首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
PURPOSE: To investigate a rapid flow-suppression method for improving the contrast-to-noise ratio (CNR) between the vessel wall and the lumen for cardiovascular imaging applications. MATERIALS AND METHODS: In this study a new dark-blood steady-state free precession (SSFP) sequence utilizing two excitation pulses per TR was developed. The first pulse is applied immediately adjacent to the slice of interest, while the second is a conventional slice-selective pulse designed to excite an SSFP signal for the static spins in the slice of interest. The slice-selective pulse is followed by fully refocused gradients along all three imaging axes over each TR. The signal amplitude (SA) from the moving spins excited by the "saturation" pulse is attenuated since they are not fully refocused at the TE. RESULTS: This work provides confirmation, by both simulation and experiments, that modest adaptations of the basic True-FISP structure can limit unwanted "bright blood" signal within the vessels while simultaneously preserving the contrast and speed advantages of this well-established rapid imaging method. CONCLUSION: Animal imaging trials confirm that dark-blood contrast is achieved with the BASS sequence, which substantially reverses the lumen-to-muscle CNR of a conventional True-FISP "bright blood" acquisition from 14.77 (bright blood) to -13.96 (dark blood) with a modest increase (24.2% of regular TR of SSFP for this implementation) in acquisition time to accommodate the additional slab-selective excitation pulse and gradient pulses.  相似文献   

2.
Phase detection in fully refocused SSFP imaging has recently allowed fat/water separation without preparing the magnetization or using multiple acquisitions. Instead, it exploits the phase difference between fat and water at an echo time at the midpoint of the TR. To minimize the TR for improved robustness to B0 inhomogeneity, a 3D projection acquisition collecting two half echoes at the beginning and end of each excitation was previously implemented. Since echoes are not formed at the midpoint of the TR, this method still requires two passes of k-space for fat/water separation. A new method is presented to linearly combine the half echoes to separate fat and water in a single acquisition. Separation using phase detection provides superior contrast between fat and water voxels. Results from high resolution angiography and musculoskeletal studies with improved robustness to inhomogeneity and a 50% scan time reduction compared to the two pass method are presented.  相似文献   

3.
A new method of encoding flow velocity as image phase in a refocused steady-state free precession (SSFP) sequence, called steady-state phase contrast (SSPC), can be used to generate velocity images rapidly while retaining high signal. Magnitude images with refocused-SSFP contrast are simultaneously acquired. This technique is compared with the standard method of RF-spoiled phase contrast (PC), and is found to have more than double the phase-signal to phase-noise ratio (PNR) when compared with standard PC at reasonable repetition intervals (TRs). As TR decreases, this advantage increases exponentially, facilitating rapid scans with high PNR efficiency. Rapid switching between the two necessary steady states can be accomplished by the insertion of a single TR interval with no flow-encoding gradient. The technique is implemented in a 2DFT sequence and validated in a phantom study. Preliminary results indicate that further TR reduction may be necessary for high-quality cardiac images; however, images in more stationary structures, such as the descending aorta and carotid bifurcation, exhibit good signal-to-noise ratio (SNR) and PNR. Comparisons with standard-PC images verify the PNR advantage predicted by theory.  相似文献   

4.
PURPOSE: To improve the performance of fat/water separation and reduce the sensitivity to susceptibility variation in balanced SSFP sequences. MATERIALS AND METHODS: Decreasing the repetition time (TR) reduces susceptibility artifacts in SSFP imaging. A shorter TR may also improve the spectral selectivity obtained when linearly combining data acquired using different radiofrequency phase cycling schedules. The desired short TR is achieved by using an angularly undersampled three-dimensional radial acquisition sequence that achieves a near zero echo time (TE) and also a short TR. RESULTS: Images from human volunteers demonstrate broad coverage of the cervical spine and knee with isotropic resolution. Excellent fat/water separation is achieved in these studies. CONCLUSION: The short TR capability of the proposed sequence greatly improves the fat suppression in SSFP imaging. High-resolution volumetric T2-like contrast imaged with reduced susceptibility artifacts can be obtained from a single acquisition using this technique.  相似文献   

