共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inhalation toxicology》2013,25(13):703-713
AbstractThe increasing use of Zinc Oxide nanoparticles (ZnONPs) in paint industry is not supplemented with adequate toxicology data. This report focuses on the fibrogenic toxicity caused due to co-exposure of ZnONPs and toluene in male Wistar rats, exposed for 28 days, through directed flow nose only exposure chamber. The rats were grouped as air control, toluene control (200?ppm), zinc oxide control (10?mg/m3), low dose co-exposed (5?mg/m3 ZnO and 200?ppm of toluene) and high dose co-exposed (10?mg/m3 of ZnO and 200?ppm of toluene). Our study demonstrates that co-exposure of ZnONPs and toluene (as in paint industry), even at their respective permissible exposure level (5?mg/m3 for ZnO and 200?ppm for toluene) have the potential to produce a progressive inflammatory and fibrotic response in the alveolar tissues of the lungs. We observed a significant increase in inflammatory markers in BAL fluid and elevated malondialdehyde (MDA) levels with lower levels of intracellular reduced glutathione (GSH) in lungs of rats of co-exposed group. Significant increase in the levels of pro-inflammatory mediators (IL-6, Ikβα, Cox-II, p-NF-κB) in lung tissues also indicated pulmonary damage. To best of our knowledge this is the first study which highlights the toxicity of co-exposed ZnO NPs and toluene. 相似文献
2.
Eun‐Jung Park Gwang‐Hee Lee Cheolho Yoon Uiseok Jeong Younghun Kim Myung‐Haing Cho Dong‐Wan Kim 《Journal of applied toxicology : JAT》2016,36(3):424-433
With the rapid development of the nano‐industry, concerns about their potential adverse health effects have been raised. Thus, ranking accurately their toxicity and prioritizing for in vivo testing through in vitro toxicity test is needed. In this study, we used three types of synthesized aluminum oxide nanoparticles (AlONPs): γ‐aluminum oxide hydroxide nanoparticles (γ‐AlOHNPs), γ‐ and α‐AlONPs. All three AlONPs were spherical, and the surface area was the greatest for γ‐AlONPs, followed by the α‐AlONPs and γ‐AlOHNPs. In mice, γ‐AlOHNPs accumulated the most 24 h after a single oral dose. Additionally, the decreased number of white blood cells (WBC), the increased ratio of neutrophils and the enhanced secretion of interleukin (IL)‐8 were observed in the blood of mice dosed with γ‐AlOHNPs (10 mg kg?1). We also compared their toxicity using four different in vitro test methods using six cell lines, which were derived from their potential target organs, BEAS‐2B (lung), Chang (liver), HACAT (skin), H9C2 (heart), T98G (brain) and HEK‐293 (kidney). The results showed γ‐AlOHNPs induced the greatest toxicity. Moreover, separation of particles was observed in a transmission electron microscope (TEM) image of cells treated with γ‐AlOHNPs, but not γ‐AlONPs or α‐AlONPs. In conclusion, our results suggest that the accumulation and toxicity of AlONPs are stronger in γ‐AlOHNPs compared with γ‐AlONPs and α‐AlONPs owing their low stability within biological system, and the presence of hydroxyl group may be an important factor in determining the distribution and toxicity of spherical AlONPs. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells 下载免费PDF全文
Xiaofeng Lai Yifang Wei Hu Zhao Suning Chen Xin Bu Fan Lu Dingding Qu Libo Yao Jianyong Zheng Jian Zhang 《Journal of applied toxicology : JAT》2015,35(6):651-664
Metallic nanoparticles (NPs) have potential applications in industry and medicine, but they also have the potential to cause many chronic pulmonary diseases. Mechanisms for their cytotoxicity, glucose and energy metabolism responses need to be fully explained in lung epithelial cells after treatment with metallic nanoparticles. In our study, two different metallic nanoparticles (Fe2O3 and ZnO) and two cell‐based assays (BEAS‐2B and A549 cell lines) were used. Our findings demonstrate that ZnO nanoparticles, but not Fe2O3 nanoparticles, induce cell cycle arrest, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial dysfunction and glucose metabolism perturbation, which are responsible for cytotoxicity. These results also suggest that the glucose metabolism and bioenergetics had a great potential in evaluating the cytotoxicity and thus were very helpful in understanding their underlying molecular mechanisms. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
