首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To compare the mechanical behavior of a novel internal tendon repair device with commonly used 2-strand and 4-strand repair techniques for zone II flexor tendon lacerations. METHODS: Thirty cadaveric flexor digitorum profundus tendons were randomized to 1 of 3 core sutures: (1) cruciate locked 4-strand technique, (2) modified Kessler 2-strand core suture technique, or (3) Teno Fix multifilament wire tendon repair device. Each repair was tested in the load control setting on a Instron controller coupled to an MTS materials testing machine load frame by using an incremental cyclic linear loading protocol. A differential variable reluctance transducer was used to record displacement across the repair site. Cyclic force (n-cycles) to 1-mm gap and repair failure was recorded using serial digital photography. RESULTS: There was no significant difference in differential variable reluctance transducer displacement between the cruciate, modified Kessler, and Teno Fix repairs. The cruciate repair had greater resistance to visual 1-mm repair-site gap formation and repair-site failure when compared with the Kessler and Teno Fix repairs. No significant difference was found between the modified Kessler repair and the Teno Fix repair. In all specimens, the epitenon suture failed before the core suture. Repair failure occurred by suture rupture in the 7 cruciate specimens that failed, with evidence of gap formation before failure. Seven of 10 modified Kessler repairs failed by suture rupture. All of the Teno Fix repairs failed by pullout of the metal anchor. CONCLUSIONS: The Teno Fix repair system did not confer a mechanical advantage over the locked cruciate or modified Kessler suture techniques for zone II lacerations in cadaveric flexor tendons during cyclic loading in a linear testing model. This information may help to define safe boundaries for postoperative rehabilitation when using this internal tendon repair device.  相似文献   

2.
PURPOSE: Stainless steel suture is high in tensile strength but is not widely used in flexor tendon repair because of difficulty with handling and knot tying. The purpose of this study was to examine the biomechanical characteristics of the single-strand multifilament stainless steel Teno Fix device (Ortheon Medical, Winter Park, FL) designed for zone II flexor digitorum profundus (FDP) tendon repair. METHODS: Sixty cadaveric flexor tendons were transected and randomized to receive a Teno Fix or 4-stranded (3-0 or 4-0 braided polyester) suture repair; all repairs were tested with and without a 5-0 monofilament polypropylene circumferential epitendinous suture. By using a material testing system all tendons were tested to failure in tension using a linear model with a loading rate of 1 mm/s. Stiffness, force, and energy at both 2-mm gap and peak force were calculated from the resulting force-displacement curves. RESULTS: The 2-mm gapping force was significantly greater for the Teno Fix and the 3-0 repairs than for the 4-0 repairs. The energy absorbed up to 2-mm gap was significantly greater for the Teno Fix, however, than for all suture repairs both with and without a circumferential suture. There was no statistically significant difference in peak force or energy absorbed at peak force between the Teno Fix and suture repairs; the average gap at peak force for all repairs was 5.2 mm. The addition of a circumferential suture increased the 2-mm gapping and peak forces of the Teno Fix repair to 54.5 N and 66.7 N, respectively. CONCLUSIONS: Increased strength and energy absorbed at 2-mm gap and ease of installation makes the Teno Fix a promising repair method.  相似文献   

3.
BACKGROUND: Open repair of the Achilles tendon is associated with wound breakdown, infection and percutaneous methods risk sural nerve injury. The Achillon mini-incision technique can reduce these risks and may provide the opportunity for early active rehabilitation. The aim of this study was to compare the strength of the Achillon method with the commonly used Kessler method and to assess whether the strength of the repair was related to tendon diameter. MATERIALS AND METHODS: Simulated ruptures in sheep Achilles tendons were repaired using either the Achillon method or a two-strand Kessler technique with a No. 2 Ticron suture (Tyco Healthcare, UK). Each tendon diameter was measured, and matched for both groups. Specimens were loaded to failure using an Instron tensile testing machine (Instron Limited, UK). RESULTS: Mean load to failure for the Achillon repair was 153 N+/-60 (range, 65 to 270), and the mean load to failure for the Kessler Repair was 123 N+/-24 (range, 75 to 150). This difference was not statistically significant (p=0.21). There was a statistically significant higher mean load to failure for wider tendons repaired by the Achillon method (p=0.05), however mean load to failure was not related to tendon width in Kessler repairs (p=0.23). CONCLUSION: This is the first study to compare these two methods of repair. The Achillon repair has comparable tensile strength to the Kessler Repair. CLINICAL RELEVANCE: The Achillon repair appears to be a biomechanically sound method of repair for the acutely ruptured Achilles tendon.  相似文献   

