首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
Testican, a chondroitin/heparan sulfate proteoglycan, is primarily expressed in neurons of the adult and embryonic mouse brain, suggesting its role in normal and/or proliferation and differentiation processes of neurons. However, the role of testican in injured brain remains unclear. In the present study we investigated testican-1 mRNA expression pattern after cryo-injury of the brain. In situ hybridization histochemistry revealed that testican-1 mRNA is induced in the region surrounding the necrotic tissue. Time course study of testican-1 mRNA showed the highest level of signal intensity at 7 days after the injury. To determine which cell types express testican-1 mRNA, we performed in situ hybridization histochemistry combined with immunohistochemistry of several cell markers. Testican-1 mRNA signals were detected in the proximal reactive astrocytes, whereas the distribution pattern of testican-1 mRNA positive cells was different from those of mature oligodendrocytes and activated microglia. In addition, signals for testican-1 mRNA overlapped with those of FGF-2 mRNA, showing that these molecules are coexpressed in reactive astrocytes. These results suggest a possibility that testican-1 plays a permissive role for regenerating axons in reactive astrocytes after injury.  相似文献   

3.
4.
The extracellular matrix is known to show region-specific characteristics in the adult brain. Our comparative cytochemical study is focused on the laminar organisation of major extracellular matrix constituents in the murine hippocampal formation, including the regions CA1, CA2 and CA3 of the hippocampus proper, the dentate gyrus, the subiculum and the presubiculum. Components related to chondroitin sulphate proteoglycans were detected by N-acetylgalactosamine-binding Wisteria floribunda agglutinin, colloidal iron staining, and antibodies to different proteoglycan domains, including the Cat-301 and Cat-315 epitopes of aggrecan, as well as neurocan, brevican and phosphacan. The distribution patterns of these components were correlated with the patterns revealed for hyaluronan and the brain-specific extracellular matrix glycoprotein, tenascin-R, known to be ligands of extracellular matrix proteoglycans. Lectin binding clearly labelled perineuronal nets of the extracellular matrix around interneurons, which were preferentially located within or near the principal cell layers in all regions. In the hippocampus proper, the CA2 subfield showed an intense labelling of the neuropil around pyramidal cell bodies and the neuropil zones in the strata oriens and radiatum. These patterns were also seen after immunoreaction for chondroitin proteoglycan domains, brevican and phosphacan, as well as after detection of hyaluronan and tenascin-R. Characteristic laminar and intralaminar patterns were additionally expressed in the neuropil in all regions. In the dentate gyrus, the staining intensity for brevican, phosphacan and tenascin-R was predominant in the middle molecular layer, and for Cat-315 in the inner molecular layer, whereas immunoreactivity for neurocan increased within the outer molecular layer towards the hippocampal fissure. Our findings indicate that proteoglycans, hyaluronan and tenascin-R show differential patterns of co-expression in the individual regions and laminae of the hippocampal formation. The inhomogeneous composition of these major components suggests that the extracellular matrix is specifically adapted to the functional domains of intrahippocampal connections and afferent fibre systems.  相似文献   

5.
Cell bodies and their dendrites of motor neurons, motor-related neurons, and certain other subsets of neurons such as GABAergic interneurons in the mature brain and spinal cord possess intensely negatively charged perineuronal or perisynaptic nets of proteoglycans which are linked to the nerve cell surface glycoproteins. These perineuronal nets of proteoglycans are digested by chondroitinase ABC, hyaluronidase, or collagenase, but not by endo-alpha-N-acetylgalactosaminidase, which is reactive to the nerve cell surface glycoproteins. Aggrecan, versican, neurocan, and brevican are members of a family of chondroitin sulfate proteoglycans that bind to hyaluronan. Neurocan- or brevican-deficient mice showed a regionally heterogeneous composition of proteoglycans in perineuronal nets. Aggrecan glycoforms contribute to the molecular heterogeneity of the perineuronal nets. Proteoglycans such as phosphacan are included in matrix-associated proteoglycans. The extracellular matrix glycoprotein tenascin-R is accumulated in the perineuronal nets. The perineuronal proteoglycans are produced by associated satellite astrocytes just before weaning, while the nerve cell surface glycoproteins are produced by the associated nerve cells at earlier stages after birth. The perineuronal proteoglycans may entrap the tissue fluid and form a perineuronal gel layer which protects the synapses as a "perisynaptic barrier". Degradation of the perineuronal proteoglycans or perisynaptic barrier by treatment with chondroitinase ABC or hyaluronidase reactivates the neuronal plasticity or promotes the functional recovery of a severed nervous system. Another set of perineuronal nets occurs, which are intensely positively charged and contain guanidino compounds. It is considered that these intensely positively charged nets are intermingled with the intensely negatively charged ones of proteoglycans.  相似文献   

