-649915 caused a concentration-dependent, rightward shift of 5-HT-induced stimulation of basal [35S]GTPgammaS binding in cells expressing human recombinant 5-HT1A or 5-HT1B receptors to yield pA2 values of 9.0 and 7.9, respectively. In electrophysiological studies in rat dorsal raphe nucleus, SB-649915 did not affect the cell firing rate up to 1 microM but attenuated (+)8-hydroxy-2-(di-n-propylamino) tetralin-induced inhibition of cell firing with an apparent pKb value of 9.5. SB-649915 (1 microM) significantly attenuated exogenous 5-HT-induced inhibition of electrically-stimulated [3H]5-HT release from guinea pig cortex. In studies designed to enhance endogenous 5-HT levels, and therefore increase tone at 5-HT1B autoreceptors, SB-649915 significantly potentiated [3H]5-HT release at 100 and 1000 nM. In LLCPK cells expressing human recombinant 5-HT transporters and in rat cortical synaptosomes, SB-649915 inhibited [3H]5-HT re-uptake with pIC50 values of 7.9 and 9.7, respectively. In summary, SB-649915 is a novel, potent 5-HT1A/1B autoreceptor antagonist and 5-HT re-uptake inhibitor in native tissue systems and represents a novel mechanism that could offer fast acting antidepressant action.  相似文献   

16.
In this work, we studied the in vivo and in vitro pharmacological effects of the novel compound QF0301B (2-[2-(N-4-o-methoxyphenyl-N-1-piperazinyl)ethyl]-1-tetralone) and compared with those of prazosin. In anaesthetized normotensive rats, both QF0301B and prazosin (0.1-0.2 mg/kg iv) caused a pronounced and prolonged fall in mean arterial blood pressure accompanied by bradycardia. Neither QF0301B nor prazosin (0.2 mg/kg iv) significantly modified the cardiovascular effects of either 5-hydroxytryptamine (serotonin, 5-HT, 75 microg/kg iv) or the selective alpha(2)-adrenoceptor agonist B-HT 920 (0.2 mg/kg iv), but both markedly inhibited the hypertensive effect of noradrenaline (5 microg/kg iv), a nonselective alpha-adrenergic receptor agonist. In isolated rubbed rat aorta rings, QF0301B and prazosin showed marked alpha(1)-adrenoceptor blocking activity, with pA(2) values of 9.00+/-0.12 and 9.75+/-0.14, respectively. In addition, QF0301B reversed and competitively antagonized the inhibitory action produced by clonidine in electrically stimulated rat vas deferens and inhibited the force and rate of contraction in rat isolated atria (pA(2)=5.91+/-0.43), competitively antagonized the contractile effect of 5-HT in rat aorta (pA(2)=6.75+/-0.06) and in rat stomach fundus (pA(2)=7.13+/-0.48) and the contractions induced by histamine in isolated guinea pig longitudinal ileal muscle (pA(2)=7.40+/-0.40). QF0301B showed noncompetitive low action in 5-HT(3), muscarinic and nicotinic receptors, or as Ca(2+) antagonist. These results indicate that a alpha(1)-adrenoceptor blocking lead has been obtained with a new chemical structure and interesting pharmacological properties, which only alpha(1)-adrenoceptor blocking activity seems to be responsible for its cardiovascular effects.  相似文献   

17.
5-Carboxamidotryptamine (5-CT; 0.003-310 microg/kg, i.v.) produced dose-dependent hypotensive responses which were blocked in a complex manner by the 5-HT(7) receptor antagonist, (R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl) ethyl] pyrrolidine (SB-269970; 1 mg/kg, i.v.), in anesthetized vagosympathectomized rats. Interestingly, the 5-HT(1B/1D) receptor antagonist, N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1-biphenyl]-4-carboxamide hydrochloride monohydrate GR-127935 (1 mg/kg, i.v.), also inhibited 5-CT-induced hypotension but the effect was clearly noncompetitive. Finally, the combination of GR-127935+SB-269970 (1 mg/kg, i.v., each) produced a further decreased of 5-CT-induced responses as compared to the effect of individual treatments. These data suggest that, in addition to 5-HT(7) receptors, 5-HT(1B/1D) receptors may also mediate hypotension in rats.  相似文献   