4.
BACKGROUND: The stainless-steel Teno Fix tendon-repair device has improved biomechanical characteristics compared with those of suture repair, and it was well tolerated in a canine model. The purpose of this study was to compare the Teno Fix with suture repair in a clinical setting. METHODS: Sixty-seven patients with isolated zone-II flexor tendon injury were randomized to be treated with a Teno Fix or a four-stranded cruciate suture repair. There were eighty-five injured digits: thirty-four were treated with the Teno Fix, and fifty-one served as controls. A modified Kleinert rehabilitation technique was employed, with active flexion starting at four weeks postoperatively. Patients were followed for six months by blinded observers who determined the range of motion, Disabilities of the Arm, Shoulder and Hand (DASH) score, pinch and grip strength, and pain score on a verbal scale and assessed swelling and neurologic recovery. Adverse outcomes, including device migration and rupture, were monitored at frequent intervals. RESULTS: Nine of the fifty-one suture repairs ruptured, whereas none of the Teno Fix repairs ruptured (p < 0.01). Five of the nine ruptures were caused by resistive motion against medical advice. There were no differences between the two groups in terms of range of motion, DASH score, pinch and grip strength, pain, swelling, or neurologic recovery. The Teno Fix group had slightly slower resolution of pain and swelling compared with the control group. Of the patients who were available for follow-up at six months, sixteen of the twenty-four treated with a Teno Fix repair and nineteen of the twenty-seven treated with a control repair had a good or excellent result. One Teno Fix device migrated and extruded secondary to a wound infection. Of all eighty-five digits that were operated on, four were thought to have tendons of inadequate size to accommodate the device and nine were deemed to have inadequate exposure to allow placement of the anchors. CONCLUSIONS: The Teno Fix is safe and effective for flexor tendon repair if the tendon size and exposure are sufficient. Tendon repairs with the Teno Fix have lower rupture rates and similar functional outcomes when compared with conventional repair, particularly in patients who are noncompliant with the rehabilitation protocol.  相似文献   

5.
We investigated the biomechanical properties of a new technique for tendon repair that reinforces a standard suture with an autogenous tendon graft. A dynamic in situ testing apparatus was used to test 40 flexor digitorum profundus tendons harvested from fresh-frozen cadaver hands. The tendons were cut and repaired using 1 of 4 suture techniques: 2-strand modified Kessler, 4-strand modified Kessler, 6-strand modified Savage, and 2-strand modified Kessler augmented with autogenous dorsal tendon graft. The augmented repair uses 1 slip of the flexor digitorum superficialis tendon secured to the dorsal surface of the repair site with a continuous stitch. Ultimate tensile strength, resistance to gap formation, and work of flexion were measured simultaneously on an in situ tensile testing apparatus. No significant difference in tensile strength was found between the augmented repair and the 6-strand Savage repair. The augmented repair and the 6-strand Savage repair showed significantly greater ultimate tensile strength than the 2- and 4-strand repairs. The augmented repair had significantly greater resistance to 2 mm gap formation than the other 3 repairs. We were unable to show a significant difference in work of flexion between the repairs with the numbers tested (n = 10). Our findings suggest that the augmented repair is strong enough to tolerate the projected forces generated during active motion without dehiscence or gap formation at the repair site.  相似文献   

