首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucagon-like peptide-1 (GLP-1) increases beta-cell function and growth through protein kinase A- and phosphatidylinositol-3-kinase (PI3-K)/protein kinase B, respectively. GLP-1 acts via a G protein-coupled receptor, and PI3-Kgamma is known to be activated by G(betagamma.) Therefore, the role of PI3-Kgamma in the chronic effects of GLP-1 on the beta-cell was investigated using PI3-Kgamma knockout (KO) mice treated with the GLP-1 receptor agonist, exendin-4 (Ex4; 1 nmol/kg sc every 24 h for 14 d). In vivo, glucose and insulin responses were similar in PBS- and Ex4-treated KO and wild-type (WT) mice. However, glucose-stimulated insulin secretion was markedly impaired in islets from PBS-KO mice (P < 0.05), and this was partially normalized by chronic Ex4 treatment (P < 0.05). In contrast, insulin content was increased in PBS-KO islets, and this was paradoxically decreased by Ex4 treatment, compared with the stimulatory effect of Ex4 on WT islets (P < 0.05-0.01). Transfection of INS-1E beta-cells with small interfering RNA for PI3-Kgamma similarly decreased glucose-stimulated insulin secretion (P < 0.01) and increased insulin content. Basal values for beta-cell mass, islet number and proliferation, glucose transporter 2, glucokinase, and insulin receptor substrate-2 were increased in PBS-KO mice (P < 0.05-0.001) and, although they were increased by Ex4 treatment of WT animals (P < 0.05), they were decreased in Ex4-KO mice (P < 0.05-0.01). These findings indicate that PI3-Kgamma deficiency impairs insulin secretion, resulting in compensatory islet growth to maintain normoglycemia. Chronic Ex4 treatment normalizes the secretory defect, thereby relieving the pressure for expansion of beta-cell mass. These studies reveal a new role for PI3-Kgamma as a positive regulator of insulin secretion, and reinforce the importance of GLP-1 for the maintenance of normal beta-cell function.  相似文献   

2.
It has been proposed that endogenous hexokinases of the pancreatic beta cell control the rate of glucose-stimulated insulin secretion and that genetic defects that reduce beta-cell hexokinase activity may lead to diabetes. To test these hypotheses, we have produced transgenic mice that have a 2-fold increase in hexokinase activity specific to the pancreatic beta cell. This increase was sufficient to significantly augment glucose-stimulated insulin secretion of isolated pancreatic islets, increase serum insulin levels in vivo, and lower the blood glucose levels of transgenic mice by 20-50% below control levels. Elevation of hexokinase activity also significantly reduced blood glucose levels of diabetic mice. These results confirm the role of beta-cell hexokinase activity in the regulation of insulin secretion and glucose homeostasis. They also provide strong support for the proposal that reductions in beta-cell hexokinase activity can produce diabetes.  相似文献   

3.
4.
Glucagon-like peptide 1 (GLP-1) augments glucose-stimulated insulin secretion (GSIS) through cAMP-induced activation of protein kinase A (PKA), and stimulates beta-cell proliferation and reduces beta-cell apoptosis in rodent islets. This study explored islet GSIS, PKA expression, and markers of apoptosis (caspase 3/7 activity) and proliferation (PKBalpha and pancreatic and duodenal homeobox gene 1, Pdx-1) after 2 weeks of treatment with the GLP-1 receptor agonist exendin-4 (2 nmol/kg once daily) in female mice with high-fat diet-induced insulin resistance (HFD; 58% fat by energy). Islets were isolated 20 h after the last exendin-4 injection, when effects of circulating exendin-4 had vanished. The glucose responsiveness in islets from HFD-fed mice at 8.3 mM glucose was reduced compared with islets from control mice fed a normal diet due to increased basal insulin secretion. However, GSIS increased in islets from HFD-fed exendin-4-treated animals (0.124+/-0.012 ng/h per islet in HFD-Ex-4 versus 0.062+/-0.010 in HFD, P=0.006). Furthermore, the insulin response to forskolin was increased (2.7+/-0.3 in HFD-Ex-4 versus 2.0+/-0.2 ng/h per islet in HFD, P=0.011) and PKAcat expression was increased, while PKAreg was reduced in islets from exendin-4-treated mice. In contrast, protein expression of PKBalpha, Pdx-1, and caspase 3/7 activity was not affected by exendin-4 treatment. We conclude that GLP-1 receptor activation in HFD-fed mice has durable effects on GSIS, in association with augmented signaling through the PKA pathway. These effects are seen beyond those induced by circulating exendin-4 already after 2 weeks of once-daily treatment in mice, whereas markers for islet proliferation and apoptosis were unaffected by this treatment.  相似文献   

5.