目的探讨纳米氧化锌对人正常肝细胞HL7702的细胞毒性和遗传毒性作用。方法纳米氧化锌10,25,50,75和100 mg.L-1培养HL7702细胞12,24和48 h。MTT法检测进行毒性评级(RGR)。单细胞凝胶电泳测定细胞头部DNA百分率、尾部DNA百分率、尾矩和Olive尾矩;微核试验测定微核率。结果纳米氧化锌对HL7702肝细胞的半数抑制浓度(IC50)为29.81 mg.L-1。纳米氧化锌10,25,50,75和100 mg.L-1作用细胞24 h,RGR分别为(96±3)%,(83±3)%,(52±4)%,(41±3)%和(21±2)%,毒性级别从1级升到4级。与正常对照组相比,纳米氧化锌10,25,50,75和100 mg.L-1组细胞DNA均有不同程度损伤,HL7702细胞的尾矩和Olive尾矩均呈逐渐显著升高趋势,头部DNA百分率降低,尾部DNA百分率增加。微核试验结果显示,12 h时纳米氧化锌≥50 mg.L-1微核率显著升高,24 h时,纳米氧化锌≥25 mg.L-1微核率显著升高;48 h时,纳米氧化锌10,25,50,75和100 mg.L-1微核率分别升高到8.3%,9.2%,17.3%和21.7%(P<0.05)。结论纳米氧化锌对HL7702肝细胞具有细胞毒性和遗传毒性。 相似文献
5.
Angela Ivask Kirk G. Scheckel Pankaj Kapruwan Vicki Stone Hong Yin Nicolas H. Voelcker 《Nanotoxicology》2017,11(2):150-156
Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24?h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30?nm and 80?nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticles is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. 相似文献
6.
Nanoparticles use in nano-biotechnology applications have increased significantly with Aminated polystyrene amine (AmPs NP), Zinc oxide (ZnO NP), and Silver (Ag NP) nanoparticles utilized in wide variety of consumer products. This has presented a number of concerns due to their increased exposure risks and associated toxicity on living systems. Changes in the structural and physicochemical properties of nanoparticles can lead to changes in biological activities. This study investigates, compares, and contrasts the potential toxicity of AmPs, ZnO and Ag NPs on an in vitro model (HeLa cells) and assesses the associated mechanism for their corresponding cytotoxicity relative to the surface material. It was noted that NPs exposure attributed to the reduction in cell viability and high-level induction of oxidative stress. All three test particles were noted to induce ROS to varying degrees which is irrespective of the attached surface group. Cell cycle analysis indicated a G2/M phase cell arrest, with the corresponding reduction in G0/G1 and S phase cells resulting in caspase-mediated apoptotic cell death. These findings suggest that all three NPs resulted in the decrease in cell viability, increase intracellular ROS production, induce cell cycle arrest at the G2/M phase and finally result in cell death by caspase-mediated apoptosis, which is irrespective of their differences in physiochemical properties and attached surface groups. 相似文献
7.
《Nanotoxicology》2013,7(8):837-846
AbstractAggregation of metal oxide nanoparticles in aqueous media complicates interpretation of in vitro studies of nanoparticle–cell interactions. We used dynamic light scattering to investigate the aggregation dynamics of iron oxide and zinc oxide nanoparticles. Our results show that iron oxide particles aggregate more readily than zinc oxide particles. Pretreatment with serum stabilises iron oxide and zinc oxide nanoparticles against aggregation. Serum-treated iron oxide is stable only in pure water, while zinc oxide is stable in water or cell culture media. These findings, combined with zeta potential measurements and quantification of proteins adsorbed on particle surface, suggest that serum stabilisation of iron oxide particles occurs primarily through protein adsorption and resulting net surface charge. Zinc oxide stabilisation, however, also involves steric hindrance of particle aggregation. Fluid shear at levels used in flow experiments breaks up iron oxide particle aggregates. These results enhance our understanding of nanoparticle aggregation and its consequences for research on the biological effects of nanomaterials. 相似文献
8.