5.
Steady-state free precession (SSFP) pulse sequences employing gradient reversal echoes and short repetition time (TR) between successive rf excitation pulses offer high signal-to-noise ratio per unit time. However, SSFP sequences are very sensitive to motion. A new SSFP method is presented which avoids the image artifacts and loss of signal intensity due to motion. The pulse sequence is designed so that the time integral of each of the three gradients is zero over each TR time interval. The signal then consists of numerous echoes which are superimposed. These echoes are isolated by combining the data from N different scans. In each scan a specific phase shift is added during every TR interval. Each of these N isolated echoes produces a motion-insensitive, artifact-free image. Because all the echoes are sampled simultaneously, the signal-to-noise ratio per unit time in this SSFP method is higher than in existing SSFP techniques which sample only one echo at a time. The new method was implemented and used to produce both two- and three-dimensional images of the head and cervical spin of a human patient. In these images the high signal intensity of cerebrospinal fluid is preserved regardless of its motion. Further work is required to evaluate the imaging parameters (TR, TE, rf tip angle) so as to give optimal tissue contrast for the various echoes.  相似文献   

6.
A novel balanced SSFP technique for the separation or suppression of different resonance frequencies (e.g., fat suppression) is presented. The method is based on applying two alternating and different repetition times, TR(1) and TR(2). This RF scheme manipulates the sensitivity of balanced SSFP to off-resonance effects by a modification of the frequency response profile. Starting from a general approach, an optimally broadened stopband within the frequency response function is designed. This is achieved with a TR(2) being one third of TR(1) and an RF-pulse phase increment of 90 degrees . With this approach TR(2) is too short ( approximately 1 ms) to switch imaging gradients and is only used to change the frequency sensitivity. Without a significant change of the spectral position of the stopband, TR(1) can be varied over a range of values ( approximately 2.5-4.5 ms) while TR(2) and phase cycling is kept constant. On-resonance spins show a magnetization behavior similar to balanced SSFP, but with maximal magnetization at flip angles about 10 degrees lower than in balanced SSFP. The total scan time is increased by about 30% compared to conventional balanced SSFP. The new technique was applied on phantoms and volunteers to produce rapid, fat suppressed images.  相似文献   

7.
A new technique to avoid the initial signal fluctuations in steady-state free precession (SSFP)-sequences, such as trueFISP, FIESTA, and refocused FFE, is presented. The "transition into driven equilibrium" (TIDE) sequence uses modified flip angles over the initialization phase of a SSFP experiment, which not only avoids image artifacts but also improves the signal-to-noise ratio (SNR) and contrast behavior compared to conventional approaches. TIDE is demonstrated to be robust against variations of T(1) and T(2), and leads to a monotonous signal evolution for off-resonance spins. The basic principles can also be applied repetitively to optimize continuous 3D acquisitions.  相似文献   

8.
The authors evaluated a three-dimensional Fourier transform implementation of a very short repetition time (TR) (24 msec), steady-state free precession (SSFP) pulse sequence for clinical imaging of the brain and compared it with a conventional two-dimensional Fourier transform long TR/echo time (TE) spin-echo sequence. First, the optimal flip angle of 10 degrees for generating images with contrast similar to that of long TR/TE spin-echo images was determined. Then, 29 patients with suspected brain lesions were studied with both techniques. Although the SSFP images did not exhibit the magnetic susceptibility artifacts that plague other rapid-imaging techniques, the conspicuity of most parenchymal lesions was often less than that on the spin-echo images. Also, the visibility of paramagnetic effects, such as the low signal intensity of brain iron, was less obvious at SSFP imaging. These substantial limitations may relegate the SSFP sequence to an adjunctive role, perhaps mainly demonstration of the cystic nature of mass lesions, because of its extreme sensitivity to slow flow.  相似文献   