Aims

Studies suggest that insulin-signaling molecules are present in the pancreatic islets. For this reason, the effects of insulin glulisine, insulin aspart and regular human insulin (RHI) on the function and molecular features of isolated human pancreatic islets were investigated.

Methods

Human pancreatic islets were prepared by collagenase digestion and density-gradient purification of pancreata from multiple organ donors. Islets were then cultured for 48 h in the presence of 5.5 (normal) or 22.2 (high) mmol/L of glucose with and without glulisine, aspart and RHI (10 or 100 nmol/L). Functional (glucose-stimulated insulin secretion) and molecular (quantitative RT-PCR and immunoblot) studies were performed at the end of the different incubation conditions.

Results

Glucose-stimulated insulin secretion was blunted in islets cultured in 22.2 mmol/L of glucose, with no significant effects from the exogenous added insulins. In islets maintained at 5.5 mmol/L of glucose, insulin receptor (IR) expression was reduced by low RHI, while phosphatidylinositol-3 kinase p110-alpha (PI3K) was enhanced by both concentrations of glulisine and aspart, and by high RHI. In islets preexposed to high glucose, IR expression was increased by both concentrations of aspart and RHI, but not by glulisine. Glulisine at high concentration significantly (P < 0.05) increased PI3K expression. Glulisine and RHI significantly increased IRS-2 phosphorylation compared with control and aspart (P < 0.05).

Conclusion

Insulin analogues have differential effects on the expression of insulin-signaling molecules in human pancreatic islets that are also dependent on the degree of glucose exposure.  相似文献   

6.
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine in response to fat absorption. Here we demonstrate a potential role for apoA-IV in regulating glucose homeostasis. ApoA-IV-treated isolated pancreatic islets had enhanced insulin secretion under conditions of high glucose but not of low glucose, suggesting a direct effect of apoA-IV to enhance glucose-stimulated insulin release. This enhancement involves cAMP at a level distal to Ca(2+) influx into the β cells. Knockout of apoA-IV results in compromised insulin secretion and impaired glucose tolerance compared with WT mice. Challenging apoA-IV(-/-) mice with a high-fat diet led to fasting hyperglycemia and more severe glucose intolerance associated with defective insulin secretion than occurred in WT mice. Administration of exogenous apoA-IV to apoA-IV(-/-) mice improved glucose tolerance by enhancing insulin secretion in mice fed either chow or a high-fat diet. Finally, we demonstrate that exogenous apoA-IV injection decreases blood glucose levels and stimulates a transient increase in insulin secretion in KKAy diabetic mice. These results suggest that apoA-IV may provide a therapeutic target for the regulation of glucose-stimulated insulin secretion and treatment of diabetes.  相似文献   

7.
Insulin secretion, insulin biosynthesis and islet glucose oxidation were studied in pancreatic islets isolated from fat-fed diabetic mice of both sexes. Insulin secretion from isolated islets was studied after consecutive stimulation with -ketoisocaproic acid + glutamine, glucose, forskolin, and 12-O-tetradecanoylphorbol 13-acetate. Glucose-induced insulin secretion was impaired in islets from fat-fed mice. This was associated with a reduction of approximately 50% in islet glucose oxidation. Islet insulin secretion stimulated by the non-carbohydrate secretagogues tended to be higher in the fat-fed mice, but a statistically significant effect was not observed. Pancreatic insulin content was reduced by 50%, whereas the islet insulin and DNA content was unchanged after fat feeding. Proinsulin mRNA was reduced by 35% in islets from fat-fed mice, and was associated with a reduction of approximately 50% in glucose-stimulated (pro)insulin biosynthesis. It is concluded that the insulin secretory response of islets isolated from fat-fed mice is similar to the secretory pattern known from human type 2, non-insulin-dependent diabetics, and that a defect in islet glucose recognition, resulting in decreased glucose oxidation, may be responsible for the observed insulin secretory and biosynthetic defects seen after glucose stimulation.  相似文献   