Concomitant releases of various engineered nanoparticles (NPs) into the environment have resulted in concerns regarding their combined toxicity to aquatic organisms. It is however, still elusive to distinguish the contribution to toxicity of components in NP mixtures. In the present study, we quantitatively evaluated the relative contribution of NPs in their particulate form (NP(particle)) and of dissolved ions released from NPs (NP(ion)) to the combined toxicity of binary mixtures of ZnO NPs and graphene oxide nanoplatelets (GO NPs) to three aquatic organisms of different trophic levels, including an alga species (Scenedesmus obliquus), a cladoceran species (Daphnia magna), and a freshwater fish larva (Danio rerio). Our results revealed that the effects of ZnO NPs and GO NPs were additive to S. obliquus and D. magna but antagonistic to D. rerio. The relative contribution to toxicity (RCT) of the mixture components to S. obliquus decreased in the order of RCTGO NP(particle) >?RCTZnO NP(particle)?>?RCTZnO NP(ion), while the RCT of the mixture components to D. magna and D. rerio decreased in the order of RCTZnO NP(particle)?>?RCTGO NP(particle)?>?RCTZnO NP(ion). This finding also implies that the suspended particles rather than the dissolved Zn-ions dictated the combined toxicity of binary mixtures of ZnO NPs and GO NPs to the aquatic organisms of different trophic level. The alleviation of the contribution to toxicity of the ionic form of ZnO NPs was caused by the adsorption of the dissolved ions on GO NPs. Furthermore, the ZnO NP(particle) and GO NP(particle) displayed a different contribution to the observed mixture toxicity, dependent on the trophic level of the aquatic organisms tested. The difference of the contributions between the two particulate forms was mainly associated with differences in the intracellular accumulation of reactive oxygen species. Our findings highlight the important role of particles in the ecological impact of multi-nanomaterial systems. 相似文献
9.
《Toxicology mechanisms and methods》2013,23(3):176-183
AbstractObjectives: Metal oxide nanoparticles (ZnO-NPs and Al2O3-NPs) are used in many fields, including consumer products and biomedical applications. As a result, exposure to these NPs is highly frequent, however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms are available. For this reason, we studied cytotoxic and genotoxic effects of ZnO-NPs and Al2O3-NPs on human peripheral blood lymphocytes.Materials and methods: We obtained our goals by using MTT assay, Annexin V-FITC flow cytometry, and alkaline, neural and pH 12.1 versions of comet assay.Results: Exposure of lymphocytes to both NPs for 24?h slightly decreased viability of lymphocytes at ≥0.5?mM. For the first time, we revealed using the comet assays that both ZnO-NPs and Al2O3-NPs caused a concentration-dependent increase of DNA single-strand breaks, but not alkali-labile sites. Treatment with DNA glycosylases showed that the NPs induced oxidative DNA damage. DNA damage caused by both nanoparticles at 0.05?mM was removed within 120?min, however lymphocytes did not repair DNA damage induced by 0.5?mM NPs. Studied nanoparticles did not induce apoptosis in lymphocytes.Conclusion: Our results suggest that ZnO-NPs and Al2O3-NPs at concentration up to 0.5?mM did not exhibit cytotoxic effect but may exert genotoxic effect on lymphocytes, at least partially by the generation of oxidative DNA damage and strand breaks. 相似文献
10.
