首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last two years we have screened 183 DMD/BMD families requesting prenatal diagnosis. Using cDNA probes cf56a,b we have detected exon deletions in 72 of them. In 62 cases the deletion was also detectable with currently available PCR primers. Deletion analysis for exons 8, 17, and 19, using either PCR or Southern blotting techniques, was performed for 65 of the 111 families which showed no deletions with cf56a,b. Eight of them were deleted for one or more of these exons. PCR offers new possibilities for deletion analysis in families without a living patient using either Guthrie papers or histologically conserved material from the dead patient. In 20 of 25 patients, we observed concordance between the clinical picture and the molecular deletion analysis in accordance with the open reading frame hypothesis. Five patients, however, presented with DMD in spite of our analysis showing an in frame deletion. Carrier determination in families in which DMD is caused by a deletion using linkage, dosage, or breakpoint analysis is discussed.  相似文献   

2.
This study consisted of 1) molecular deletion analyses in patients with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) using the entire cDNA for the DMD gene as hybridization probes, 2) RFLP analyses in a large number of Japanese normal women using 11 DMD-linked cloned DNAs as probes, and 3) segregation analyses with these RFLP data in 17 DMD families in which prenatal or carrier diagnosis was required. The deletion study showed that 18 (43%) of 42 male DMD patients had a deletion within the DMD gene, while no detectable deletion was found in 3 BMD patients. These deletions were preferentially observed at the 5' end of the DMD gene, while no deletion was found in the 3' portion of the gene. Of a total of 15 RFLPs detected with the 11 probes, one was a new RFLP (probe/enzyme: P20/MspI). In 6 RFLPs, the allele frequencies in the Japanese were statistically different from those in the Caucasian. Based on the RFLP data combined with the result of the deletion study, an estimated diagnostic rate for prenatal diagnosis and/or carrier detection in the Japanese DMD families was 63%. The real diagnostic rate obtained from the prenatal and carrier diagnoses, which were practically performed in 17 families, corresponded to the estimation. A protocol useful for the diagnosis in Japanese DMD families is presented.  相似文献   

3.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

4.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

5.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

6.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

7.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

8.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

9.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

10.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

11.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

12.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

13.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

14.
本文应用DMD基因位点的cDM02b—3和8探针对正常中国人及20例无亲嫁关系的DMD患者的基因组DNA进行了分析。结果显示,20例病例中有10例可检测到DMD基因缺失,缺失率为50%,缺失的部位、大小不同,呈现遗传异质性。采用双波长薄层扫描仪(CS—910),还发现了两例基因重复的病例,重复率为1%。此外,在两例有缺失的病例中各发现一个大小异常的联接片段。本文讨论了cDNA探针在DMD基因诊断、携带者检出以及产前基因诊断中的应用和价值。  相似文献   

15.
PGD for dystrophin gene deletions using fluorescence in situ hybridization   总被引:2,自引:0,他引:2  
Duchenne muscular dystrophy and Becker muscular dystrophy (DMD and BMD) are caused by mutations in the dystrophin gene (Xp21). In two-thirds of DMD/BMD cases, the mutation is a large deletion of one or several exons. We have established PGD for DMD/BMD using interphase fluorescence in situ hybridization (FISH) analysis on single nuclei from blastomeres for the detection of deletions of specific exons in the dystrophin gene. We performed PGD for two carrier females; one had a deletion of exons 45-50 (DMD), and the other had a deletion of exons 45-48 (BMD). An exon 45-specific probe was used in combination with probes for the X and Y centromeres. Using this straightforward approach, we can distinguish affected and unaffected male embryos as well as carrier female and normal female embryos. Three cycles were performed for each patient, which resulted in a pregnancy and the birth of a healthy girl. To the best of our knowledge, this approach for PGD has not been previously reported. The use of interphase FISH is an attractive alternative to sexing or PCR-based mutation detection for PGD patients with known deletions of the dystrophin gene.  相似文献   

16.
In our investigation of Duchenne muscular dystrophy (DMD)-Becker muscular dystrophy (BMD) gene in the Chinese, the analysis of relevant restriction fragment length polymorphisms (RFLPs) was first made in 30 normal female volunteers to determine their allele and genotype frequencies, and then in 29 DMD-BMD families for informativeness of different combinations of RFLPs in making carrier detection and prenatal diagnosis. We further screened the mutant gene, first with four 5' end intronic, genomic probes (pERT87-1, pERT87-8, pERT87-15, and XJ1.1) which did not show any deletions, and then with all dystrophin cDNA probes which disclosed 13 partial gene deletions out of 29 patients studied (45%). The deletions were nonrandomly distributed, clustering primarily near the central region of the gene. Fifty percent of the deletions involved single exon-containing HindIII restriction fragments, and again most were located near the center of the gene, emphasizing the importance of this area. Some exceptions were found against the previous suggestion that intactness of translational open reading frame resulted in a BMD phenotype. Neither the location of the breakpoints nor the length of the deletions was useful in predicting a certain phenotype. One of our patients had an intriguing pattern of partial gene deletion that lost part of the gene at the 3' end. Carrier determination was attempted by use of dosage analyses or identification of junction fragments which greatly improved accuracy and reliability.  相似文献   