8.
Transgenic mice with elevated levels of beta-cell calmodulin develop severe diabetes even though pancreatic beta-cells contain reserve levels of insulin. Electron microscopic examination of transgenic pancreas confirmed the presence of abundant insulin secretory granules and failed to reveal obvious morphological abnormalities. These observations suggested that excess calmodulin may specifically impair the secretory process. To directly assess the effect of excess calmodulin on beta-cell function we have isolated pancreatic islets from transgenic animals. Transgenic islets from 6- to 8-day-old mice used 40% less glucose than normal islets and contained 58% of the normal insulin content, 90% of the normal glucagon content, and 5-fold higher levels of calmodulin than islets from control mice of the same age. Parallel perifusions of normal and transgenic islets confirmed that excess calmodulin inhibited glucose-stimulated insulin secretion; first phase secretion was reduced by 60%, and second phase secretion was essentially absent. Static assays were performed to assess the response to other secretagogues. All fuel secretagogues tested were ineffective in stimulating insulin secretion from transgenic islets. Secretion in response to depolarizing levels of potassium was also severely impaired. The phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine increased transgenic secretion, but not to the level obtained in normal islets. Of the compounds examined, only phorbol 12-myristate 13-acetate and carbachol, two substances thought to act in beta-cells by stimulation of protein kinase-C, produced equivalent secretion in normal and transgenic islets. Phorbol 12-myristate 13-acetate also appeared to restore second phase secretion in transgenic islets. These results indicate that the initial period of calmodulin-induced diabetes is due to a secretory defect. This defect appears to be distal to membrane depolarization and is selective for the second phase of insulin secretion.  相似文献   

9.
10.
Nguyen KH  Yao XH  Moulik S  Mishra S  Nyomba BL 《Endocrinology》2011,152(6):2184-2196
Human IGF binding protein-3 (hIGFBP-3) overexpression in mice causes hyperglycemia, but its effect on β-cell function is unknown. We compared wild-type mice with mice overexpressing hIGFBP-3 [phoshoglycerate kinase (PGK)BP3] and mutant (Gly??/Gly??/Gly?1)hIGFBP-3 devoid of IGF binding affinity (PGKmBP3). Intraperitoneal glucose and insulin tolerance tests were performed, and glucose, IGFBP-3, IGF-I, and insulin were determined. Pancreatic sections were used for islet histomorphometry and stained with antibodies against insulin, glucagon, and hIGFBP-3. Pancreatic islets were isolated to determine the expression of IGFBP-3, and glucose-stimulated insulin secretion was measured using both islet batch incubation and perifusion. IGFBP-3 was expressed in β-cells but not in other islet cell types. Fasting glucose concentration was elevated in PGKBP3 mice (6.27 ± 0.31 mm) compared with PGKmBP3 mice (3.98 ± 0.36 mm) and wild-type mice (4.84 ± 0.07 mm). During glucose tolerance test, glucose declined more slowly in PGKBP3 and PGKmBP3 mice than in wild-type mice, and insulin secretion was impaired in PGKBP3 mice. During insulin tolerance test, insulin declined more slowly in both transgenic mice compared with wild-type mice. Insulin secretion in islets incubated with 3.3 mm glucose was similar among groups, but islet insulin response to 16.7 mm glucose alone, or with carbachol and cAMP enhancers, was reduced in PGKBP3 and PGKmBP3 mice compared with wild-type controls. ATP content, Akt phosphorylation, and phosphoglucose isomerase activity were reduced in islets from both transgenic mice. Thus, overexpression of hIGFBP-3 in mice delays in vivo insulin clearance and reduces glucose-stimulated insulin secretion in pancreatic islets by both IGF-dependent and IGF-independent mechanisms.  相似文献   