Srinivas Aalapati Selvam Ganapathy Saikumar Manapuram Goparaju Anumolu Balakrishna Murthy Prakya 《Nanotoxicology》2014,8(7):786-798
Male CD1 mice were subjected to nose-inhalation exposure of CeO2 nanoparticles (NPs) for 0, 7, 14 or 28 days with 14 or 28 days of recovery time at an aerosol concentration of 2 mg/m3. Markers of lung injury and pro-inflammatory cytokines (interleukin-1beta, tumour necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein-2) in bronchoalveolar lavage fluid (BALF), oxidative stress in lungs, bio-accumulation, and histopathology of pulmonary and extrapulmonary tissues were assessed. BALF analysis revealed the induction of pulmonary inflammation, as evident by an increase in the influx of neutrophils with a significant secretion of pro-inflammatory cytokines that lead to generation of oxidative stress and cytotoxicity, as is evident by induction of lipid peroxidation, depletion of glutathione and increased BALF lactate dehydrogenase and protein. The histopathological examination revealed that these inhaled CeO2 NPs were located all over the pulmonary parenchyma, inducing a severe, chronic, active inflammatory response characterised by necrosis, proteinosis, fibrosis and well-formed discrete granulomas in the pulmonary tissue and tubular degeneration leading to coagulative necrosis in kidneys. Inductively coupled plasma optical emission spectrometer results showed a significant bio-accumulation of these particles in the pulmonary and extrapulmonary tissues, even after one month of post-inhalation exposure. Together, these findings suggest that inhalation exposure of CeO2 NPs can induce pulmonary and extrapulmonary toxicity. 相似文献
11.
Engineered nanoparticles are developed for various applications in industrial, electrical, agricultural, pharmaceutical and medical fields due to their unique properties. Nanoparticles such as TiO2 and ZnO are widely used in cosmetics for UV protection. The toxicological investigations of ZnO NPs are highly recommended because of the increasing use in various industrial and consumer products. The toxic potential of ZnO NPs was assumed to be caused by the release of free Zn+ ions in the medium. Many of the in vivo studies suggest the toxic nature of ZnO NPs, the in vitro studies are certainly important to elucidate the mechanism of toxicity. This study examined the toxicity of ZnO NPs with the average size of 6–8?nm on the isolated mice bone marrow mesenchymal stem cells. The study focuses on the cytotoxicity and oxidative stress-mediated cellular responses upon exposure to ZnO NPs. The results indicated that the exposure to ZnO NPs significantly affects cellular viability in a dose-dependent manner. Formation of reactive oxygen species (ROS) was found to be the mechanism of cellular toxicity. The release of Zn+ ions from the nanoparticles, due to the instability of ZnO NPs in the acidic compartment of lysosomes, also increases the ROS generation. In addition to increased ROS production, damage of lysosomal membrane and the activation of executioner caspase-3 and caspase-7 were observed, which eventually ends in apoptosis. 相似文献
12.
《Nanotoxicology》2013,7(6):795-811
AbstractHuman oral exposure to copper oxide nanoparticles (NPs) may occur following ingestion, hand-to-mouth activity, or mucociliary transport following inhalation. This study assessed the cytotoxicity of Cupric (II) oxide (CuO) and Cu2O-polyvinylpyrrolidone (PVP) coated NPs and copper ions in rat (intestine epithelial cells; IEC-6) and human intestinal cells, two- and three-dimensional models, respectively. The effect of pretreatment of CuO NPs with simulated gastrointestinal (GI) fluids on IEC-6 cell cytotoxicity was also investigated. Both dose- and time-dependent decreases in viability of rat and human cells with CuO and Cu2O-PVP NPs and Cu2+ ions was observed. In the rat cells, CuO NPs had greater cytotoxicity. The rat cells were also more sensitive to CuO NPs than the human cells. Concentrations of H2O2 and glutathione increased and decreased, respectively, in IEC-6 cells after a 4-h exposure to CuO NPs, suggesting the formation of reactive oxygen species (ROS). These ROS may have damaged the mitochondrial membrane of the IEC-6 cells causing a depolarization, as a dose-related loss of a fluorescent mitochondrial marker was observed following a 4-h exposure to CuO NPs. Dissolution studies showed that Cu2O-PVP NPs formed soluble Cu whereas CuO NPs essentially remained intact. For GI fluid-treated CuO NPs, there was a slight increase in cytotoxicity at low doses relative to non-treated NPs. In summary, copper oxide NPs were cytotoxic to rat and human intestinal cells in a dose- and time-dependent manner. The data suggests Cu2O-PVP NPs are toxic due to their dissolution to Cu ions, whereas CuO NPs have inherent cytotoxicity, without dissolving to form Cu ions. 相似文献
13.
