首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Titanium dioxide nanoparticles (TiO2 NPs) have shown great adsorption capacity for arsenic (As); however, the potential impact of TiO2 NPs on the behavior and toxic responses of As remains largely unexplored. In the present study, we focused on the physicochemical interaction between TiO2 NPs and As(III) to clarify the underlying mechanisms involved in their synergistic genotoxic effect on mammalian cells. Our data showed that As(III) mainly interacted with TiO2 NPs by competitively occupying the sites of hydroxyl groups on the surface of TiO2 NP aggregates, resulting in more aggregation of TiO2 NPs. Although TiO2 NPs at concentrations used here had no cytotoxic or genotoxic effects on cells, they efficiently increased the genotoxicity of As(III) in human-hamster hybrid (AL) cells. The synergistic genotoxicity of TiO2 NPs and As(III) was partially inhibited by various endocytosis pathway inhibitors while it was completely blocked by an As(III)-specific chelator. Using a mitochondrial membrane potential fluorescence probe, a reactive oxygen species (ROS) probe together with mitochondrial DNA-depleted ρ0 AL cells, we discovered that mitochondria were essential for mediating the synergistic DNA-damaging effects of TiO2 NPs and As(III). These data provide novel mechanistic proof that TiO2 NPs enhanced the genotoxicity of As(III) via physicochemical interactions, which were mediated by mitochondria-dependent ROS.  相似文献   

2.
《Nanotoxicology》2013,7(3):326-340
Abstract

Nanomaterials are increasingly used in various food applications. In particular, nanoparticulate amorphous SiO2 is already contained, e.g., in spices. Since intestinal dendritic cells (DC) could be critical targets for ingested particles, we compared the in vitro effects of amorphous silica nanoparticles with fine crystalline silica, and micron-sized with nano-sized TiO2 particles on DC. TiO2- and SiO2-nanoparticles, as well as crystalline silica led to an upregulation of MHC-II, CD80, and CD86 on DC. Furthermore, these particles activated the inflammasome, leading to significant IL-1β-secretion in wild-type (WT) but not Caspase-1- or NLRP3-deficient mice. Silica nanoparticles and crystalline silica induced apoptosis, while TiO2 nanoparticles led to enhanced production of reactive oxygen species (ROS). Since amorphous silica and TiO2 nanoparticles had strong effects on the activation-status of DC, we suggest that nanoparticles, used as food additives, should be intensively studied in vitro and in vivo, to ensure their safety for the consumer.  相似文献   

3.
《Nanotoxicology》2013,7(2):91-97
This research evaluated the toxicity of TiO2 nanoparticles to freshwater aquatic organisms and the effects of organic and inorganic material on TiO2 toxicity. The fathead minnow was much less acutely sensitive to TiO2 (LC50 500 mg/l and higher) than Ceriodaphnia dubia and Daphnia pulex (mean LC50 values 7.6 and 9.2 mg/l, respectively). Total organic carbon levels of 1.5 mg/l decreased TiO2 acute toxicity to C. dubia (LC50 > 100 mg/l), but kaolinite clay decreased TiO2 toxicity to a lesser extent. In chronic toxicity tests, the green algae Pseudokirchneriella subcapitata was more sensitive to TiO2 (IC25 1–2 mg/l) than C. dubia (IC25 9.4–26.4 mg/l) and the fathead minnow (IC25 values over 340 mg/l). Study results indicate that the specific organisms exposed and the effects of water quality parameters on TiO2 toxicity should be considered in hazard evaluations of this nanoparticle.  相似文献   

4.
Titanium dioxide nanoparticles (TiO2 NPs) are among the top five NPs used in consumer products, paints and pharmaceutical preparations. Since, exposure to such nanoparticles is mainly through the skin and inhalation, the present study was conducted in the human epidermal cells (A431). A mild cytotoxic response of TiO2 NPs was observed as evident by the MTT and NR uptake assays after 48 h of exposure. However, a statistically significant (p < 0.05) induction in the DNA damage was observed by the Fpg-modified Comet assay in cells exposed to 0.8 μg/ml TiO2 NPs (2.20 ± 0.26 vs. control 1.24 ± 0.04) and higher concentrations for 6 h. A significant (p < 0.05) induction in micronucleus formation was also observed at the above concentration (14.67 ± 1.20 vs. control 9.33 ± 1.00). TiO2 NPs elicited a significant (p < 0.05) reduction in glutathione (15.76%) with a concomitant increase in lipid hydroperoxide (60.51%; p < 0.05) and reactive oxygen species (ROS) generation (49.2%; p < 0.05) after 6 h exposure. Our data demonstrate that TiO2 NPs have a mild cytotoxic potential. However, they induce ROS and oxidative stress leading to oxidative DNA damage and micronucleus formation, a probable mechanism of genotoxicity. This is perhaps the first study on human skin cells demonstrating the cytotoxic and genotoxic potential of TiO2 NPs.  相似文献   

