首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major cysteine proteinase (cruzipain) purified from Trypanosoma cruzi epimastigotes catalyzes its own degradation in the presence of beta-mercaptoethanol, at 56 degrees C and pH 6. The reaction is affected by the same inhibitors which inhibit the azocaseinase activity, and yields a major 25-kDa fragment, which contains carbohydrate, few, if any, aromatic amino acids, and presents a proline-rich N-terminus (GPGPXPEP...), in addition to a number of small peptides, which can be isolated by reversed-phase HPLC, but are lost during electrophoresis. The results, together with recently published evidence of Mottram et al. and Eakin et al., are compatible with a structure for cruzipain consisting of a conventional cysteine proteinase moiety, linked to a long C-terminal extension including the 25-kDa fragment, which would contain a high proportion of the carbohydrate and the proline residues present in the original 60-kDa molecule.  相似文献   

2.
Cruzipain, the major cysteine proteinase of Trypanosoma cruzi, might have other biological roles than its metabolic functions. In this report, we have explored the interaction of cruzipain with molecules of the immune system. The enzyme was used to digest all human IgG subclasses at different pH values and lengths of time. At pH 7.3, all subclasses were readily split at the hinge region. Immunoblot and amino acid sequence analysis showed fragments of IgG1 and IgG3 to be compatible with Fab and Fc, whereas IgG2 and IgG4 rendered Fab2 and Fc. In all cases the fragments produced might impair the binding capacities and the effector functions of specific IgG. At these cleavage sites cruzipain displays cathepsin L and/or cathepsin B activities and shows a clear preference for Pro at the P'2 position and polar residues at P1. Despite the activity of cruzipain within the hinge, the enzyme also cleaved all heavy chains between the CH2 and CH3 domains; producing Fc'-like-fragments of 14 kDa. These fragments are potential candidates to block or saturate Fc receptors on immunocompetent cells. At mild acidic pH cruzipain produced further degradation of the Fc of all subclasses, the Fd of IgG4 and partially the Fd of IgG1, with the consistent loss of any antibody activity. The L chains apparently were not affected. Thus, cruzipain should be able to modulate, depending on the subclass selected and the pH of the environment, the production and the length of different biologically active/inactive IgG fragments.  相似文献   

3.
Three genes encoding putative aspartate aminotransferases (ASATs) were identified in the Trypanosoma cruzi genome. Two of these ASAT genes, presumably corresponding to a cytosolic and mitochondrial isoform, were cloned and expressed as soluble His-tagged proteins in Escherichia coli. The specific activities determined for both T. cruzi isozymes were notably higher than the values previously reported for Trypanosoma brucei orthologues. To confirm these differences, T. brucei mASAT and cASAT were also expressed as His-tagged enzymes. The kinetic analysis showed that the catalytic parameters of the new recombinant T. brucei ASATs were very similar to those determined for T. cruzi orthologues. The cASATs from both parasites displayed equally broad substrate specificities, while mASATs were highly specific towards aspartate/2-oxoglutarate. The subcellular localization of the mASAT was confirmed by digitonin extraction of intact epimastigotes. At the protein level, cASAT is constitutively expressed in T. brucei, whereas mASAT is down-regulated in the bloodstream forms. By contrast in T. cruzi, mASAT is expressed along the whole life cycle, whereas cASAT is specifically induced in the mammalian stages. Similarly, the expression of malate dehydrogenases (MDHs) is developmentally regulated in T. cruzi: while glycosomal MDH is only expressed in epimastigotes and mitochondrial MDH is present in the insect and mammalian stages. Taken together, these findings provide evidence for a metabolically active mitochondrion in the mammalian stages of T. cruzi, and suggest that the succinate excreted by amastigotes more likely represents a side product of an at least partially operative Krebs cycle, than an end product of glycosomal catabolism.  相似文献   

4.
The therapeutic potential of synthetic inhibitors to the major cysteine-proteinase from Trypanosoma cruzi (cruzain or cruzipain) was recently demonstrated in animal models of Chagas' disease. A possible limitation of this strategy would be the emergence of parasite populations developing resistance to cysteine-proteinase inhibitors. Here, we describe the properties of a phenotypically stable T. cruzi cell line (R-Dm28) that displays increased resistance to Z-(SBz)Cys-Phe-CHN2, an irreversible cysteine-proteinase inhibitor which preferentially inactivates cathepsin L-like enzymes. Isolated from axenic cultures of the parental cells (IC50 1.5 microM), R-Dm28 epimastigotes exhibited 13-fold (IC50) 20 microM) higher resistance to this inhibitor and did not display cross-resistance to unrelated trypanocidal drugs, such as benznidazol and nifurtimox. Western blotting (with mAb), affinity labeling (with biotin-LVG-CHN2) and FACS analysis of R-Dm28 log-phase epimastigotes revealed that the cruzipain target was expressed at lower levels, as compared with Dm28c. Interestingly, this deficit was paralleled by increased expression of an unrelated Mr 30 000 cysteine-proteinase whose activity was somewhat refractory to inhibition by Z-(SBz)Cys-Phe-CHN,. N-terminal sequencing of the affinity-purified biotin-LVG-proteinase complex allowed its identification as a cathepsin B-like enzyme. Increased antigenic deposits of this proteinase were found in the grossly enlarged and electron dense reservosomes from R-Dm28 epimastigotes. Our data suggest that R-Dm28 resistance to toxic effects induced by the synthetic inhibitor may result from decreased availability of the most sensitive cysteine-proteinase target, cruzipain. The deficit in metabolic functions otherwise mediated by this cathepsin L-like proteinase is likely compensated by increased expression/accumulation of a cathepsin B-like target.  相似文献   