Mehrdad Khatami Rajender S. Varma Niloofar Zafarnia Hajar Yaghoobi Mina Sarani Vinod G. Kumar 《Sustainable Chemistry and Pharmacy》2018
An expeditious, environmentally-friendly and affordable synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles was attained using Prosophis fracta and coffee; ensuing Ag and ZnO nanoparticles were physicochemically characterized by UV–visible spectroscopic, X-ray diffraction, and scanning electron microscopy. The green synthesized Ag and ZnO nanoparticles comprise of an average size of about 16 and 26 nm, respectively. The minimum inhibitory concentrations (MIC) of these Ag and ZnO nanoparticles and mixture thereof, Ag/ZnO, were determined on Acinetobacter baumannii and Pseudomonas aeruginosa cultures. Cotton wound bandages were impregnated with nanoparticles of Ag and ZnO and mixed Ag/ZnO nanoparticles in the neighborhood of calculated MIC and their antimicrobial activity was studied in vitro; both types of nanoparticles showed a high antibacterial activity of bandages. Antimicrobial effect of bandages impregnated with liquid solution of Ag nanoparticles was more than that observed for ZnO and mixed Ag/ZnO nanoparticles; however, this difference was not very significant. These antibacterial bandages can potentially be used for treating and covering infection-sensitive wounds namely diabetic or burns wounds. 相似文献
14.
In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe3O4‐TiO2 nanoparticles in human liver cells 下载免费PDF全文
Hong Su Zhou Li Lissy Lazar Yasmin Alhamoud Xin Song Juan Li Yafei Wang Samuel Selorm Fiati kenston Muhammad Zubair Lqbal Aiguo Wu Zhen Li Qihang Hua Min Ding Jinshun Zhao 《Environmental toxicology》2018,33(10):1078-1088
Recent studies show that Janus Fe3O4‐TiO2 nanoparticles (NPs) have potential applications as a multifunctional agent of magnetic resonance imaging (MRI) and photodynamic therapy (PDT) for the diagnosis and therapy of cancer. However, little work has been done on their biological effects. To evaluate the toxicity and underlying molecular mechanisms of Janus Fe3O4‐TiO2 nanoparticles, an in vitro study using a human liver cell line HL‐7702 cells was conducted. For comparison, the Janus Fe3O4‐TiO2 NPs parent material TiO2 NPs was also evaluated. Results showed that both Fe3O4‐TiO2 NPs and TiO2 NPs decreased cell viability and ATP levels when applied in treatment, but increased malonaldehyde (MDA) and reactive oxygen species (ROS) generation. Mitochondria JC‐1 staining assay showed that mitochondrial membrane permeability injury occurred in both NPs treated cells. Cell viability analysis showed that TiO2 NPs induced slightly higher cytotoxicity than Fe3O4‐TiO2 NPs in HL7702 cells. Western blotting indicated that both TiO2 NPs and Fe3O4‐TiO2 NPs could induce apoptosis, inflammation, and carcinogenesis related signal protein alterations. Comparatively, Fe3O4‐TiO2 NPs induced higher signal protein expressions than TiO2 NPs under a high treatment dose. However, under a low dose (6.25 μg/cm2), neither NPs had any significant toxicity on HL7702 cells. In addition, our results suggest both Fe3O4‐TiO2 NPs and TiO2 NPs could induce oxidative stress and have a potential carcinogenetic effect in vitro. Further studies are needed to elaborate the detailed mechanisms of toxicity induced by a high dose of Fe3O4‐TiO2 NPs. 相似文献
15.