5.
《Nanotoxicology》2013,7(1):48-60
Abstract

Titanium dioxide nanoparticles (TiO2 NPs), widely used in consumer products, paints, pharmaceutical preparations and so on, have been shown to induce cytotoxicity, genotoxicity and carcinogenic responses in vitro and in vivo. The present study revealed that TiO2 NPs induce significant (p < 0.05) oxidative DNA damage by the Fpg-Comet assay even at 1 µg/ml concentration. A corresponding increase in the micronucleus frequency was also observed. This could be attributed to the reduced glutathione levels with concomitant increase in lipid peroxidation and reactive oxygen species generation. Furthermore, immunoblot analysis revealed an increased expression of p53, BAX, Cyto-c, Apaf-1, caspase-9 and caspase-3 and decreased the level of Bcl-2 thereby indicating that apoptosis induced by TiO2 NPs occurs via the caspase-dependent pathway. This study systematically shows that TiO2 NPs induce DNA damage and cause apoptosis in HepG2 cells even at very low concentrations. Hence the use of such nanoparticles should be carefully monitored.  相似文献   

6.
《Nanotoxicology》2013,7(3):341-353
Abstract

We investigated the genotoxic responses to two types of TiO2 nanoparticles (<25 nm anatase: TiO2-An, and <100 nm rutile: TiO2-Ru) in human hepatoma HepG2 cells. Under the applied exposure conditions the particles were agglomerated or aggregated with the size of agglomerates and aggregates in the micrometer range, and were not cytotoxic. TiO2-An, but not TiO2-Ru, caused a persistent increase in DNA strand breaks (comet assay) and oxidized purines (Fpg-comet). TiO2-An was a stronger inducer of intracellular reactive oxygen species (ROS) than TiO2-Ru. Both types of TiO2 nanoparticles transiently upregulated mRNA expression of p53 and its downstream regulated DNA damage responsive genes (mdm2, gadd45α, p21), providing additional evidence that TiO2 nanoparticles are genotoxic. The observed differences in responses of HepG2 cells to exposure to anatase and rutile TiO2 nanoparticles support the evidence that the toxic potential of TiO2 nanoparticles varies not only with particle size but also with crystalline structure.  相似文献   

7.
《Nanotoxicology》2013,7(8):868-884
Abstract

Boron and boron nitride nanotubes (BNNTs) are increasingly used in different industrial fields and, potentially, in some biomedical areas. As occurs with other nanomaterials (NMs), to increase our knowledge on their potential health hazards is a priority. Although in vitro approaches are a routine in getting biological information on the biological effects of NMs, the use of simple in vivo model organisms is receiving an increased interest. In this context, Drosophila melanogaster is widely used as a eukaryotic model for the study of the potential harmful effects associated with various agents, including NMs. The aim of this study is to provide new data on the potential antioxidant/antigenotoxic properties of boron and boron nitride nanotubes (BNNTs), as well as on other biological end-points. Our results show changes in the expression of genes involved in the antioxidant defense (CAT and SOD), and in those rel0061ted to the integrity of the intestinal barrier (Duox, Hml, Muc68D, and PPO2), at the highest exposure doses (5, 10?mM). However, non-relevant toxic or genotoxic effects were observed. Interestingly, BNNTs and boron significantly reduced the genotoxic effect of potassium dichromate (PDC), and the intracellular levels of reactive oxygen species (ROS). This suggest that the observed effects can be linked to the antioxidant properties of BNNTs and boron. This is the first study reporting antigenotoxicity/genotoxicity, and gene expression data, in the somatic cells of D. melanogaster larvae for BNNTs.  相似文献   