6.
Proteoglycans may modulate axon growth in the intact and injured adult mammalian CNS. Here we investigate the distribution and time course of deposition of a range of proteoglycans between 4 and 14 days following unilateral axotomy of the nigrostriatal tract in anaesthetised adult rats. Immunolabelling using a variety of antibodies was used to examine the response of heparan sulphate proteoglycans, chondroitin sulphate proteoglycans and keratan sulphate proteoglycans. We observed that many proteoglycans became abundant between 1 and 2 weeks post-axotomy. Heparan sulphate proteoglycans were predominantly found within the lesion core (populated by blood vessels, amoeboid macrophages and meningeal fibroblasts) whereas chondroitin sulphate proteoglycans and keratan sulphate proteoglycans were predominantly found in the lesion surround (populated by reactive astrocytes, activated microglia and adult precursor cells). Immunolabelling indicated that cut dopaminergic nigral axons sprouted prolifically within the lesion core but rarely grew into the lesion surround. We conclude that sprouting of cut dopaminergic nigral axons may be supported by heparan sulphate proteoglycans but restricted by chondroitin sulphate proteoglycans and keratan sulphate proteoglycans.  相似文献   

7.
Perineuronal nets consisting of chondroitin sulfate proteoglycans and hyaluronic acid are associated with distinct neuronal populations in mammalian brain. Whether neurons or glia cells produce these surface-associated chondroitin sulfate proteoglycan perineuronal nets has remained in question. In the present study, we observed perineuronal net-like structure by rat cortical neurons in dissociated culture using Wisteria floribunda aggulutinin, hyaluronic acid binding protein, and the antibodies recognizing chondroitin sulfate proteoglycans. The double labeling experiments showed that perineuronal net-like structure labeled with Wisteria floribunda aggulutinin was observed often at parvalbumin-positive neurons in dissociated cortical culture without glia. Perineuronal net-like structure was not seen at the early stage of culture, but they became visible concomitantly with neuronal maturation after longer culture. High magnification observation further demonstrated that Wisteria floribunda aggulutinin labeling on cortical neurons was seen as numerous puncta along surface of somata and proximal dendrites, but not axons and synapses. Perineuronal net-like structure on cultured neurons was also visualized using chondroitin sulfate proteoglycan-specific antibodies and hyaluronic acid binding protein. Double labeling study demonstrated that perineuronal net-like structure in cultured cortical neurons was composed of chondroitin sulfate proteoglycans such as neurocan and phosphacan. The hyaluronidase treatment of live neurons abolished cellular labeling of hyaluronic acid binding protein and concomitantly diminished that of Wisteria floribunda aggulutinin. These results indicate that cultured cortical neurons are able to construct perineuronal net-like structure without glial cells.  相似文献   