9.
Phase contrast MRI (PC‐MRI) is an established technique for measuring blood flow velocities in vivo. Although spoiled gradient recalled echo (GRE) PC‐MRI is the most widely used pulse sequence today, balanced steady state free precession (SSFP) PC‐MRI has been shown to produce accurate velocity estimates with superior SNR efficiency. We propose a referenceless approach to flow imaging that exploits the intrinsic refocusing property of balanced SSFP, and achieves up to a 50% reduction in total scan time. With the echo time set to exactly one half of the sequence repetition time (TE = TR/2), we show that non‐flow‐related image phase tends to vary smoothly across the field‐of‐view, and can be estimated from static tissue regions to produce a phase reference for nearby voxels containing flowing blood. This approach produces accurate in vivo one‐dimensional velocity estimates in half the scan time compared with conventional balanced SSFP phase‐contrast methods. We also demonstrate the feasibility of referenceless time‐resolved 3D flow imaging (called “7D” flow) in the carotid bifurcation from just three acquisitions. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Steady-state free precession (SSFP) can develop under a train of RF pulses, given the condition TR < T(2). SSFP in multi-shot imaging sequences has been well studied. It is shown here that serial single-shot echo-planar imaging (EPI) acquisition can also develop SSFP, and the SSFP can be disturbed by B(0) fluctuation, causing voxel-wise temporal variation. This SSFP disturbance is predominantly present in cerebrospinal fluid (CSF) regions due to the long T(2) value. By applying a sufficiently strong crusher gradient in the EPI pulse sequence, the temporal variation induced by SSFP disturbance can be suppressed due to diffusion. Evidence is provided to indicate that physiological motions such as cardiac pulsation and respiration could affect the voxel-wise time courses through the mechanism of SSFP disturbance. It is advised that if the disturbance is observed in serial EPI images, the crusher should be made stronger to eliminate the unwanted temporal variation.  相似文献   

11.
In this work the feasibility of separating fat and water signals using the balanced steady-state free precession (SSFP) technique is demonstrated. The technique is based on the observation (Scheffler and Hennig, Magnetic Resonance in Medicine 2003;49:395-397) that at the nominal values of TE = TR/2 in SSFP imaging, phase coherence can be achieved at essentially only two orientations (0 degrees and 180 degrees ) relative to the RF pulses in the rotating frame, under the assumption of TR < T2, and independently of the SSFP angle. This property allows in-phase and out-of-phase SSFP images to be obtained by proper choices of the center frequency offset, and thus allows the Dixon subtraction method to be utilized for effective fat-water separation. The TR and frequency offset for optimal fat-water separation are derived from theories. Experimental results from healthy subjects, using a 3.0 Tesla system, show that nearly complete fat suppression can be accomplished.  相似文献   

12.
Recently, the gradient echo imaging sequence in conjunction with small flip angle excitations and short repetition times has been widely used for fast NMR imaging. As the repetition time decreases to an extent comparable to the spin-spin relaxation time T2, the residual phase coherency of the transverse spin magnetization tends to form another nuclear signal which is heavily weighted by T2 and similar to a long TR/long TE spin-echo signal. This effect, although expected, has not been utilized in the conventional fast gradient echo imaging. When this residual phase coherency is utilized in conjunction with the fast SSFP (steady-state free precession) technique, both the FID and the echo signals can be obtained. In this paper, we have proposed a new technique by which simultaneous acquisitions of both the FID and the echo signals are possible. Experiments on this fast SSFP mode imaging have shown that the FID signal is T1-weighted while the echo signal is strongly T2-weighted. The flip angle optimal for maximizing signal and related contrast are also studied in conjunction with the proposed sequence and the experimental results are presented.  相似文献   