8.
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in foods, cosmetics, and medicine. Although the inhalation toxicity of TiO2 NPs has been studied, the potential adverse effects of oral exposure of low-dose TiO2 NPs are largely unclear. Herein, with macrophage cell lines, primary cells, and mouse models, we show that TiO2 NPs prime macrophages into a specific activation state characterized by excessive inflammation and suppressed innate immune function. After a month of dietary exposure in mice or exposure in vitro to TiO2 NPs (10 and 50?nm), the expressions of pro-inflammatory genes in macrophages were increased, and the expressions of anti-inflammatory genes were decreased. In addition, for macrophages exposed to TiO2 NPs in vitro and in vivo, their chemotactic, phagocytic, and bactericidal activities were lower. This imbalance in the immune system could enhance the susceptibility to infections. In mice, after a month of dietary exposure to low doses of TiO2 NPs, an aggravated septic shock occurred in response to lipopolysaccharide challenge, leading to elevated levels of inflammatory cytokines in serum and reduced overall survival. Moreover, TLR4-deficient mice and primary macrophages, or TLR4-independent stimuli, showed less response to TiO2 NPs. These results demonstrate that TiO2 NPs induce an abnormal state of macrophages characterized by excessive inflammation and suppressed innate immune function in a TLR4-dependent manner, which may suggest a potential health risk, particularly for those with additional complications, such as bacterial infections.  相似文献   

9.
Xie G  Wang C  Sun J  Zhong G 《Toxicology letters》2011,205(1):55-61
As the biosafety of nanotechnology becomes a growing concern, the in vivo nanotoxicity of nanoparticles (NPs) has been drawn an increasing attention. Titanium dioxide nanoparticles (TiO2-NPs) have been developed for versatile use, but the pharmacokinetics of intravenously administered TiO2-NPs have not been investigated extensively. In the present study, the rutile-type TiO2-NPs with a size about 20 nm were labeled with CF680 and 125I. The labeled TiO2-NPs were injected in mice or rats with the concentration of 1 mg/ml and the dose of 10 mg/kg body weight and their tissue distribution and excretion were investigated by using ex vivo fluorescent imaging, γ-counter and TEM. The results indicated that the TiO2-NPs mainly accumulated in liver and spleen and could be retained for over 30 days in these tissues due to the phagocytosis by macrophages. The excretion assay found that the excretory rate of TiO2-NPs through urine was higher than that of feces, indicating that renal excretion was the main excretion pathway of TiO2-NPs. Overall results of the present study provided important information on distribution and excretion of TiO2-NPs in vivo, which would greatly promote the pharmacokinetics and in vivo nanotoxicity research of TiO2-NPs.  相似文献   

10.
Dissolution and bandgap paradigms have been proposed for predicting the ability of metal oxide nanoparticles (NPs) to induce oxidative stress in different in vitro and in vivo models. Here, we addressed the effectiveness of these paradigms in vivo and under conditions typical of the marine environment, a final sink for many NPs released through aquatic systems. We used ZnO and MnO2 NPs as models for dissolution and bandgap paradigms, respectively, and CeO2 NPs to assess reactive oxygen radical (ROS) production via Fenton-like reactions in vivo. Oyster embryos were exposed to 0.5–500?μM of each test NP over 24?h and oxidative stress was determined as a primary toxicity pathway across successive levels of biological complexity, with arrested development as the main pathological outcome. NPs were actively ingested by oyster larvae and entered cells. Dissolution was a viable paradigm for predicting the toxicity of NPs in the marine environment, whereas the surface reactivity based paradigms (i.e. bandgap and ROS generation via Fenton-like reaction) were not supported under seawater conditions. Bio-imaging identified potential cellular storage-disposal sites of solid particles that could ameliorate the toxicological behavior of non-dissolving NPs, whilst abiotic screening of surface reactivity suggested that the adsorption-complexation of surface active sites by seawater ions could provide a valuable hypothesis to explain the quenching of the intrinsic oxidation potential of MnO2 NPs in seawater.  相似文献   