11.
Vlacich G  Nawijn MC  Webb GC  Steiner DF 《Islets》2010,2(5):308-317
Pancreatic β-cell response to glucose stimulation is governed by tightly regulated signaling pathways which have not been fully characterized. A screen for novel signaling intermediates identified Pim3 as a glucose-responsive gene in the β cell, and here, we characterize its role in the regulation of β-cell function. Pim3 expression in the β-cell was first observed through microarray analysis on glucose-stimulated murine insulinoma (MIN6) cells where expression was strongly and transiently induced. In the pancreas, Pim3 expression exhibited similar dynamics and was restricted to the β cell. Perturbation of Pim3 function resulted in enhanced glucose-stimulated insulin secretion, both in MIN6 cells and in isolated islets from Pim3-/- mice, where the augmentation was specifically seen in the second phase of secretion. Consequently, Pim3-/- mice displayed an increased glucose tolerance in vivo. Interestingly, Pim3-/- mice also exhibited increased insulin sensitivity. Glucose stimulation of isolated Pim3-/- islets resulted in increased phosphorylation of ERK1/2, a kinase involved in regulating β-cell response to glucose. Pim3 was also found to physically interact with SOCS6 and SOCS6 levels were strongly reduced in Pim3-/- islets. Overexpression of SOCS6 inhibited glucose-induced ERK1/2 activation, strongly suggesting that Pim3 regulates ERK1/2 activity through SOCS6. These data reveal that Pim3 is a novel glucose-responsive gene in the β cell that negatively regulates insulin secretion by inhibiting the activation of ERK1/2, and through its effect on insulin sensitivity, has potentially a more global function in glucose homeostasis.  相似文献   

12.
Insulin receptor (IR) may play an essential role in the development of beta-cell mass in the mouse pancreas. To further define the function of this signaling system in beta-cell development, we generated IR-deficient beta-cell lines. Fetal pancreata were dissected from mice harboring a floxed allele of the insulin receptor (IRLoxP) and used to isolate islets. These islets were infected with a retrovirus to express simian virus 40 large T antigen, a strategy for establishing beta-cell lines (beta-IRLoxP). Subsequently, these cells were infected with adenovirus encoding cre recombinase to delete insulin receptor (beta-IR(-/-)). beta-Cells expressed insulin and Pdx-1 mRNA in response to glucose. In beta-IRLoxP beta-cells, p44/p42 MAPK and phosphatidylinositol 3 kinase pathways, mammalian target of rapamycin (mTOR), and p70S(6)K phosphorylation and beta-cell proliferation were stimulated in response to insulin. Wortmannin or PD98059 had no effect on insulin-mediated mTOR/p70S(6)K signaling and the corresponding mitogenic response. However, the presence of both inhibitors totally impaired these signaling pathways and mitogenesis in response to insulin. Rapamycin completely blocked insulin-activated mTOR/p70S(6)K signaling and mitogenesis. Interestingly, in beta-IR(-/-) beta-cells, glucose failed to stimulate phosphatidylinositol 3 kinase activity but induced p44/p42 MAPKs and mTOR/p70S(6)K phosphorylation and beta-cell mitogenesis. PD98059, but not wortmannin, inhibited glucose-induced mTOR/p70S(6)K signaling and mitogenesis in those cells. Finally, rapamycin blocked glucose-mediated mitogenesis of beta-IR(-/-) cells. In conclusion, independently of glucose, insulin can mediate mitogenesis in fetal pancreatic beta-cell lines. However, in the absence of the insulin receptor, glucose induces beta-cell mitogenesis.  相似文献   

13.
We determined in vivo and in vitro pancreatic islet insulin secretion and glucose metabolism in fetuses with intrauterine growth restriction (IUGR) caused by chronic placental insufficiency to identify functional deficits in the fetal pancreas that might be caused by nutrient restriction. Plasma insulin concentrations in the IUGR fetuses were 69% lower at baseline and 76% lower after glucose-stimulated insulin secretion (GSIS). Similar deficits were observed with arginine-stimulated insulin secretion. Fetal islets, immunopositive for insulin and glucagon, secreted insulin in response to increasing glucose and KCl concentrations. Insulin release as a fraction of total insulin content was greater in glucose-stimulated IUGR islets, but the mass of insulin released per IUGR islet was lower because of their 82% lower insulin content. A deficiency in islet glucose metabolism was found in the rate of islet glucose oxidation at maximal stimulatory glucose concentrations (11 mmol/liter). Thus, pancreatic islets from nutritionally deprived IUGR fetuses caused by chronic placental insufficiency have impaired insulin secretion caused by reduced glucose-stimulated glucose oxidation rates, insulin biosynthesis, and insulin content. This impaired GSIS occurs despite an increased fractional rate of insulin release that results from a greater proportion of releasable insulin as a result of lower insulin stores. Because this animal model recapitulates the human pathology of chronic placental insufficiency and IUGR, the beta-cell GSIS dysfunction in this model might indicate mechanisms that are developmentally adaptive for fetal survival but in later life might predispose offspring to adult-onset diabetes that has been previously associated with IUGR.  相似文献   