6.
The purpose of this study was to describe a modification of the Massachusetts General Hospital (MMGH) tendon repair and to compare it with three other suture techniques. Twenty human flexor digitorum profundus (FDP) tendons were randomly assigned to the modified Pennington (MP) suture and the MMGH suture. These were compared to the modified Kessler (MK) and Massachusetts General Hospital (MGH) sutures, using data from a previous study. All tendons were repaired with a similar epitendinous stitch and core sutures of 4-0 FiberWire. There was no significant difference in the normalized gliding resistance within the two-strand or four-strand core repair groups. The MP suture had significantly higher 2 mm gap force and ultimate load to failure than the MK suture. The MMGH suture had significantly higher 2 mm gap force and maximum failure ultimate load than the MGH suture. All repairs failed by knot unravelling.  相似文献   

7.
The purpose of this study was to examine the in vivo characteristics of the stainless-steel Teno Fix device used for flexor tendon repair. The common flexor digitorum superficialis tendon was transected in 16 dogs and repaired with the device. The animals were euthanized at 3, 6, or 12 weeks postoperatively. Difficulties with cast immobilization led nine of 16 animals to be full weight bearing too early, leading to rupture of their repairs. The seven tendons with successful primary repairs (gap <2mm) underwent histological examination. This in vivo study demonstrates that use of the Teno Fix in "suture" of dog flexor tendons did not lead to scarring at the tendon surface, does not cause an inflammatory reaction within the tendon and does not interfere with tendon healing.  相似文献   

8.
This study compares the mechanical properties of modified Kessler and double-modified Kessler flexor tendon repair techniques and evaluates simple modifications on both methods. Forty fresh sheep flexor tendons were divided equally into four groups. A transverse sharp cut was done in the middle of each tendon and then repaired with modified Kessler technique, modified Kessler with additional purchase point in the midpoint of each longitudinal strand, double-modified Kessler technique, or a combination of outer Kessler and inner cruciate configuration based on double-modified Kessler technique. The tendons were tested in a tensile testing machine to assess the mechanical performance of the repairs. Outcome measures included gap formation and ultimate forces. The gap strengths of the double-modified Kessler technique (30.85 N, SD 1.90) and double-modified Kessler technique with inner cruciate configuration (33.60 N, SD 4.64) were statistically significantly greater than that of the two-strand modified Kessler (22.56 N, SD 3.44) and modified Kessler with additional purchase configuration (21.75 N, SD 4.03; Tukey honestly significant difference test, P < 0.000). There were statistically significant differences in failure strengths of the all groups (analysis of variance, P < 0.000). With an identical number of strands, the gap formation and ultimate forces of the repairs were not changed by additional locking purchase point in modified Kessler repair or changing the inner strand configuration in double-modified Kessler repair. The results of this study show that the number of strands across the repair site together with the number of locking loops clearly affects the strength of the repair; meanwhile, the longitudinal strand orientation and number of purchase points in a single loop did not affect its strength.  相似文献   

9.
PURPOSE: The purpose of this study was to compare the frictional characteristics and mechanical properties of various locking and grasping suture techniques in a human in vitro model of flexor tendon repair. METHODS: Forty-five cadaveric human flexor digitorum profundus tendons were transected in zone II and repaired using 1 of 5 core suture methods (n = 9 per group): either grasping (modified grasping Kessler, modified Lee) or locking (Pennington, modified Pennington, locking Lee) loop suture techniques. All repairs used 4-0 Supramid looped core suture and an epitenon running suture of 6-0 nylon. Gliding resistance at the tendon-pulley interface was measured along with failure strength and gap formation. The force to produce 0.5-, 1.0-, 1.5-, and 2.0-mm gaps were measured. RESULTS: One of the locking repairs, the locking Lee, had a gliding resistance significantly higher than that of one of the grasping repairs (modified grasping Kessler) and the other 2 locking repairs (Pennington, modified Pennington) (p <.05). There was no significant difference between the other grasping (modified Kessler, modified Lee) and locking (Pennington, modified Pennington) suture configurations (p =.21). The maximum force of one of the locking repairs, the modified Pennington repair (48.0 N; standard deviation, 3.9) was significantly higher than the other locking and grasping repairs (p <.05). The force required to produce more than 1.5 mm of gap for the modified Pennington repair was also significantly higher than that for some of the other grasping (modified Kessler, modified Lee) and locking (Pennington) repairs (p <.05). CONCLUSIONS: The lack of significant difference in gliding resistance among the similarly designed modified grasping Kessler, Pennington, and modified Pennington repairs (overall mean, 0.87 N; standard deviation, 0.16) suggests that the locking loop configuration itself does not adversely affect tendon gliding resistance. The modified Pennington repair increased not only ultimate strength but also resistance to gap formation more than 1.5 mm.  相似文献   