11.
《Nanotoxicology》2013,7(4):546-556
Abstract

Six TiO2 and two CeO2 nanomaterials with dry sizes ranging from 6–410 nm were tested for their ability to cause DNA centered free radicals in vitro in the concentration range of 10–3,000 ug/ml. All eight of the nanomaterials significantly increased the adduction of the spin trap agent 5,5-dimethyl-1-pyroline N-oxide (DMPO) to DNA as measured by the experimental technique of immuno-spin trapping. The eight nanomaterials differed considerably in their potency, slope, and active concentration. The largest increase in DNA nitrone adducts was caused by a TiO2 nanomaterial (25 nm, anatase) from Alfa Aesar. Some nanomaterials that increased the amount of DNA nitrone adducts at the lowest exposure concentrations (100 ug/ml) were Degussa TiO2 (31 nm), Alfa Aesar TiO2 (25 nm, anatase) and Nanoamor CeO2 (8 nm, cerianite). At exposure concentrations of 10 or 30 ug/ml, no nanomaterials showed significant in vitro formation of DNA nitrone adducts.  相似文献   

12.
《Nanotoxicology》2013,7(7):813-824
Abstract

The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important in the development of cardiovascular diseases. The NMs used were five TiO2 NMs with different charge, size and crystal structure, coated and uncoated ZnO NMs and Ag which were tested in a wide concentration range. There were major differences between the types of NMs; exposure to ZnO and Ag resulted in cytotoxicity and increased gene expression levels of HMOX1 and IL8. The intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) expression were highest in TiO2 NM-exposed cells. There was increased adhesion of THP-1 monocytic cells onto HUVECs with Ag exposure. None of the NMs increased the intracellular ROS production. There were no major effects of the coating of ZnO NMs. The TiO2 NMs data on ICAM-1 and VCAM-1 expression suggested that the anatase form was more potent than the rutile form. In addition, the larger TiO2 NM was more potent than the smaller for gene expression and ICAM-1 and VCAM-1 expression. The toxicological profile of cardiovascular disease-relevant biomarkers depended on composition, size and crystal structure of TiO2 NMs, whereas the charge on TiO2 NMs and the coating of ZnO NMs were not associated with differences in toxicological profile.  相似文献   

13.
《Toxicology in vitro》2014,28(1):60-69
Toxicological characterization of manufactured nanomaterials (NMs) is essential for safety assessment, while keeping pace with innovation from their development and application in consumer products. The specific physicochemical properties of NMs, including size and morphology, might influence their toxicity and have impact on human health. The present work aimed to evaluate the genotoxicity of nanosized titanium dioxide (TiO2), synthetic amorphous silica (SAS) and multiwalled carbon nanotubes (MWCNTs), in human lymphocytes. The morphology and size of those NMs were characterized by transmission electron microscopy, while the hydrodynamic particle size-distributions were determined by dynamic light scattering. Using a standardized procedure to ensure the dispersion of the NMs and the cytokinesis-block micronucleus assay (without metabolic activation), we observed significant increases in the frequencies of micronucleated binucleated cells (MNBCs) for some TiO2 NMs and for two MWCNTs, although no clear dose–response relationships could be disclosed. In contrast, all forms of SAS analyzed in this study were unable to induce micronuclei. The present findings increase the weight of evidence towards a genotoxic effect of some forms of TiO2 and some MWCNTs. Regarding safety assessment, the differential genotoxicity observed for closely related NMs highlights the importance of investigating the toxic potential of each NM individually, instead of assuming a common mechanism and equal genotoxic effects for a set of similar NMs.  相似文献   

14.
It was recently shown that ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress in human umbilical vein endothelial cells (HUVECs). If ER stress is associated the toxicity of ZnO NPs, the presence of ER stress inducer thapsigargin (TG) should alter the response of HUVECs to ZnO NP exposure. In this study, we addressed this issue by assessing cytotoxicity, oxidative stress and inflammatory responses in ZnO NP exposed HUVECs with or without the presence of TG. Moreover, TiO2 NPs were used to compare the effects. Exposure to 32?μg/mL ZnO NPs (p?2 NPs (p?>?0.05), significantly induced cytotoxicity as assessed by WST-1 and neutral red uptake assay, as well as intracellular ROS. ZnO NPs dose-dependently increased the accumulation of intracellular Zn ions, and ZnSO4 induced similar cytotoxic effects as ZnO NPs, which indicated a role of Zn ions. The release of inflammatory proteins tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) or the adhesion of THP-1 monocytes to HUVECs was not significantly affected by ZnO or TiO2 NP exposure (p?>?0.05). The presence of 250?nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p?p?>?0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p?>?0.05) except neutral red uptake assay (p?相似文献   