5.
6.
We studied the macrophage (Mo) activation pathways through Mo interaction with immunogenic Trypanosoma cruzi antigens as cruzipain (Cz) and R13. J774 cells, peritoneal and spleen Mo from normal mice, were used. Although Mo classic activation was observed in the presence of lipopolysaccharide, evaluated through nitric oxide (NO) and interleukin (IL)-12 production, Cz and R13 did not activate Mo in this way. To study the alternative pathway, we examined the arginase activity in Mo cultured with Cz. An increase of arginase activity was detected in all Mo sources assayed. An increase of IL-10 and transforming growth factor-beta in culture supernatants from Mo stimulated with Cz was observed. The study of expression of B7.1 and B7.2 in spleen Mo revealed that Cz induces preferential expression of B7.2. In vitro studies revealed that Cz stimulated J774 cells and then, infected with trypomastigotes of T. cruzi, developed a higher number of intracellular parasites than unstimulated infected Mo. Thus, Cz favors the perpetuation of T. cruzi infection. In addition, a down-regulation of inducible NO synthase was observed in J774 cells stimulated with Cz. These results suggest that Cz interaction with Mo could modulate the immune response generated against T. cruzi through the induction of a preferential metabolic pathway in Mo.  相似文献   

7.
We demonstrate that cruzipain, the major cysteine proteinase of Trypanosoma cruzi epimastigotes, is encoded by a large number of tandemly arranged genes. Restriction enzyme analysis of 20 clones containing complete repeat units of the gene, as well as sequencing of 2 of these clones, and comparison with previously published partial sequences, indicated that the sequence is conserved among the repeat units, although polymorphisms clearly exist. The repeat units contain an intergenic region of 528 bp and coding regions for pre- and pro-enzyme, a central domain and a C-terminal extension. The predicted amino acid sequences of these regions indicated a sequence identity of 30, 60, 70 and 36%, respectively, when the T. cruzi sequence was compared with the sequence of a similar cysteine proteinase from Trypanosoma brucei [14]. Studies by pulsed field gel electrophoresis, complemented with restriction analysis, indicated that the clusters are located on 2 4 different chromosomes in several parasite isolates.  相似文献   

8.
Chagas disease and leishmaniasis are tropical diseases caused by the protozoan parasites, Trypanosoma cruzi and Leishmania species, respectively. Protein farnesyltransferase (PFT) is being investigated as a target for anti-trypanosomatid agents because inhibitors of this enzyme are highly toxic to these parasites compared to mammalian cells. Here, we report the cloning of the alpha- and beta-subunit genes of PFT from T. cruzi and Leishmania major. The proteins encoded by these genes are considerably larger than those of mammalian PFTs due to the presence of a number of inserts of >25 amino acids that map to junctions between helical structural elements. These inserts are not part of the active site or the interface between the two subunits. Northern blots demonstrate expression of messenger RNA for the PFT subunits in both mammalian and insect life-cycle stages of these parasites. The T. cruzi, Trypanosoma brucei, and L. major PFTs were overexpressed in the Sf9 cell/baculovirus system as active enzyme forms. Kinetic studies with a panel of CALX-containing peptides with all 20 amino acids in the X-position show that trypanosomatid PFTs have similar substrate specificities and these are different from the mammalian PFT substrate specificity patterns.  相似文献   

9.
10.
11.
12.
Mouse hepatitis virus (MHV) infection can have a pronounced impact on several investigation areas. Reports on natural MHV outbreaks are rare and most studies have been conducted by deliberately infecting mice with MHV laboratory strains that cause moderate to severe disturbances to the immune system. We have investigated the effects of a natural acute outbreak of MHV in our otherwise specific-pathogen-free (SPF) inbred mouse colonies, and of enzootic chronic MHV infection on cytokine production and resistance to the intracellular pathogen Trypanosoma cruzi. We found that BALB/c and/or C57BL/6 SPF mice that had been injected with T. cruzi blood trypomastigotes from recently MHV-contaminated (MHV+) mice developed significantly higher parasite blood counts, accelerated death, and showed higher IL-10 production by spleen cells than their counterparts whose T. cruzi inoculum was derived from MHV-negative (MHV-) donors. Interferon-gamma (IFN-gamma) production by MHV+ and MHV- mice was not significantly different. In contrast, T. cruzi infection of chronically MHV-infected mice did not result in major changes in the course of infection when compared with that observed in mice from MHV- colonies, although a trend to higher parasitaemia levels was observed in BALB/c MHV+ mice. Nevertheless, both BALB/c and C57BL/6 T. cruzi-infected MHV+ mice had diminished IFN-gamma production to parasite-antigen stimulation in comparison with similarly infected MHV- mice. Interleukin-10 (IL-10) production levels by spleen cells did not differ between chronic MHV+ and MHV- mice, but IFN-gamma neutralization by monoclonal antibody treatment of anti-CD3-stimulated spleen cell cultures showed higher levels of IL-10 synthesis in MHV+ BALB/c mice.  相似文献   