14.
The release of insufficient amounts of insulin in the presence of elevated blood glucose levels is one of the key features of type 2 diabetes. Various lines of evidence indicate that acetylcholine (ACh), the major neurotransmitter of the parasympathetic nervous system, can enhance glucose-stimulated insulin secretion from pancreatic beta-cells. Studies with isolated islets prepared from whole body M(3) muscarinic ACh receptor knockout mice showed that cholinergic amplification of glucose-dependent insulin secretion is exclusively mediated by the M(3) muscarinic receptor subtype. To investigate the physiological relevance of this muscarinic pathway, we used Cre/loxP technology to generate mutant mice that lack M(3) receptors only in pancreatic beta-cells. These mutant mice displayed impaired glucose tolerance and significantly reduced insulin secretion. In contrast, transgenic mice overexpressing M(3) receptors in pancreatic beta-cells showed a pronounced increase in glucose tolerance and insulin secretion and were resistant to diet-induced glucose intolerance and hyperglycaemia. These findings indicate that beta-cell M(3) muscarinic receptors are essential for maintaining proper insulin secretion and glucose homeostasis. Moreover, our data suggest that enhancing signalling through beta-cell M(3) muscarinic receptors may represent a new avenue in the treatment of glucose intolerance and type 2 diabetes.  相似文献   

15.
Aims/hypothesis Whether excess glucose (glucotoxicity) and excess non-esterified fatty acids (lipotoxicity) act synergistically or separately to alter beta-cell function on Type 2 diabetes remains controversial. We examined the influence of non-esterified fatty acids, with or without concomitant increased glucose concentrations, on human islet function and on the expression of genes involved in lipid metabolism.Methods Human islets isolated from non-diabetic and non-obese donors were cultured with 5.5, 16 or 30 mmol/l glucose, and when appropriate with 1 or 2 mmol/l non-esterified fatty acids. After 48 h, glucose-stimulated insulin secretion, insulin content, triglyceride content and expression of different genes were evaluated.Results Non-esterified fatty acids decreased glucose-stimulated insulin secretion, insulin content and increased triglyceride content of human isolated islets, independently from the deleterious effect of glucose. Increased glucose concentrations also decreased glucose-stimulated insulin secretion and insulin content, but had no influence on triglyceride content. Glucose-stimulated insulin secretion of islets appeared to be significantly correlated with their triglyceride content. Glucose and non-esterified fatty acids modified the gene expression of carnitine palmitoyltransferase-I, acetyl-CoA carboxylase, acyl-CoA oxidase and uncoupling protein 2.Conclusion/interpretation In our model of isolated human islets, increased glucose and non-esterified fatty acids separately reproduced the two major beta-cell alterations observed in vivo, i.e. loss of glucose-stimulated insulin secretion and reduction in islet insulin content. Our results also suggest that this deleterious effect was, at least in part, mediated by modifications in lipid metabolism gene expression.Abbreviations ACC Acetyl-CoA carboxylase - ACO acyl-CoA oxidase - CPT-I carnitine palmitoyltransferase-I - GSIS glucose-stimulated insulin secretion - PPAR peroxisome proliferator-activated receptor - PDX-1 pancreatic/duodenal homeobox-1 - PPRE peroxisomal proliferator response element - TG triglyceride - UCP-2 uncoupling protein 2  相似文献   

16.
The activity of G protein-coupled receptors is regulated via hyper-phosphorylation following agonist stimulation. Despite the universal nature of this regulatory process, the physiological impact of receptor phosphorylation remains poorly studied. To address this question, we have generated a knock-in mouse strain that expresses a phosphorylation-deficient mutant of the M(3)-muscarinic receptor, a prototypical G(q/11)-coupled receptor. This mutant mouse strain was used here to investigate the role of M(3)-muscarinic receptor phosphorylation in the regulation of insulin secretion from pancreatic islets. Importantly, the phosphorylation deficient receptor coupled to G(q/11)-signaling pathways but was uncoupled from phosphorylation-dependent processes, such as receptor internalization and β-arrestin recruitment. The knock-in mice showed impaired glucose tolerance and insulin secretion, indicating that M(3)-muscarinic receptors expressed on pancreatic islets regulate glucose homeostasis via receptor phosphorylation-/arrestin-dependent signaling. The mechanism centers on the activation of protein kinase D1, which operates downstream of the recruitment of β-arrestin to the phosphorylated M(3)-muscarinic receptor. In conclusion, our findings support the unique concept that M(3)-muscarinic receptor-mediated augmentation of sustained insulin release is largely independent of G protein-coupling but involves phosphorylation-/arrestin-dependent coupling of the receptor to protein kinase D1.  相似文献   