Hesham Fathy Hassan Hassan Ahmed Mohamed Mansour Amira Morad Hussein Abo‐Youssef Bakheet E M Elsadek Basim Anwar Shehata Messiha 《Clinical and experimental pharmacology & physiology》2017,44(2):235-243
Currently, the outcomes of conventional chemotherapeutic approaches are unsatisfactory. Clinical application of nanoparticles seems promising. We aim to evaluate the possible antitumor activity of zinc oxide nanoparticles (ZnONPs) as a chemotherapeutic approach in in vitro and in vivo experimental models. An in vitro study was performed on three different cell lines, namely human hepatocellular carcinoma (HEPG2), human prostate cancer (PC3), and none‐small cell lung cancer (A549) cell lines. An in vivo study using diethylnitrosamine (DENA)‐induced HCC in adult male Wistar rats was conducted to investigate the potential antitumor activity of ZnONPs in HCC and the possible underlying mechanisms. Hepatocellular carcinoma (HCC) was induced by oral administration of DENA given in drinking water (100 mg/L) for 8 weeks. Rats were allocated into four groups, namely a control group, an HCC control group receiving DENA alone, a ZnONPs (10 μg/kg per week, intravenous (i.v.) for 1 month) control group, and a ZnONPs treatment group (receiving ZnONPs + DENA). ZnONPs significantly reduced the elevated serum levels of HCC‐related tumor markers alphafetoprotein and alpha‐l ‐fucosidase and the apoptotic marker caspase‐3 compared with the untreated HCC rats. In addition, treatment with ZnONPs significantly decreased the elevated levels of hepatocyte integrity and oxidative stress markers as compared with the untreated HCC control group. Furthermore, the histopathological study revealed anaplasia and fibrous degenerations which were significantly corrected by ZnONPs treatment. In conclusion, administration of ZnONPs exhibited a promising preclinical anticancer efficacy in HCC and could be considered as a novel strategy for the treatment HCC in clinical practices. 相似文献
16.
Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. 总被引:2,自引:0,他引:2
Previous studies have reported little correlation between the relative toxicity of particle types when comparing lung toxicity rankings following in vivo instillation versus in vitro cell culture exposures. This study was designed to assess the capacity of in vitro screening studies to predict in vivo pulmonary toxicity of several fine or nanoscale particle types in rats. In the in vivo component of the study, rats were exposed by intratracheal instillation to 1 or 5 mg/kg of the following particle types: (1) carbonyl iron (CI), (2) crystalline silica (CS) (Min-U-Sil 5, alpha-quartz), (3) precipitated amorphous silica (AS), (4) nano-sized zinc oxide (NZO), or (5) fine-sized zinc oxide (FZO). Depending on particle type and solution state, these particles range in size from 90 to 500 nm in size. Following exposures, the lungs of exposed rats were lavaged and inflammation (neutrophil recruitment) and cytotoxicity end points (bronchoalveolar lavage [BAL] fluid lactate dehydrogenase [LDH] values) were measured at 24 h, 1 week, 1 and 3 months postexposure. For the in vitro component of the study, three different culture conditions were utilized. Cultures of (1) rat L2 lung epithelial cells, (2) primary alveolar macrophages (AMs) (collected via BAL from unexposed rats), as well as (3) AM-L2 lung epithelial cell cocultures were incubated with the particle types listed above, and the culture fluids were evaluated for cytotoxicity end points (LDH, 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan [MTT]) as well as inflammatory cytokines (macrophage inflammatory 2 protein [MIP-2], tumor necrosis factor alpha [TNF-alpha], and interleukin-6 [IL-6]) at one (i.e., cytokines) or several (cytotoxicity) time periods. Results of in vivo pulmonary toxicity studies demonstrated that instilled CI particles produced little toxicity. CS particles produced sustained inflammation and cytotoxicity. AS particles produced reversible and transient inflammatory responses. NZO or FZO particles produced potent but reversible inflammation which was resolved by 1 month postinstillation exposure. Results of in vitro pulmonary cytotoxicity studies demonstrated a variety of responses to the different particle types, primarily at high doses. With respect to the LDH results, L2 cells were the most sensitive and exposures to nano- or fine-sized ZnO for 