13.
In this paper, the infectivity for mice of Trypanosoma cruzi I and II strains isolated from sylvatic animals, triatomines, and humans is determined using fresh blood examination, hemoculture, culture of macerated organs, and polymerase chain reaction (PCR). Six strains were considered to have low infectivity (9.1–18.2%), five medium (27.3–45.4%), and one high (100.0%). Infectivity of T. cruzi strains isolated from sylvatic animals was significantly higher than that of strains isolated from humans and triatomines (p=0.0141). No significant difference was observed between the infectivity of T. cruzi I and II strains. The parasite was detected by fresh blood examination in one strain, by hemoculture and culture of macerated organs in four strains, and by PCR in all strains. We conclude that the infectivity is related to the host from which the strains were isolated, but the infectivity is not related to the genetic group of the parasite. We also conclude that the majority of the strains studied have low and medium infectivity for mice, and that PCR is an important tool to detect T. cruzi in strains with this biological characteristic.  相似文献   

14.
Monoclonal antibodies (MoAbs) specific for unique epitopes of the catalytic domain of cruzipain (Crz) were used to develop a two-site sandwich ELISA specific for native Crz. In addition, the authors developed a sandwich ELISA that allowed the detection of the protease C-terminal domain (CT) using a combination of a MoAb specific for the CT and rabbit anti-Crz IgGs. Both assays were sensitive with detection limits of 2 ng/ml and 0.7 ng/ml, respectively. The assays were assessed for applicability in detection of antigens in serum and urine from experimentally infected BALB/c mice. The antigens were already detectable in serum by the third week after infection, reached their peak by week four, and decreased during the chronic phase of the infection. Throughout the infection the relative amount of CT detected was several-fold higher than that of native Crz, and the data demonstrate that the cT exposes highly immunogenic epitopes that are absent in native Crz. Since these observations have a potential application in diagnosis, the authors analysed the degree of cross-reactivity with antigens from T. rangeliT. bruceiLeishmania mexicana and L. panamensis, and determined that the assays were highly specific. Measurable amounts of the CT were also recorded in urine samples.  相似文献   

15.
Monoclonal antibodies (MoAbs) specific for unique epitopes of the catalytic domain of cruzipain (Crz) were used to develop a two-site sandwich ELISA specific for native Crz. In addition, the authors developed a sandwich ELISA that allowed the detection of the protease C-terminal domain (CT) using a combination of a MoAb specific for the CT and rabbit anti-Crz IgGs. Both assays were sensitive with detection limits of 2 ng/ml and 0.7 ng/ml, respectively. The assays were assessed for applicability in detection of antigens in serum and urine from experimentally infected BALB/c mice. The antigens were already detectable in serum by the third week after infection, reached their peak by week four, and decreased during the chronic phase of the infection. Throughout the infection the relative amount of CT detected was several-fold higher than that of native Crz, and the data demonstrate that the cT exposes highly immunogenic epitopes that are absent in native Crz. Since these observations have a potential application in diagnosis, the authors analysed the degree of cross-reactivity with antigens from T.  rangeli T. brucei Leishmania mexicana and L. panamensis , and determined that the assays were highly specific. Measurable amounts of the CT were also recorded in urine samples.  相似文献   

16.
17.
18.
We have explored the specificity of the S(2) subsite of recombinant cysteine proteinases from Leishmania mexicana (CPB2.8 Delta CTE) and from Trypanosoma cruzi (cruzain) employing a series of fluorogenic substrates based on the peptide Bz-F-R-MCA, in which Bz is the benzoyl group and the Phe residue has been substituted for by Arg, His and non-natural basic amino acids that combine a basic group with an aromatic or hydrophobic group at the side chain: 4-aminomethyl-phenylalanine (Amf), 4-guanidine phenylalanine (Gnf), 4-aminomethyl-N-isopropyl-phenylalanine (Iaf), 3-pyridyl-alanine (Pya), 4-piperidinyl-alanine (Ppa), 4-aminomethyl-cyclohexyl-alanine (Ama), and 4-aminocyclohexyl-alanine (Aca). Bz-F-R-MCA was hydrolyzed well by CPB2.8 Delta CTE and cruzain, but all the substitutions of Phe resulted in less susceptible substrates for the two enzymes. CPB2.8 Delta CTE has a restricted specificity to hydrophobic side chains as with cathepsin L. However, the peptides with the residues Amf and Ama presented higher affinity to CPB2.8 Delta CTE, and the latter was an inhibitor of the enzyme. Although, cruzain accepts basic as well as hydrophobic residues at the S(2) subsite, it is more restrictive than cathepsin B and no inhibitor was found amongst the examined peptides.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号