8.
Neurocan is a central nervous tissue-specific chondroitin sulfate proteoglycan of the lectican family. Mainly expressed during modeling and remodeling stages of this tissue, it is thought to play an important role via binding to various extracellular matrix and cellular components. In adults, neurocan expression is associated with the perineuronal net structures. This study shows the neurocan immunolocalization at the node of Ranvier in mouse central nervous tissues. The N-terminal fragment of neurocan (Ncan130) was the predominant form detected in the optic nerve. The expression of neurocan in the white matter of brain tissue and nerve tracts revealed differential expression profiles compared with those of versican V2 and brevican, other perinodal extracellular matrix molecules. Double immunolabeling for neurocan and a nodal marker, Bral1, or a paranodal marker, caspr, demonstrated that neurocan was localized at the node of Ranvier. Neurocan expression was found at many--not all--nodal regions, and neurocan-positive nodes outnumbered brevican-positive nodes. The nodal localization of neurocan was diminished in Bral1-deficient mice. Taken together, these findings indicate that neurocan contributes to the molecular heterogeneity of the perinodal matrix, and its nodal expression is dependent on Bral1.  相似文献   

9.
Oligodendrocyte precursor cells (OPCs) are a newly recognized glial component of the adult central nervous system of unknown function. Antibodies against the NG2 chondroitin sulfate proteoglycan have been useful tools to identify these cells in intact tissue. Here we review studies that show that OPCs react to several types of experimentally induced brain injury. Injury stimulates OPCs to re-enter the cell cycle, divide, and accumulate at the site of damage. OPCs, together with microglia and astrocytes, form the glial scar. Glial scars are thought to inhibit or prevent axonal regeneration and reactive OPCs contribute to this inhibition by producing growth-inhibiting chondroitin sulfate proteoglycans, particularly NG2. In developing animals, NG2 is found in areas, such as the perinotochordal mesenchyme, that are avoided by growing motor and sensory axons. Within the developing CNS, NG2-expressing cells surround the developing optic chiasm and tract and separate it from the overlying diencephalon. Thus, NG2-expressing cells are well positioned to inhibit axonal growth from developing as well as regenerating neurons.  相似文献   

10.
Recent evidence indicates that 17beta-estradiol may have neuroprotective and neuroregenerative properties. Estradiol is formed locally in neural tissue from precursor androgens. The expression of aromatase, the enzyme that catalyses the conversion of androgens to estrogens, is restricted, under normal circumstances, to specific neuronal populations. These neurons are located in brain areas in which local estrogen formation may be involved in neuroendocrine control and in the modulation of reproductive or sex dimorphic behaviours. In this study the distribution of aromatase immunoreactivity has been assessed in the brain of mice and rats after a neurotoxic lesion induced by the systemic administration of kainic acid. This treatment resulted in the induction of aromatase expression by reactive glia in the hippocampus and in other brain areas that are affected by kainic acid. The reactive glia were identified as astrocytes by co-localization of aromatase with glial fibrillary acidic protein and by ultrastructural analysis. No immunoreactive astrocytes were detected in control animals. The same result, the de novo induction of aromatase expression in reactive astrocytes on the hippocampus, was observed after a penetrating brain injury. Furthermore, using a 3H2O assay, aromatase activity was found to increase significantly in the injured hippocampus. These findings indicate that although astrocytes do not normally express aromatase, the enzyme expression is induced in these glial cells by different forms of brain injury. The results suggest a role for local astroglial estrogen formation in brain repair.  相似文献   

11.
The extracellular matrix is a complex network of macromolecules including glycoproteins, polysaccharides and proteoglycans. Tenascin-R and chondroitin sulfate proteoglycans are essential components of hippocampal extracellular matrix co-localised in perineuronal nets on interneurons. Mutant mice deficient in expression of tenascin-R showed a two-fold reduction of long-term potentiation induced by theta-burst stimulation of Schaffer collaterals in the stratum radiatum of the CA1 region of the hippocampus, as compared to wild-type mice. The same reduction in potentiation was observed in slices from wild-type mice pretreated for 2h with chondroitinase ABC that completely removed chondroitin sulfates from the extracellular matrix. Treatment of slices from tenascin-R deficient animals with the enzyme did not further reduce potentiation in comparison with untreated slices from these mice, showing an occlusion of effects produced by removal of tenascin-R and chondroitin sulfates. However, the level of potentiation recorded immediately after theta-burst stimulation was significantly higher in wild-type than in tenascin-R deficient mice, whereas chondroitinase ABC had no significant effect on this short-term form of plasticity. Enzymatic treatment also did not affect short-term depression evoked by low-frequency stimulation, whereas this form of synaptic plasticity was reduced in tenascin-R deficient mice. In contrast, long-term depression in CA1 was impaired by digestion of chondroitin sulfates but appeared normal in tenascin-R mutants.Our data demonstrate that tenascin-R and chondroitin sulfate proteoglycans differentially modulate several forms of synaptic plasticity, suggesting that different mechanisms are involved.  相似文献   