10.
Biomechanical analysis of the cruciate four-strand flexor tendon repair   总被引:6,自引:0,他引:6  
The purpose of this study was to develop and test in vitro a new flexor tendon suture technique that was simple and easy to perform, yet strong enough to withstand the projected forces of an in vivo active motion rehabilitation protocol. Forty human cadaveric flexor digitorum profundus tendons were divided and repaired using 1 of 4 suture techniques (the modified Kessler, the Strickland, the modified 4-strand Savage, and the Cruciate 4-strand repairs). Each repair was tested using a slow-test machine and displacement control at 2 mm/s. Force applied, the resultant gap, and ultimate tensile strength were recorded and statistical comparisons were performed using a two-tailed Student's t-test with level of significance set at p = .05. The Cruciate suture technique was demonstrated to be nearly twice as strong to 2-mm gap formation (44 N) compared with the Kessler, Strickland, and Savage repairs. Ultimate tensile strength was also significantly stronger for the Cruciate technique (56 N) than the Kessler, Strickland, or Savage repairs. The technique was significantly faster to perform than the Savage or Strickland repairs and was comparable in repair time to the 2-stranded Kessler repair. The design of the new suture technique allowed the tendon repair to be completed with the ease and speed of a 2-strand technique, but bestowed on the repair strength that exceeded current 4-strand techniques.  相似文献   

11.
The decision to treat zone II partially lacerated flexor tendons is challenging, because there can be justification for either repair or no repair, depending on the surgeon's assessment of the strength of the residual intact portion of the tendon. In this study tensile properties of various repair techniques were compared. Cadaveric human flexor tendons (n = 118) were lacerated to 75% of their cross-section and repaired with either a core suture method (Kessler, modified Kessler, Savage, Lee, augmented Becker, or Tsuge all finished with a circumferential running suture), an epitendinous suture alone (circumferential or partial), or the tendons were left unrepaired. Among the core suture methods there was no significant difference (p >.05) in maximum failure force (overall mean, 211.2 N; SD, 53.2) or force to produce a 1.5-mm gap (74.1 N; SD, 49.7). Likewise there was no significant difference (p >.05) in tendon stiffness (41.0 N/mm; SD, 14.0) or resistance to gap formation (52.3 N/mm; SD, 23.1). In comparison, repairs without the core suture, including unrepaired tendons, were significantly weaker (144.7 N, p <.001) and had a marginally lower stiffness (p =.04) but had a similar resistance to gap formation (43.5 N/mm).  相似文献   