17.
18.
The two peptides pancreastatin and diazepam binding inhibitor (DBI) were recently demonstrated in pancreatic islets and were shown to inhibit insulin secretion in short term experiments. In the present study we investigated long term effects of pancreastatin and DBI on the DNA synthesis, polyamine content, and insulin secretion of pancreatic beta-cells in tissue culture. For this purpose fetal rat pancreatic islets enriched in beta-cells were isolated and cultured for 3 days at different concentrations of rat pancreastatin and porcine DBI. It was found that pancreastatin dose-dependently decreased beta-cell DNA synthesis, reaching maximal inhibition at 100 nM. In parallel with this, pancreastatin also decreased insulin secretion and the islet contents of insulin and the polyamines spermidine and spermine. These effects were abolished by a high glucose concentration or addition of GH. Also, DBI evoked a dose-dependent inhibition of beta-cell DNA synthesis but affected neither the islet contents of insulin or polyamines nor insulin secretion. Like pancreastatin, DBI was ineffective in preventing the increased beta-cell DNA synthesis, insulin content, or secretion in response to high glucose or GH. It is concluded that pancreastatin and DBI inhibit beta-cell DNA synthesis and function in vitro. In the case of pancreastatin these inhibitory effects may be mediated by a decrease in islet polyamine content. It is suggested that pancreastatin and DBI may influence beta-cell replication and function in vivo in an autocrine or paracrine fashion.  相似文献   

19.
An unique isoform of hormone-sensitive lipase (HSL) is expressed in beta-cells. Recent findings suggest that HSL could be involved in the regulation of glucose stimulated insulin secretion (GSIS), however, these findings are controversial. To test the hypothesis that HSL is involved in control of normal GSIS via changes in its expression and/or activity in response to stimuli, we examined the effects of free fatty acid (FFA) loading and glucagon like peptide-1 (GLP-1) stimulation on the regulation of HSL expression and activity. With prolonged FFA loading, there was increased expression of beta-cell HSL and increased HSL hydrolytic activity in clonal beta-cells. Short-term treatment with GLP-1 increased HSL activity without changing the expression of the beta-cell isoform of HSL. Basal insulin secretion was increased, whereas GLP-1 potentiation of GSIS was decreased in islets isolated from HSL-/- mice, as compared to islets from wild type mice. Furthermore, using PancChip 2.2 cDNA microarrays (NIDDK consortium), the gene expression profile in the islets of HSL-/- mice was compared with wild type mice. Results showed changes in several metabolic pathways due to changes in lipid homeostasis caused by inactivation of HSL. Quantitative PCR for selected genes also revealed changes in genes that are related to insulin secretion, such as UCP-2. Therefore, these results suggest that the beta-cell isoform of HSL is involved in maintaining lipid homeostasis in islets and contributes to the proper control of GSIS.  相似文献   

20.
A study was initiated to test two hypotheses. The first was the postulate that glucose-stimulated insulin secretion would be enhanced in pancreatic islets isolated from normal non-obese rats made insulin-resistant by dietary means. The second, related hypothesis was that glucose-stimulated insulin secretion by pancreatic islets isolated from insulin-resistant rats would be more vulnerable to inhibition following culture in the presence of fatty acids. For this purpose, insulin resistance was induced in normal Sprague-Dawley rats by feeding fat-enriched and fructose-enriched diets. The results indicate that islets isolated from either fat-fed or fructose-fed rats secreted significantly more insulin at a glucose concentration of 2.5 to 10.0 mmol/L. In addition, the mean maximal glucose (27 mmol/L)-stimulated insulin secretion rate was significantly lower (15.3 +/- 2.5 ng/islet/h) in islets from fructose-fed rats versus chow-fed rats (25.2 +/- 3.1 ng/islet/h) following culture for 48 hours in the presence of palmitate (0.125 micromol/L). These results support the view that glucose-stimulated insulin secretion is enhanced in islets from insulin-resistant rats, and that these islets are more vulnerable to the inhibitory effects of free fatty acid (FFA) on insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号