首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report the isolation and characterization of cDNA clones that encode a protein with the same DNA binding specificity as the immunoglobulin heavy chain enhancer binding protein E (muEBP-E). We call the gene encoding this protein Ig/EBP-1. A fusion protein encoded by the cDNA binds specifically to muEBP-E-binding sites (E sites) in both the IgH enhancer and the VH1 promoter. Sequence analysis reveals that Ig/EBP-1 is a member of the "basic-zipper" family of DNA-binding proteins that are characterized by basic regions and heptad repeats of leucine residues. Among known family members, Ig/EBP-1 demonstrates highest homology to C/EBP throughout the DNA-binding domain and leucine repeat region. Ig/EBP-1 and C/EBP have highly overlapping binding specificities; both cloned proteins bind to the IgH enhancer and the VH1 promoter E sites, and Ig/EBP-1 binds to previously characterized C/EBP binding sites in the Rous sarcoma virus (RSV) LTR and the murine albumin promoter. Consistent with their homology in the leucine repeat region, Ig/EBP-1 and C/EBP form heterodimers; Ig/EBP-1 is the first member of this family that has been found to heterodimerize with the well-characterized C/EBP. Ig/EBP-1 mRNA is present in all tissues and cell lines examined, although its levels vary almost 20-fold from different sources, with highest levels in early B cells. In tissues where Ig/EBP-1 and C/EBP are both present, heterodimers may be functionally important. The presence of Ig/EBP-1 in fibroblasts and other tissues where C/EBP is not expressed suggests that Ig/EBP-1 may be functionally important for the activity of the RSV enhancer in these cell types. Finally, elevated expression of Ig/EBP-1 in early B cells may explain in part the enhancer-independent activity of VH promoters early in B-cell development.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The basic region-leucine zipper (B-ZIP) (bZIP) protein motif dimerizes to bind specific DNA sequences. We have identified 27 B-ZIP proteins in the recently sequenced Drosophila melanogaster genome. The dimerization specificity of these 27 B-ZIP proteins was evaluated using two structural criteria: (1) the presence of attractive or repulsive interhelical g<-->e' electrostatic interactions and (2) the presence of polar or charged amino acids in the 'a' and 'd' positions of the hydrophobic interface. None of the B-ZIP proteins contain only aliphatic amino acids in the'a' and 'd' position. Only six of the Drosophila B-ZIP proteins contain a "canonical" hydrophobic interface like the yeast GCN4, and the mammalian JUN, ATF2, CREB, C/EBP, and PAR leucine zippers, characterized by asparagine in the second 'a' position. Twelve leucine zippers contain polar amino acids in the first, third, and fourth 'a' positions. Circular dichroism spectroscopy, used to monitor thermal denaturations of a heterodimerizing leucine zipper system containing either valine (V) or asparagine (N) in the 'a' position, indicates that the V-N interaction is 2.3 kcal/mole less stable than an N-N interaction and 5.3 kcal/mole less stable than a V-V interaction. Thus, we propose that the presence of polar amino acids in novel positions of the 'a' position of Drosophila B-ZIP proteins has led to leucine zippers that homodimerize rather than heterodimerize.  相似文献   

11.
12.
13.
Max: functional domains and interaction with c-Myc.   总被引:48,自引:0,他引:48  
  相似文献   

14.
15.
We have used a recombinant bacteriophage that expresses the DNA-binding domain of C/EBP to optimize conditions for a screening technique that may facilitate the cloning of genes that encode sequence-specific DNA-binding proteins. The method relies on the expression of cDNA inserts in bacteriophage lambda gt11. Fusion protein adsorbed onto nitrocellulose filters is probed with radioactive, double-stranded DNA as a ligand. Two procedures greatly increase the level of binding between ligand and recombinant fusion protein. First, nitrocellulose filters are processed through a denaturation/renaturation regimen using 6 M guanidine hydrochloride. Second, synthetic DNA corresponding to the specific binding site is catenated extensively using DNA ligase. The combination of these procedures leads to remarkably strong detection signals. Specific DNA-binding signals can be detected on duplicate filters, and filters can be washed and reused by repeating the cycle of denaturation/renaturation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号