12.
BACKGROUND: Early functional rehabilitation is widely used after open suture repair of the Achilles tendon. To our knowledge, no previous studies have assessed gap formation from cyclic loading and subsequent failure loads of simulated Achilles tendon repairs. A synthetic (polyblend) suture has been introduced for tendon repairs with reportedly greater strength than polyester suture. This stronger, stiffer suture material may provide stronger repairs with less elongation of the tendon repair. METHODS: Simulated Achilles tendon ruptures in bovine Achilles tendon were repaired with a four-strand Krackow suture technique using No. 2 polyester suture. Specimens were loaded for 3,000 cycles at maximal loads of 50, 75, 100, or 125 N, and gap formation at the repair site was continuously measured. After cyclic loading, each specimen was loaded to failure. Identical repairs were performed with number 2 polyblend suture and cyclically loaded to 75 N for 3,000 cycles. All specimens were loaded to failure. RESULTS: Cyclically loading polyester suture repairs to 50, 75, 100, or 125 N for 3,000 cycles resulted in mean gapping at the repair site of 3.0 +/- 0.8, 4.9 +/- 1.0, 7.2 +/- 0.9, and 7.9 +/- 0.8 mm, respectively. Cyclically loading the polyblend suture repairs for 3,000 cycles at 75 N, resulted in 3.3 +/- 0.3 mm of gap formation at the repair site, significantly less than polyester suture repairs (p < 0.001). The mean load to failure for polyester suture repair was 222 +/- 19 N and for polyblend suture repair was 582 +/- 49 N, a statistically significant difference (p < 0.001). Gap formation at 100, 1,000, and 2,000 cycles, as a percentage of total gap formation at 3,000 cycles, was 64.3%, 87.5%, and 95.4% for polyester suture and 45.8%, 78.5%, and 90.1% for polyblend repairs. All specimens in all groups failed at the knots during load-to-failure testing. CONCLUSIONS: Cyclic loading of simulated Achilles tendon repairs using a Krackow, four-core polyester suture technique showed progressive gap formation with increasing load. All repairs failed at the knot, and suture pull-out from tendon was not observed. Polyblend suture repair, when compared to identical repairs with braided polyester suture, resulted in a 260% higher load to failure and 33% less gap formation at the repair site after 3,000 cycles. CLINICAL RELEVANCE: The use of polyblend suture in a four-stranded Krackow configuration provides stronger repairs with less gap formation, which may provide increased security during early functional rehabilitation.  相似文献   

13.
We report a four-strand modification of the Tang technique of tendon repair that uses fewer sutures and fewer knots on the tendon surface. This repair consists of four longitudinal and two horizontal strands that form a "U" configuration within the tendon made with a single looped suture. Thirty-four fresh pig flexor tendons were divided into 3 groups and repaired with the four-strand modified Tang method, a double-looped four-strand method or a double Kessler repair (four-strand). The tendons were subjected to a single cycle of load-to-failure test in a tensile testing machine. The initial force, 2-mm gap formation force and ultimate strength of the four-strand modified Tang repair were statistically identical to those of the double looped suture and were superior to those of the double Kessler repair. Ultimate strength was 43.4+/-4.3N for the four-strand modified Tang method, 45.2+/-4.0N for the double-looped method and 39.1+/-4.0N for the double Kessler repair. The four-strand modification of the Tang method appears to have strength sufficient for protected active finger motion. Given our preliminary clinical experience with this method, we recommend this new and simplified technique for clinical flexor tendon repairs.  相似文献   

14.
This study was designed to biomechanically compare Tang's multiple looped locking techniques with various suture techniques for flexor tendon repair in the hand. Fifty flexor digitorum profondus tendons taken from pig toes were used as models; The tendons were transected in the middle part of zone 2 defined as the area beneath bifurcation of the flexor digitorum superficialis tendons, and were repaired by five different suture methods: (1) modified Kessler, (2) Tsuge's suture, (3) double Kessler, (4) modified Kessler plus Tsuge, and (5) Tang's suture. The repaired tendons were placed in an Instron tensile testing machine to determine the tensile properties of the repair. 2 mm gap formation force and ultimate tensile strength were measured during the test. Maximal work to failure were calculated according to area under the load-displacement curve of the test. 2 mm gap formation force was 21.5 N for the Kessler, 20.6 N for the Tsuge, 31.6 N for double Kessler, 30.9 N for the Kessler plus Tsuge and 41.4 N for the Tang. Ultimate tensile strength was 23.5 N for the Kessler, 22.9 N for the Tsuge, 34.5 N for the Kessler plus Tsuge and 45.6 N for the Tang. Statistically, Tang's suture had the greatest gap formation force, ultimate strength and energy for failure among the five techniques (p < 0.01 or p < 0.001). Gap formation force, ultimate strength and energy to failure for double Kessler or the Kessler plus Tsuge were significantly greater than those for the Kessler or the Tsuge (p < 0.05 or < 0.01). The tendons repaired by Tang's method tolerated a significantly higher tensile load (133 to 198% of the other techniques) than the other methods. Among the methods tested, Tang's multiple looped locking suture provides sufficient gap resistance and tensile strength that may be able to withstand early active mobilization after primary flexor tendon repair.  相似文献   