12.
Heparanase is an enzyme that cleaves heparan sulfate proteoglycans, an important component of the extracellular matrix to generate heparan sulfate fragments, leading to the remodeling of the extracellular matrix and the basement membrane particularly during cancer metastasis. A growing body of evidence suggests that heparanase serves multiple functions in normal tissues including the central nervous system. In this study, we showed that heparanase is expressed in reactive astrocytes in the peri-infarct lesion of a rat brain whose middle cerebral artery was transiently occluded for 90 min. RT-PCR and Western blot analyses revealed that heparanase expression was markedly upregulated during the subacute phase of ischemia (from 3 to 7 days post-reperfusion (dpr)). As revealed by immunohistochemical study, heparanase was localized in astrocytes located in the peri-infarct region. Heparanase+ astrocytes expressed nestin that is known as a marker of reactive astrocytes. Infiltrated neutrophils were weakly heparanase+. After 7 dpr, the expression level of heparanase+ astrocytes considerably decreased. Therefore, the maximum expression of heparanase by astrocytes may correlate with the time of migration of reactive astrocytes toward the ischemic core, which may result in astrogliosis. These findings suggest a novel role of heparanase in the pathophysiology of brain ischemia.  相似文献   

13.
14.
Amyloid precursor-like protein-2 (APLP-2) belongs to a family of homologous amyloid precursor-like proteins. In the present study we report on the expression and distribution of APLP-2 in fetal and adult human brain and in brains of patients with Alzheimer's disease. We demonstrate that APLP-2 mRNAs encoding isoforms predicted to undergo post-translational modification by chondroitin sulfate glycosaminoglycans are elevated in fetal and aging brains relative to the brains of young adults. Immunocytochemical labeling with APLP-2-specific antibodies demonstrates APLP-2 immunoreactivity in cytoplasmic compartments in neurons and astrocytes, in large part overlapping the distribution of the amyloid precursor protein. In Alzheimer's disease brain, APLP-2 antibodies also label a subset of neuritic plaques. APLP-2 immunoreactivity is particularly conspicuous in large dystrophic neurites that also label with antibodies specific for APP and chromogranin A. In view of the age-dependent increase in levels of chondroitin sulfate glycosaminoglycan-modified forms of APLP-2 in aging brain and the accumulation of APLP-2 in dystrophic presynaptic elements, we suggest that APLP-2 may play roles in neuronal sprouting or in the aggregation, deposition, and/or persistence of beta-amyloid deposits.  相似文献   

15.
This study examines the early organization of glial cells, together with the expression of chondroitin sulfate proteoglycans in the developing thalamus of ferrets. Glia were identified with antibodies against vimentin and glial fibrillary acidic protein and the chondroitin sulfate proteoglycans were identified by using an antibody against chondroitin sulfate side chains. Our results reveal three striking features of early thalamic development. First, there is a distinct population of glial fibrillary acidic protein-immunoreactive astrocytes (first seen at E30) that resides in the perireticular thalamic nucleus of the primordial internal capsule. These glial fibrillary acidic protein-immunoreactive astrocytes of the perireticular nucleus are transient and form a conspicuous feature of the early developing forebrain. They are first apparent well before any glial fibrillary acidic protein-immunoreactive astrocytes are seen in other regions of the thalamus (at about P8). Further, unlike in other thalamic regions, these peculiar perireticular astrocytes do not express vimentin before they express glial fibrillary acidic protein. Second, in the reticular thalamic nucleus, the radial glial cells express glial fibrillary acidic protein; they are the only ones to do so in the thalamus during development. The glial fibrillary acidic protein-immunoreactive radial glial cells of the reticular nucleus form a rather distinct band across the developing thalamus at these early stages (E30–P1). Finally, and preceding the expression of glial fibrillary acidic protein, the radial glial cells of the reticular nucleus, unlike those in other thalamic regions, are associated closely with the expression of chondroitin sulfate proteoglycans (E20–E30). Later (after E30), the expression of the chondroitin sulfate proteoglycans in the reticular nucleus declines sharply. The significance of this finding is related to the early organization of the cortico-fugal and cortico-petal pathways.  相似文献   