13.
PURPOSE: To investigate and evaluate a new rapid dark-blood vessel-wall imaging method using random bipolar gradients with a radial steady-state free precession (SSFP) acquisition in carotid applications. MATERIALS AND METHODS: The carotid artery bifurcations of four asymptomatic volunteers (28-37 years old, mean age = 31 years) were included in this study. Dark-blood contrast was achieved through the use of random bipolar gradients applied prior to the signal acquisition of each radial projection in a balanced SSFP acquisition. The resulting phase variation for moving spins established significant destructive interference in the low-frequency region of k-space. This phase variation resulted in a net nulling of the signal from flowing spins, while the bipolar gradients had a minimal effect on the static spins. The net effect was that the regular SSFP signal amplitude (SA) in stationary tissues was preserved while dark-blood contrast was achieved for moving spins. In this implementation, application of the random bipolar gradient pulses along all three spatial directions nulled the signal from both in-plane and through-plane flow in phantom and in vivo studies. RESULTS: In vivo imaging trials confirmed that dark-blood contrast can be achieved with the radial random bipolar SSFP method, thereby substantially reversing the vessel-to-lumen contrast-to-noise ratio (CNR) of a conventional rectilinear SSFP "bright-blood" acquisition from bright blood to dark blood with only a modest increase in TR (approximately 4 msec) to accommodate the additional bipolar gradients. CONCLUSION: Overall, this sequence offers a simple and effective dark-blood contrast mechanism for high-SNR SSFP acquisitions in vessel wall imaging within a short acquisition time.  相似文献   

14.
PURPOSE: To evaluate the potential of fully-balanced steady-state free-precession (SSFP) sequences in in vivo high-resolution (HR) MRI of trabecular bone at field strengths of 1.5 and 3 T by simulation and experimental methods. MATERIALS AND METHODS: Using simulation studies, refocused SSFP acquisition was optimized for our imaging purposes with a focus on signal-to-noise ratio (SNR) and SNR efficiency. The signal behavior in trabecular bone was estimated using a magnetostatic model of the trabecular bone and marrow. Eight normal volunteers were imaged at the proximal femur, calcaneus, and the distal tibia on a GE Signa scanner at 1.5 and at 3 T with an optimized single-acquisition SSFP sequence (three-dimensional FIESTA) and an optimized multiple-acquisition SSFP sequence (three-dimensional FIESTA-c). Images were also acquired with a fast gradient echo (FGRE) sequence for evaluation of the SNR performance of SSFP methods. RESULTS: Refocused SSFP images outperformed FGRE acquisitions in both SNR and SNR efficiency at both field strengths. At 3 T, susceptibility effects were visible in FIESTA and FGRE images and much reduced in FIESTA-c images. The magnitude of SNR boost at 3 T was closely predicted by simulations. CONCLUSION: Single-acquisition SSFP (at 1.5 T) and multiple-acquisition SSFP (at 3 T) hold great potential for HR-MRI of trabecular bone.  相似文献   

15.
Balanced steady-state free precession (SSFP) techniques provide excellent contrast between myocardium and blood at a high signal-to-noise ratio (SNR). Hence, SSFP imaging has become the method of choice for assessing cardiac function at 1.5T. The expected improvement in SNR at higher field strength prompted us to implement SSFP at 3.0T. In this work, an optimized sequence protocol for cardiac SSFP imaging at 3.0T is derived, taking into account several partly adverse effects at higher field, such as increased field inhomogeneities, longer T(1), and power deposition limitations. SSFP contrast is established by optimizing the maximum amplitude of the radiofrequency (RF) field strength for shortest TR, as well as by localized linear or second-order shimming and local optimization of the resonance frequency. Given the increased SNR, sensitivity encoding (SENSE) can be employed to shorten breath-hold times. Short-axis, long-axis, and four-chamber cine views obtained in healthy adult subjects are presented, and three different types of artifacts are discussed along with potential methods for reducing them.  相似文献   

16.
Variable nutation SSFP (DESPOT2) permits rapid, high-resolution determination of the transverse (T2) relaxation constant. A limitation of DESPOT2, however, is the presence of T2 voids due to off-resonance banding artifacts associated with SSFP images. These artifacts typically occur in images acquired with long repetition times (TR) in the presence of B0 inhomogeneities, or near areas of magnetic susceptibility difference, such that the transverse magnetization experiences a net phase shift during the TR interval. This places constraints on the maximum spatial resolution that can be achieved without artifact. Here, a novel implementation of DESPOT2 is presented incorporating RF phase-cycling which acts to shift the spatial location of the bands, allowing reconstruction of a single, reduced artifact-image. The method is demonstrated in vivo with the acquisition of a 0.34 mm3 isotropic resolution T2 map of the brain with high precision and accuracy and significantly reduced artifact.  相似文献   