15.
PURPOSE: We compared the tensile strength of different repair configurations on tendons with oblique and transverse lacerations. METHOD: Seventy-two fresh pig flexor tendons were divided randomly and repaired using the modified Kessler, the cruciate, or the 4-strand Massachusetts General Hospital (MGH) repair methods. The tendons were lacerated either transversely or obliquely. They were repaired with conventional and oblique suture repairs. The 2-mm gap formation force and ultimate strength were determined as biomechanical performance for each repair. RESULTS: The gap formation and ultimate strength of the tendons vary with orientations of tendon lacerations and suture methods. In the tendons repaired with the modified Kessler or the cruciate methods, the 2-mm gap formation and ultimate strength of obliquely cut tendons were significantly lower than those of transversely cut tendons. The obliquely placed modified Kessler or cruciate sutures significantly improved the repair strength in the tendons with an oblique laceration. In the tendons repaired with the MGH method, no statistical differences were found in the repair strength of obliquely and transversely lacerated tendons. CONCLUSIONS: The direction of tendon lacerations affects strength of certain repair configurations. The nonlocking modified Kessler or the cruciate tendon repairs are weakened considerably when the tendon laceration is oblique but their mechanical performance is strengthened by re-orienting the repair strands to lie parallel to the laceration. The cross-locked configuration of the MGH repair is not affected by the obliquity of the tendon laceration.  相似文献   

16.
Kessler, Strickland, or modified Becker repairs, all augmented with a running circumferential epitenon suture, were performed for simulated zone II flexor tendon lacerations in the index, long, and ring fingers of 12 fresh-frozen cadaveric specimens. Each hand was tested with a tensiometer built for curvilinear testing of human flexor tendons in an intact hand. Each tendon was cycled 100 times, then examined for gapping before testing to failure. Maximum load to failure, including tendon load and pinch force, was recorded for each tendon. We propose that combining the advantages of cyclical testing and a curvilinear model is the most effective way of testing flexor tendon repairs capable of undergoing an early active motion protocol. None of the repaired tendons failed during the cyclic portion of testing. The average gapping after cycling for the 3 suture techniques was 0.12 +/- 0.35 mm for the Kessler technique, 0. 00 +/- 0.00 mm for the Strickland technique, and 0.19 +/- 0.26 mm for the modified Becker technique. The maximum tendon loads to failure were 33.8 +/- 6.8 N for the Kessler technique, 30.4 +/- 5.64 N for the Strickland technique, and 76.3 +/- 9.02 N for the modified Becker technique. There was a statistically significant difference between the modified Becker repair and the other 2 repairs for maximum tendon load and pinch force to failure. The results of this study show that all 3 tendon repair techniques can withstand forces reported with passive motion, but only the modified Becker repair allows sufficient strength above those forces that are estimated for active motion during tendon healing.  相似文献   

17.
We compared the bulking and tensile strength of the Pennington modified Kessler, Cruciate and the Savage repairs in an ex vivo model. A total of 60 porcine tendons were randomised to three groups, half repaired using a core suture alone and the remainder employing a core and peripheral technique. The tendons were distracted to failure. The force required to produce a 3 mm gap, the ultimate strength, the mode of failure and bulking for each repair were assessed. We found that there was a significant increase in strength without an increase in bulk as the number of strands increased. The Cruciate repair was significantly more likely to fail by suture pullout than the Pennington modified Kessler or Savage repairs. We advise the use of the Savage repair, especially in the thumb, and a Cruciate when a Savage is not possible. The Pennington modified Kessler repair should be reserved for multiple tendon injuries.  相似文献   