16.
The localization of aggrecan and mRNA splice variants of versican in the developing rat central nervous system has been examined by using specific polyclonal antibodies to the nonhomologous glycosaminoglycan attachment regions of these hyaluronan-binding chondroitin sulfate proteoglycans. At embryonic day 16 (E16), aggrecan and versican splice variants containing either or both the alpha-and beta-domains are present in the marginal zone and subplate of the cerebral cortex and in the amygdala, internal capsule, and the optic and lateral olfactory tracts. There is strong staining of versican but not of aggrecan in the hippocampus and dentate gyrus by E19, whereas both aggrecan and alpha-versican are present in the fimbria. At E19, aggrecan is seen throughout the cerebral cortex, whereas the distribution of versican is considerably more limited, being confined essentially to the marginal zone and subplate. At 1 week postnatal, both aggrecan and versican are present in the prospective white matter and in the molecular and granule cell layers of the cerebellum, but neither proteoglycan is seen in the external granule cell layer. alpha- but not beta-versican staining is seen in Purkinje cells, and aggrecan staining of Purkinje cells is also rather minimal. In the spinal cord at E13, aggrecan is present in the dorsal root entry zone, ventral funiculus, mantle layer, and floor plate, as well as in the dorsal root ganglia and ventral roots. However, alpha-versican is confined to the dorsal root entry zone and the ependyma surrounding the spinal canal, and beta-versican is not present in spinal cord parenchyma at this developmental stage, being limited to the surrounding connective tissue. By E19, there are significant amounts of all three proteoglycans in the spinal cord. Aggrecan staining is most intense in the lateral funiculus and the fasciculi gracilis and cuneatus, where alpha-versican staining is also strong. In contrast, beta-versican is seen predominantly in the motor columns. Differences in the localization and temporal expression patterns of these chondroitin sulfate proteoglycans suggest that, like neurocan and phosphacan, they have partially complementary roles during central nervous system development.  相似文献   

17.
Oligodendrocyte precursor cells recognized with the NG2 antibody respond rapidly to CNS injuries with hypertrophy and upregulation of the NG2 chondroitin sulfate proteoglycan within 24 h. These cells participate in glial scar formation, remaining around the injury site for several weeks. After injury, reactive oligodendrocyte precursor cells increase their production of several chondroitin sulfate proteoglycans, including NG2: this cell type thus represents a component of the inhibitory environment that prevents regeneration of axons in the injured CNS. This study analyzes factors that activate oligodendrocyte precursor cells. Both microglia and astrocytes become reactive around motor neurons following peripheral nerve lesions. We show that oligodendrocyte precursor cells do not hypertrophy or increase NG2 levels after these lesions. Those lesions that cause an oligodendrocyte precursor cell reaction generally open the blood-brain barrier. We therefore opened the blood-brain barrier with microinjections of vascular endothelial growth factor or lipopolysaccharide to the rat and mouse brain, and examined oligodendrocyte precursor cell reactivity after 24 h. Both treatments led to increases in NG2 and hypertrophy of oligodendrocyte precursor cells. Of directly injected blood components serum and thrombin were without effect, while platelets and macrophages activated oligodendrocyte precursor cells. We tested the effects of a range of injury-related cytokines, of which tumor necrosis factor alpha; interleukin-1; transforming growth factor beta; interferon gamma had effects on oligodendrocyte precursor cells. Oligodendrocyte precursor cell chemokines, and mitogens did not increase NG2 levels.  相似文献   