18.
The tetrahydrobenzindole, 2a-(4-(4-phenyl-1,2,3,6-tetrahydropyridyl)butyl)-2a,3,4,5-tetrahydrobenzo[cd]indol-2(1H)-one (DR4004) has been described as a highly selective antagonist for the 5-hydroxytryptamine(7) (5-HT(7)) receptor [J. Med. Chem. 42 (1999) 533]. Consistent with original data, DR4004 bound to rat hypothalamic membranes with an affinity of 7.3+/-0.2 (pK(i)+/-S.E.M.) for the 5-HT(7) receptor. However, competition binding studies showed that DR4004 had poor receptor selectivity with the following affinity profile; dopamine D2 receptor, alpha(1)-adrenoceptor > or =5-HT(7) receptor>histamine H(1) receptor, alpha(2)-adrenoceptor>dopamine D1 receptor>beta-adrenoceptor, muscarinic and 5-HT(2A/C) receptors. In conscious rats DR4004 (1, 5 or 10 mg/kg i.p.) produced a dose-dependent hyperglycaemia and hypothermia, but the former was reduced by the dopamine D2 receptor antagonist raclopride. Another 5-HT(7) receptor antagonist, (R)-3-(2-(2-(4-methylpiperidin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970) produced hypothermia but no hyperglycaemia. This study confirms that DR4004 has high affinity for the 5-HT(7) receptor but suggests that dopamine D2 receptor activity contributes to some of the in vivo effects.  相似文献   

19.
This study utilised the selective 5-ht(5A) receptor antagonist, SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), to investigate 5-ht5A receptor function in guinea pig brain. SB-699551-A competitively antagonised 5-HT-stimulated [35S]GTPgammaS binding to membranes from human embryonic kidney (HEK293) cells transiently expressing the guinea pig 5-ht5A receptor (pA2 8.1+/-0.1) and displayed 100-fold selectivity versus the serotonin transporter and those 5-HT receptor subtypes (5-HT(1A/B/D), 5-HT2A/C and 5-HT7) reported to modulate central 5-HT neurotransmission in the guinea pig. In guinea pig dorsal raphe slices, SB-699551-A (1 microM) did not alter neuronal firing per se but attenuated the 5-CT-induced depression in serotonergic neuronal firing in a subpopulation of cells insensitive to the 5-HT1A receptor-selective antagonist WAY-100635 (100 nM). In contrast, SB-699551-A (100 or 300 nM) failed to affect both electrically-evoked 5-HT release and 5-CT-induced inhibition of evoked release measured using fast cyclic voltammetry in vitro. SB-699551-A (0.3, 1 and 3 mg/kg s.c.) did not modulate extracellular levels of 5-HT in the guinea pig frontal cortex in vivo. However, when administered in combination with WAY-100635 (0.3 mg/kg s.c.), SB-699551-A (0.3, 1 or 3 mg/kg s.c.) produced a significant increase in extracellular 5-HT levels. These studies provide evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain.  相似文献   

20.
Topical administration of 5-carboxamidotryptamine (5-CT; 0.01-1000 microM) to the exposed dura mater encephali of anesthetized rats produced decreases in blood pressure and dilatation in the middle meningeal artery. Pretreatment with the 5-HT(1B/1D) receptor antagonist, N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1-biphenyl]-4-carboxamide hydrochloride monohydrate (GR-127935; 1 mg/kg, i.v.), unmasked meningeal dilator responses to lower concentrations of 5-CT, and attenuated those to higher concentrations; GR-127935 also inhibited 5-CT-induced hypotension. The 5-HT7 receptor antagonist, (R)-1-{(3-hydroxyphenyl)sulfonyl}-2-{2-(2-(4-methyl-1-piperidinyl) ethyl} pyrrolidine (SB-269970; 1 mg/kg, i.v.), strongly inhibited dilator and hypotensive responses to 5-CT; the combination of GR-127935+SB-269970 (1 mg/kg, i.v., each) further inhibited meningeal and hypotensive responses. Thus, 5-CT may produce dilatation in the middle meningeal artery via 5-HT7 receptors; complex effects appear to involve 5-HT(1B/1D) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号