4 or 24 h were more cytotoxic than exposures to CS or AS particles. Macrophages essentially were resistant and epithelial macrophage cocultures generally reflected the epithelial results at 4 and 24 h incubation, but not at 48 h incubation. MTT results were also interesting but, except for nano- and fine-sized ZnO, did not correlate well with LDH results. Results of in vitro pulmonary inflammation studies demonstrated that L2 cells did not produce MIP-2 cytokines, but CS- or AS-exposed AMs and, to a lesser degree, cocultures secreted these chemotactic factors into the culture media. Measurements of TNF-alpha in the culture media by particle-exposed cells demonstrated little activity. In addition, IL-6 secretion was measured in CS, AS, and nano-sized ZnO-exposed cocultures. When considering the range of toxicity end points to five different particle types, the comparisons of in vivo and in vitro measurements demonstrated little correlation, particularly when considering many of the variables assessed in this study-such as cell types to be utilized, culture conditions and time course of exposure, as well as measured end points. It seems clear that in vitro cellular systems will need to be further developed, standardized, and validated (relative to in vivo effects) in order to provide useful screening data on the relative toxicity of inhaled particle types. 相似文献
17.
《Journal of applied toxicology : JAT》2017,37(12):1408-1419
The tissue distribution and toxicity of nanoparticles (NPs) depend on their physical and chemical properties both in the manufactured condition and within the biological system. We characterized three types of commercially available aluminum‐based NPs (Al‐NPs), two rod‐type aluminum oxide NPs (Al2O3, AlONPs), with different aspect ratios (short [S]‐ and long [L]‐AlONPs), and spherical aluminum cerium oxide NPs (AlCeO3, AlCeONPs). The surface area was in order of the S‐AlONPs > L‐AlONPs > AlCeONPs. Very importantly, we found that AlCeONPs is Al2O3‐coated CeO2 NPs, but not AlCeO3 NPs, and that the Al level in AlCeONPs is approximately 20% of those in S‐ and L‐AlONPs. All three types of Al‐NPs were slightly ionized in gastric fluid and rapidly particlized in the intestinal fluid. There were no significant differences in the body weight gain following 28 days of repeated oral administration of the three different types of Al‐NPs. All Al‐NPs elevated Al level in the heart, spleen, kidney and blood at 24 hours after the final dose, accompanied by the altered tissue level of redox reaction‐related trace elements. Subsequently, in four types of cells derived from the organs which Al‐NPs are accumulated, H9C2 (heart), HEK‐293 (kidney), splenocytes and RAW264.7 (blood), S‐AlONPs showed a very low uptake level and did not exert significant cytotoxicity. Meanwhile, cytotoxicity and uptake level were the most remarkable in cells treated with AlCeONPs. In conclusion, we suggest that the physicochemical properties of NPs should be examined in detail before the release into the market to prevent unexpected adverse health effects. 相似文献
18.
《Pharmaceutical development and technology》2013,18(7):824-832
AbstractThe objective of this study was to evaluate the influence of solid lipid nanoparticles (SLN) loaded with the poorly water-soluble drug tamoxifen citrate (TC) on the in vitro antitumor activity and bioavailability of the drug. TC-loaded SLN were prepared by solvent injection method using glycerol monostearate (GMS) or stearic acid (SA) as lipid matrix. Poloxamer 188 or tween 80 were used as stabilizers. TC-loaded SLN (F3 and F4) prepared using GMS and stabilized by poloxamer 188 showed highest entrapment efficiency % (86.07?±?1.74 and 90.40?±?1.22%) and reasonable mean particle sizes (130.40?±?9.45 and 243.80?±?12.33?nm), respectively. The in vitro release of TC from F3 and F4 exhibited an initial burst effect followed by a sustained drug release. In vitro cytotoxicity of F3 against human breast cancer cell line MCF-7 showed comparable antitumor activity to free drug. Moreover, the results of bioavailability evaluation of TC-loaded SLN in rats compared to free TC indicated that 160.61% increase in the oral bioavailability of TC. The obtained results suggest that incorporation of the poorly water-soluble drug TC in SLN preserves the in vitro antitumor activity and significantly enhance oral bioavailability of TC in rats. 相似文献
19.