15.
The whitening and opacifying properties of titanium dioxide (TiO2) are commonly exploited when it is used as a food additive (E171). However, the safety of this additive can be questioned as TiO2 nanoparticles (TiO2-NPs) have been classed at potentially toxic. This study aimed to shed some light on the mechanisms behind the potential toxicity of E171 on epithelial intestinal cells, using two in vitro models: (i) a monoculture of differentiated Caco-2 cells and (ii) a coculture of Caco-2 with HT29-MTX mucus-secreting cells. Cells were exposed to E171 and two different types of TiO2-NPs, either acutely (6–48?h) or repeatedly (three times a week for 3 weeks). Our results confirm that E171 damaged these cells, and that the main mechanism of toxicity was oxidation effects. Responses of the two models to E171 were similar, with a moderate, but significant, accumulation of reactive oxygen species, and concomitant downregulation of the expression of the antioxidant enzymes catalase, superoxide dismutase and glutathione reductase. Oxidative damage to DNA was detected in exposed cells, proving that E171 effectively induces oxidative stress; however, no endoplasmic reticulum stress was detected. E171 effects were less intense after acute exposure compared to repeated exposure, which correlated with higher Ti accumulation. The effects were also more intense in cells exposed to E171 than in cells exposed to TiO2-NPs. Taken together, these data show that E171 induces only moderate toxicity in epithelial intestinal cells, via oxidation.  相似文献   

16.
《Nanotoxicology》2013,7(8):813-824
Abstract

There is uncertainty in understanding of the relationship between physico-chemical parameters of nanosized titanium dioxide (nano-TiO2) and its toxicity when brought into contact with living cells. This study provides a multidisciplinary experimental insight into the toxicity and phototoxicity of the custom-made TiO2-based nanowires (TiO2-NWs). We employed electron spin resonance (ESR) to detect reactive oxygen species (ROS) generated in aqueous suspensions of TiO2-NWs and combined these results with atomic force microscopy (AFM) to trace the onset of toxic effects towards human melanoma cells. The cells were treated with low concentrations (~2.5 μg/ml) of TiO2-NWs and Degussa P25. High-resolution AFM surface topography and cell elasticity measurements revealed toxic effects both in cells incubated with TiO2-NWs in the dark and exposed to the photo-oxidative stress under UVA radiation. In contrast to ROS generation efficacy in the absence of cells in vitro, no direct correlation was found between the physical parameters of nano-TiO2 and cell toxicity.  相似文献   

17.
Extensive studies have shown that titanium dioxide (TiO2) nanomaterials (NMs) can cause toxicity in vitro and in vivo under normal conditions. However, an adverse effect induced by nano‐TiO2 in many diseased conditions, typically characterized by oxidative stress (OS), remains unknown. We investigated the toxicity of nano‐TiO2 in rat liver cells (BRL‐3A) and Sprague–Dawley (SD) rat livers under OS conditions, which were generated using hydrogen peroxide (H2O2) in vitro and alloxan in vivo, respectively. In vitro results showed that cell death ratios after nano‐TiO2 exposure were significantly enhanced (up to 2.62‐fold) in BRL‐3A cells under OS conditions, compared with normal controls. Significant interactions between OS conditions and nano‐TiO2 resulted in the rapid G0/G1 to S phase transition and G2/M arrest, which were opposite to G0/G1 phase arrest in cells after NMs exposure only. In vivo results showed that obvious pathological changes in rat livers and the increased activities of four enzymes (i.e. aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase and alkaline phosphatase) owing to liver damage after nano‐TiO2 exposure under OS conditions, compared with their healthy controls. In addition, compared with increased hepatotoxicity after nano‐TiO2 exposure, micro‐TiO2 showed no adverse effects to cells and rat livers under OS conditions. Our results suggested that OS conditions synergistically increase nano‐TiO2 induced toxicity in vitro and in vivo, indicating that the evaluation of nanotoxicity under OS conditions is essentially needed prior to various applications of NMs in foods, cosmetics and potential treatment of diseases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The bacterial reverse mutation test, recommended by the Organization for Economic Co-operation and Development (OECD) to determine genotoxicity of chemical compounds, has been recently used by several authors to investigate nanoparticles. Surprisingly, test results have been negative, whereas in vitro mammalian cell tests often give positive genotoxic responses. In the present study, we used the fluctuation test procedure with the Salmonella typhimurium strains TA97a, TA98, TA100 and TA102 to determine the mutagenic potential of TiO2 nanoparticles (NP-TiO2) and showed that, when it is used conventionally, this test is not suitable for nanoparticle genotoxicity assessment. Indeed, the medium used during exposure prevents electrostatic interactions between bacterial cells and nanoparticles, leading to false-negative responses. We showed that a simple pre-exposure of bacteria to NP-TiO2 in a low ionic strength solution (NaCl 10 mM) at a pH below the nanoparticle isoelectric points (pH 5.5) can strongly improve the accuracy of the test. Thus, based on these improvements, we have demonstrated the genotoxicity of the engineered NP-TiO2 tested and a NP-TiO2 byproduct from a sunscreen nanocomposite. It was also shown that strain TA102 is more sensitive than the other strains, suggesting an oxidative stress-mediated mechanism of genotoxicity.  相似文献   