18.
The cannabinoid receptor one (CB1) is responsible for the effects of cannabis on motor and cognitive function in the CNS. There is to date very limited information about the CB1 gene expression in the human brain, in particular during fetal development. In the present study, in situ hybridization experiments were used to examine the microscopic and macroscopic organization of the CB1 mRNA expression in normal human fetal (approximately 20 weeks of development) and adult brains. The fetal brain showed a distinct heterogeneous pattern of the CB1 mRNA expression which was low to moderate in many brain areas. The most striking feature of the fetal brain was the intense expression in the hippocampal CA region and basal nuclear group of the amygdaloid complex. Many of the same brain areas that showed positive expression of the CB1 mRNA in the fetal brain also expressed the gene in the adult brain. However, aside from an intense expression in the hippocampus which resembled that in fetal brain, the adult brain showed very high expression throughout the cerebral cortex, caudate nucleus, putamen and cerebellar cortex. These results document a different pattern of the anatomical organization of the CB1 mRNA expression in the mid-gestation fetal and adult human brain. Overall, the high CB1 mRNA expression in the fetal hippocampus and amygdala indicates that these limbic structures might be most vulnerable to prenatal cannabis exposure.  相似文献   

19.
Recently, we demonstrated that transient forebrain ischemia in rats leads to an early and strong induction of basic fibroblast growth factor (bFGF) synthesis in astrocytes in the injured brain regions. In this study, in order to clarify the targets of such raised endogenous bFGF levels, the messenger RNA (mRNA) expression of its receptors (flg and bek) at in the hippocampus following transient forebrain ischemia induced by four-vessel occlusion for 20 min was investigated using an in situ hybridization technique. Transient forebrain ischemia induced an increase in the number of flg mRNA-positive cells from an early stage (24 h after ischemia) in the hippocampal CA1 subfield where delayed neuronal death occurred later (48–72 h after ischemia). This increase became more marked with the progression of neuronal death and was still evident in the same area 30 days later. The time course of the appearance and distribution pattern of flg mRNA-positive cells in the CA1 subfield were quite similar to those of bFGF mRNA-positive cells. On the other hand, in situ hybridization for bek mRNA showed only slight and transient (observed 72 h and 5 days after ischemia) increases in the number of mRNA-positive cells in the CA1 subfield following ischemia. The use of in situ hybridization and glial fibrillary acidic protein immunohistochemistry in combination demonstrated that the cells in the CA1 subfield that exhibited ischemia-induced flg or bek mRNA expression were astrocytes. These data indicate that transient forebrain ischemia induces upregulation of fibroblast growth factor-receptor expression, accompanied by increased bFGF expression in astrocytes, and suggest that the increased astrocytic bFGF levels in injured brain regions act on the astrocytes via autocrine systems and are involved in the development and maintenance of astrocytosis.  相似文献   

20.
The chondroitin sulfate proteoglycan (CSPG) neurocan was previously considered to be nervous-system specific. However, we have found neurocan in the embryonic heart and vasculature. In stage 11 quail embryos, neurocan was prominently expressed in the myocardium, dorsal mesocardium, heart-forming fields, splanchnic mesoderm, and vicinity of the extraembryonic vaculature, and at lower levels in the endocardium. A comparison of neurocan staining with QH1 staining of vascular endothelial cells demonstrates that neurocan is frequently expressed by cells adjacent to endothelial cells, rather than by endothelial cells themselves. In some cases, a dispersed subset of cells are neurocan-positive in a field of cells that otherwise appear uniform in morphology. Later in development, neurocan expression becomes relatively limited to the nervous system. However, even in 10-day embryos, neurocan is expressed in the chorio-allantoic membrane in the tissue that separates closely packed, small-diameter blood vessels. In summary, our results suggest that neurocan may function as a barrier that regulates vascular patterning during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号