17.
We have analysed 38 DMD patients from 34 families and 30 BMD patients from 12 families using the cDNA probes Cf23a and Cf56a, which map near the centre of the dystrophin gene, and Cf115, which is close to the 3' end of this gene. Together, probes Cf23a and Cf56a detected deletions in 50% of the DMD families and 33% of the BMD families. Probe Cf115 detected a deletion in only one DMD patient, which has not been reported before in severe X linked myopathy. Most of the DMD deletions could be detected with Cf56a while all four BMD deletions were detected with Cf23a. The pattern of deletions could not be used to predict the precise clinical course of the disease and no correlation was found between the severity of the disease and the extent of the gene deletion. A higher frequency of deletions was observed in sporadic (73%) compared with familial DMD (28%) and BMD cases (33%). This result, if confirmed in a larger sample, would have important implications for genetic counselling.  相似文献   

18.
In our investigation of Duchenne muscular dystrophy (DMD)–Becker muscular dystrophy (BMD)gene in the Chinese, the analysis of relevant restriction fragment length polymorphisms (RFLPs) was first made in 30 normal female volunteers to determine their allele and genotype frequencies, and then in 29 DMD–BMD families for informativeness of different combinations of RFLPs in making carrier detection and prenatal diagnosis. We further screened the mutant gene, first with four 5' end intronic, genomic probes (pERT87-1, pERT87-8, pERT87-15, and XJ1.1) which did not show any deletions, and then with all dystrophin cDNA probes which disclosed 13 partial gene deletions out of 29 patients studied (45%). The deletions were non-randomly distributed, clustering primarily near the central region of the gene. Fifty percent of the deletions involved single exon-containing HindIII restriction fragments, and again most were located near the center of the gene, emphasizing the importance of this area. Some exceptions were found against the previous suggestion that intactness of translational open reading frame resulted in a BMD phenotype. Neither the location of the break-points nor the length of the deletions was useful in predicting a certain phenotype. One of our patients had an intriguing pattern of partial gene deletion that lost part of the gene at the 3' end. Carrier determination was attempted by use of dosage analyses or identification of junction fragments which greatly improved accuracy and reliability.  相似文献   

19.
Cloned cDNA sequences representing exons from the Duchenne/Becker muscular dystrophy (DMD/BMD) gene were used for deletion screening in a population of 287 males males affected with DMD or BMD. The clinical phenotypes of affected boys were classified into three clinical severity groups based on the age at which ambulation was lost. Boys in group 1 had DMD, losing ambulation before their 13th birthday; those in group 2 had disease of intermediate severity, losing ambulation between the ages of 13 and 16 years; and boys in group 3 had BMD, being ambulant beyond 16 years. A fourth group consisted of patients too young to be classified. Clinical group allocation was made without previous knowledge of the DNA results. A gene deletion was found in 124 cases where the clinical severity group of the affected boy was known. The extent of the deletions was delineated using cDNA probes. There were 74 different deletions. Fifty-five of these were unique to individual patients, but the other 19 were found in at least two unrelated patients. The different clinical groups showed generally similar distributions of deletions, and the number of exon bands deleted (that is, deletion size) was independent of phenotype. Some specific deletion types, however, correlated with the clinical severity of the disease. Deletion of exons containing HindIII fragments 33 and 34 and 33 to 35 were associated with BMD and were not found in patients with DMD. Deletions 3 to 7 occurred in four patients with the intermediate phenotype and one patient with BMD. Other shared deletions were associated with DMD, although in four cases patients with disease of intermediate severity apparently shared the same deletion with boys with DMD. The range of phenotypes observed, and the overlap at the genetic level between severe and intermediate and mild and intermediate forms of dystrophy, emphasizes the essential continuity of the clinical spectrum of DMD/BMD. There were no characteristic deletions found in boys with mental retardation or short stature which differed from deletions in affected boys without these features.  相似文献   

20.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive neuromuscular diseases caused by dystrophin gene mutations. Deletions, or more rarely duplications, of single or multiple exons within the dystrophin gene can be detected by current molecular methods in approximately 65% of DMD patients. Mothers of affected males have a two-thirds chance of carrying a dystrophin mutation, whilst approximately one-third of affected males have de novo mutations. Currently, Southern blot analysis and multiplex PCR directed against exons in deletion hot spots are used to determine female carrier status. However, both of these assays depend on dosage assessment to accurately identify carriers since, in females, the normal X chromosome is also present. To obviate quantitation of gene dosage, we have developed exon-specific probes from the dystrophin gene and applied them to a screen for potential carrier females using fluorescence in situ hybridization (FISH). Cosmid clones, representing 16 exons, were identified and used in FISH analysis of DMD/BMD families. Our preliminary work has identified multiple, informative probes for several families with dystrophin deletions and has shown that a FISH-based assay can be an effective and direct method for establishing the DMD/BMD carrier status of females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号