19.
Genotoxicity of phthalates   总被引:1,自引:0,他引:1  
Many of the environmental, occupational and industrial chemicals are able to generate reactive oxygen species (ROS) and cause oxidative stress. ROS may lead to genotoxicity, which is suggested to contribute to the pathophysiology of many human diseases, including inflammatory diseases and cancer. Phthalates are ubiquitous environmental chemicals and are well-known peroxisome proliferators (PPs) and endocrine disruptors. Several in vivo and in vitro studies have been conducted concerning the carcinogenic and mutagenic effects of phthalates. Di(2-ethylhexyl)-phthalate (DEHP) and several other phthalates are shown to be hepatocarcinogenic in rodents. The underlying factor in the hepatocarcinogenesis is suggested to be their ability to generate ROS and cause genotoxicity. Several methods, including chromosomal aberration test, Ames test, micronucleus assay and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutation test and Comet assay, have been used to determine genotoxic properties of phthalates. Comet assay has been an important tool in the measurement of the genotoxic potential of many chemicals, including phthalates. In this review, we will mainly focus on the studies, which were conducted on the DNA damage caused by different phthalate esters and protection studies against the genotoxicity of these chemicals.  相似文献   

20.
《Nanotoxicology》2013,7(1):126-134
Abstract

Background and aim: Zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials (NMs) are used in many consumer products, including foodstuffs. Ingested and inhaled NM can reach the liver. Whilst their effects on inflammation, cytotoxicity, genotoxicity and mitochondrial function have been explored, no work has been reported on their impact on liver intermediary metabolism. Our aim was to assess the effects of sub-lethal doses of these materials on hepatocyte intermediary metabolism.

Material and methods: After characterisation, ZnO and TiO2 NM were used to treat C3A cells for 4 hours at concentrations ranging between 0 and 10?μg/cm2, well below their EC50, before the assessment of (i) glucose production and glycolysis from endogenous glycogen and (ii) gluconeogenesis and glycolysis from lactate and pyruvate (LP). Mitochondrial membrane potential was assessed using JC-10 after 0–40?μg/cm2 ZnO. qRT-PCR was used to assess phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression. Dihydroethidium (DHE) staining and FACS were used to assess intracellular reactive oxygen species (ROS) concentration.

Results: Treatment of cells with ZnO, but not TiO2, depressed mitochondrial membrane potential, leading to a dose-dependent increase in glycogen breakdown by up to 430%, with an increase of both glycolysis and glucose release. Interestingly, gluconeogenesis from LP was also increased, up to 10-fold and correlated with a 420% increase in the PEPCK mRNA expression, the enzyme controlling gluconeogenesis from LP. An intracellular increase of ROS production after ZnO treatment could explain these effects.

Conclusion: At sub-lethal concentrations, ZnO nanoparticles dramatically increased both gluconeogenesis and glycogenolysis, which warrants further in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号