17.
Balanced steady-state free precession (SSFP) imaging is limited by off-resonance banding artifacts, which occur with periodicity 1/TR in the frequency spectrum. A novel balanced SSFP technique for widening the band spacing in the frequency response is described. This method, called wideband SSFP, utilizes two alternating repetition times with alternating RF phase, and maintains high SNR and T(2)/T(1) contrast. For a fixed band spacing, this method can enable improvements in spatial resolution compared to conventional SSFP. Alternatively, for a fixed readout duration this method can widen the band spacing, and potentially avoid the banding artifacts in conventional SSFP. The method is analyzed using simulations and phantom experiments, and is applied to the reduction of banding artifacts in cine cardiac imaging and high-resolution knee imaging at 3T.  相似文献   

18.
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.  相似文献   

19.
Signal-to-noise ratio behavior of steady-state free precession.   总被引:2,自引:0,他引:2  
Steady-state free precession (SSFP) is a rapid gradient-echo imaging technique that has recently gained popularity and is used in a variety of applications, including cardiac and real-time imaging, because of its high signal and favorable contrast between blood and myocardium. The purpose of this work was to examine the signal-to-noise ratio (SNR) behavior of images acquired with SSFP, and the dependence of SNR on imaging parameters such as TR, bandwidth, and image resolution, and the use of multi-echo sequences. In this work it is shown that the SNR of SSFP sequences is dependent only on pulse sequence efficiency, voxel dimensions, and relaxation parameters (T1 and T2). Notably, SNR is insensitive to bandwidth unless increases in bandwidth significantly decrease efficiency. Finally, we examined the relationship between pulse sequence performance (TR and efficiency) and gradient performance (maximum gradient strength and slew rate) for several imaging scenarios, including multi-echo sequences, to determine the optimum matching of maximum gradient strength and slew rate for gradient hardware designs. For standard modern gradient hardware (40 mT/m and 150 mT/m/ms), we found that the maximum gradient strength is more than adequate for the imaging resolution that is commonly encountered with rapid scouting (3 mm x 4 mm x 10 mm voxel). It is well matched for typical CINE and real-time cardiac imaging applications (1.5 mm x 2 mm x 6 mm voxel), and is inadequate for optimal matching with slew rate for high-resolution applications such as musculoskeletal imaging (0.5 x 0.8 x 3 mm voxel). For the lower-resolution methods, efficiency could be improved with higher slew rates; this provokes interest in designing methods for limiting dB/dt peripherally while achieving high switching rates in the imaging field of view. The use of multi-echo SSFP acquisitions leads to substantial improvements in sequence performance (i.e., increased efficiency and shorter TR).  相似文献   

20.

Purpose:

To minimize image artifacts in long TR cardiac phase‐resolved steady state free precession (SSFP) based blood‐oxygen‐level‐dependent (BOLD) imaging.

Materials and Methods:

Nine healthy dogs (four male, five female, 20–25 kg) were studied in a clinical 1.5 Tesla MRI scanner to investigate the effect of temporal resolution, readout bandwidth, and motion compensation on long repetition time (TR) SSFP images. Breath‐held 2D SSFP cine sequences with various temporal resolutions (10–204 ms), bandwidths (239–930 Hz/pixel), with and without first‐order motion compensation were prescribed in the basal, mid‐ventricular, and apical along the short axis. Preliminary myocardial BOLD studies in dogs with controllable coronary stenosis were performed to assess the benefits of artifact‐reduction strategies.

Results:

Shortening the readout time by means of increasing readout bandwidth had no observable reduction in image artifacts. However, increasing the temporal resolution in the presence of first‐order motion compensation led to significant reduction in image artifacts. Preliminary studies demonstrated that BOLD signal changes can be reliably detected throughout the cardiac cycle.

Conclusion:

Artifact‐reduction methods used in this study provide significant improvement in image quality compared with conventional long TR SSFP BOLD MRI. It is envisioned that the methods proposed here may enable reliable detection of myocardial oxygenation changes throughout the cardiac cycle with long TR SSFP‐based myocardial BOLD MRI. J. Magn. Reson. Imaging 2010;31:863–871. ©2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号