18.
目的 研究斜形损伤对肌腱修复抗张强度的影响。方法 根据猪后蹄跖深屈肌腱切断的方向 (横形、斜形 )、缝合方法 (改良Kessler法、Cruciate法、MGH法 )及缝合方向 (横形、斜形 ) ,将 81根肌腱分为 9组 ,每组 9根。检测缝合后肌腱 2mm间隙形成的负荷、最大抗张强度、最大功耗。采用ANOVA进行统计分析。结果 斜形损伤后用Kessler法、Cruciate法作横形缝合时 ,其抗张强度显著小于横形损伤的修复强度 (P <0 .0 5 )。选用斜形缝合修复斜形损伤后 ,两者抗张强度均较横形缝合增大 (P <0 .0 5 )。斜形损伤用MGH法缝合对抗张强度的影响不显著。结论 肌腱斜形损伤后采用Kessler法和Cruciate法作斜形缝合 ,可明显提高修复后的抗张强度。  相似文献   

19.
We have compared a simple four-strand flexor tendon repair, the single cross-stitch locked repair using a double-stranded suture (dsSCL) against two other four-strand repairs: the Pennington modified Kessler with double-stranded suture (dsPMK); and the cruciate cross-stitch locked repair with single-stranded suture (Modified Sandow). Thirty fresh frozen cadaveric flexor digitorum profundus tendons were transected and repaired with one of the core repair techniques using identical suture material and reinforced with identical peripheral sutures. Bulking at the repair site and tendon-suture junctions was measured. The tendons were subjected to linear load-to-failure testing. Results showed no significant difference in ultimate tensile strength between the Modified Sandow (36.8 N) and dsSCL (32.6 N) whereas the dsPMK was significantly weaker (26.8 N). There were no significant differences in 2 mm gap force, stiffness or bulk between the three repairs. We concluded that the simpler dsSCL repair is comparable to the modified Sandow repair in tensile strength, stiffness and bulking.  相似文献   

20.
PURPOSE: Recently the length of core suture purchase has been identified as a variable affecting the strength of tendon repairs. The influence of the length of the core suture purchase on the strength of multistrand locking and grasping suture repairs, however, has not been studied extensively in transversely lacerated tendons. We assessed the effects of the length of the core suture purchase on the strength of three 4-strand grasping or locking repair techniques. METHODS: Seventy-four fresh adult pig flexor tendons were cut transversely and repaired with 1 of 3 methods: double-modified Kessler, locking cruciate, and modified Savage. Each method was assessed using 2 different lengths of core suture purchase (1.0 and 0.4 cm). The tendons were subjected to a linear noncyclic load-to-failure test in a tensile testing machine. We recorded the forces required for gap formation, ultimate strength, stiffness of the tendon, and the mode of repair failure. RESULTS: The resistance to gap formation, the ultimate strength of all 3 repairs, and the stiffness of the tendons with the double-modified Kessler and modified Savage repairs decreased significantly as the length of core sutures decreased from 1.0 to 0.4 cm. Locking and grasping repairs had a similar decrease in strength when the purchase was decreased from 1.0 to 0.4 cm. All tendons with modified Savage repairs with 1.0-cm purchase failed by suture breakage and tendons with 0.4-cm purchase failed predominantly by pullout. CONCLUSIONS: The length of core suture purchase significantly affects the strength of these 4-strand tendon repairs. The forces required for gap formation and the ultimate failure of repairs with 0.4-cm purchase were 20% to 45% lower than those of the repairs with 1.0-cm purchase. Locking repairs did not show a greater capacity to offset the decrease in strength than grasping repairs when the length of core suture purchase was decreased from 1.0 to 0.4 cm. Our study indicates that the length of suture purchase directly influences the strength of both locking and grasping core tendon repair methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号