The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. 总被引:3,自引:0,他引:3
Saber M Hussain Amanda K Javorina Amanda M Schrand Helen M Duhart Syed F Ali John J Schlager 《Toxicological sciences》2006,92(2):456-463
This investigation was designed to determine whether nano-sized manganese oxide (Mn-40 nm) particles would induce dopamine (DA) depletion in a cultured neuronal phenotype, PC-12 cells, similar to free ionic manganese (Mn(2+)). Cells were exposed to Mn-40 nm, Mn(2+) (acetate), or known cytotoxic silver nanoparticles (Ag-15 nm) for 24 h. Phase-contrast microscopy studies show that Mn-40 nm or Mn(2+) exposure did not greatly change morphology of PC-12 cells. However, Ag-15 nm and AgNO(3) produce cell shrinkage and irregular membrane borders compared to control cells. Further microscopic studies at higher resolution demonstrated that Mn-40 nm nanoparticles and agglomerates were effectively internalized by PC-12 cells. Mitochondrial reduction activity, a sensitive measure of particle and metal cytotoxicity, showed only moderate toxicity for Mn-40 nm compared to similar Ag-15 nm and Mn(2+) doses. Mn-40 nm and Mn(2+) dose dependently depleted DA and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), while Ag-15 nm only significantly reduced DA and DOPAC at concentrations of 50 mug/ml. Therefore, the DA depletion of Mn-40 nm was most similar to Mn(2+), which is known to induce concentration-dependent DA depletion. There was a significant increase (> 10-fold) in reactive oxygen species (ROS) with Mn-40 nm exposure, suggesting that increased ROS levels may participate in DA depletion. These results clearly demonstrate that nanoscale manganese can deplete DA, DOPAC, and HVA in a dose-dependent manner. Further study is required to evaluate the specific intracellular distribution of Mn-40 nm nanoparticles, metal dissolution rates in cells and cellular matrices, if DA depletion is induced in vivo, and the propensity of Mn nanoparticles to cross the blood-brain barrier or be selectively uptaken by nasal epithelium. 相似文献
20.
《Inhalation toxicology》2013,25(9):532-543
Background: Nanoparticles are being rapidly assimilated into numerous research fields and consumer products. A concurrent increase in human exposure to such materials is expected. Magnetic nanoparticles (MNPs) possess unique and beneficial features, increasing their functionality and integrative potential. However, MNP toxicity characterization is limited, especially in regards to the human respiratory system. This study aimed to assess the in vitro effects of airborne MNPs on BEAS-2B cells. Uncoated iron oxide was compared with two amorphous silica-coated MNPs, hypothesizing the coatings reduced toxicity and increased particle stability.Method: BEAS-2B cells were cultured at an air–liquid interface and exposed to airborne MNPs using a fabricated exposure device. Indices of cytotoxicity, inflammatory response, oxidative stress, and iron homeostasis were monitored postexposure via cell viability assays and qRT-PCR. Concentrations of soluble iron-associated with different MNPs were also examined before and after contact with several aqueous organic and inorganic acids.Results: The silica-coated MNPs had reduced soluble iron concentrations. This result indicates that the silica coating provides a barrier to and prevents the mobilization of soluble iron from the particle to the cell, thereby reducing the risk of oxidative stress or alterations of iron homeostasis. Cells exposed to MagSilica50 and MagSilica50–85® showed little to no indications of cytotoxicity or induction of inflammatory response/oxidative stress at the examined delivery concentrations.Conclusion: MNPs coated with amorphous silica are protected from acidic erosion. Correspondingly, the particle stability translates into reduced cytotoxicity and cellular influence on human airway epithelial cells. 相似文献