首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently shown that acetaminophen induces many of the apoptotic traits in hepatoma cells and lymphocytes (Boulares et al. (2002d). In an effort to further investigate the mechanism by which non-metabolized acetaminophen induces apoptosis, we have now examined the roles of caspase-3, the DNA fragmentation factor, and the poly(ADP-ribose) polymerase-1-regulated Ca2+ and Mg2+-dependent endonuclease DNAS1L3 in the induction of such death process. This was achieved with the use of MCF-7 cells, a caspase-3-deficient breast adenocarcinoma cell line, thymocytes isolated from DFF45 (the inhibitory and chaperone subunit of the DNA fragmentation factor subunit, DFF40) deficient mice, and HeLa cells, a DNAS1L3-deficient cervical carcinoma cell line. MCF-7 exhibited a marked resistance to acetaminophen treatment. Ectopic expression of human caspase-3 significantly potentiated the cytotoxic effect of acetaminophen and promoted the release of cytochrome c into the cytosol of treated cells suggesting a direct role for caspase-3 in acetaminophen-induced apoptosis. Expression and cleavage of DFF45 were required but not sufficient for acetaminophen-induced internucleosomal DNA fragmentation. DFF45 gene knockout rendered thymocytes resistant against acetaminophen-induced generation of both large and internucleosomal DNA fragments. The treatment of HeLa cells with acetaminophen resulted in internuclesomal DNA fragmentation only after transfection of these cells with a plasmid encoding the DNAS1L3 gene suggesting that this endonuclease is required for acetaminophen-induced internucleosomal DNA fragmentation. DNAS1L3 expression potentiated the cytotoxic effect of acetaminophen in HeLa cells suggesting an active role in the death process induced by this drug. Altogether, these results demonstrate the specific roles of caspase-3, DNA fragmentation factor, and DNAS1L3 in the process of acetaminophen-induced apoptosis in cultured cells.  相似文献   

2.
目的:研究caspases家族成员在二乙酰二脱水卫矛醇(DADAG)诱导人白血病HL-60细胞凋亡中的作用.方法:MTT法观察DADAG的体外抗增殖作用;透射电镜、DNA梯形条带和流式细胞仪检测HL-60细胞凋亡;caspase-3检测试剂盒和Western blot法分析caspases家族成员.结果:DADAG明显抑制HL-60细胞增殖和诱导细胞凋亡.DADAG处理HL-60细胞24h后,caspase-3酶活性达峰值,同时聚腺苷二磷酸核糖聚合酶(PARP)、lamin B和DFF45蛋白开始出现断裂片段.Caspase-3抑制剂z-DEVD·fmk可部分逆转DADAG诱导的HL-60细胞凋亡,而caspases广谱抑制剂z-VAD·fmk可完全逆转此作用.结论:Caspases在DADAG诱导HL-60细胞凋亡中起重要作用,它们通过酶解底物PARP、DFF45和lamin B促进细胞凋亡.  相似文献   

3.
Diallyl disulfide (DADS), a component of garlic (Allium sativum), has been known to exert potent chemopreventative activity against colon, lung, and skin cancers. However, its molecular mechanism of action is still obscure. The present study demonstrated that DADS induces apoptosis of human leukemia HL-60 cells in a concentration- and time-dependent manner with an IC50 for cell viability of less than 25 microM. DADS activated caspase-3 as evidenced by both the proteolytic cleavage of the proenzyme and increased protease activity. Activation of caspase-3 was maximal at 3 hr and led to the cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP), resulting in the accumulation of an 85 kDa cleavage product. Both activation of caspase-3 and cleavage of PARP were blocked by pretreatment with either antioxidants or a caspase-3 inhibitor, but not a caspase-1 inhibitor. DADS increased the production of intracellular hydrogen peroxide, which was blocked by preincubation with catalase. These results indicate that DADS-induced apoptosis is triggered by the generation of hydrogen peroxide, activation of caspase-3, degradation of PARP, and fragmentation of DNA. The induction of apoptosis by DADS may be the pivotal mechanism by which its chemopreventative action against cancer is based.  相似文献   

4.
Sanguinarine, a benzophenanthrine alkaloid, is potentially antineoplastic through induction of cell death pathways. The development of multidrug resistance (MDR) is a major obstacle to the success of chemotherapeutic agents. The aim of this study was to investigate whether sanguinarine is effective against uterine cervical MDR and, if so, by which mechanism. The effects of treatment with sanguinarine on human papillomavirus (HPV) type 16-immortalized endocervical cells and their MDR counterpart cells were compared. Trypan blue exclusion assays and clonogenic survival assays demonstrated that MDR human cervical cells are as sensitive as their drug-sensitive parental cells to death induced by sanguinarine. Upon treatment of both types of cells with sanguinarine, two distinct concentration-dependent modes of cell death were observed. Treatment with 2.12 or 4.24 microM sanguinarine induced death in most cells that was characterized as apoptosis using the criteria of cell surface blebbing, as determined by light and scanning electron microscopy, and proteolytic activation of caspase-3 and cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (PARP), as detected by Western blot analysis. However, 8.48 and 16.96 microM sanguinarine caused a second mode of cell death, oncosis, distinguished by cell surface blistering, and neither caspase-3 activation nor PARP cleavage. This study provides the first evidence that sanguinarine is effective against MDR in cervical cells via bimodal cell death, which displays alternative mechanisms involving different morphologies and caspase-3 activation status.  相似文献   

5.
In this study, the potent anti-tumor effects of brown algae on human leukemia HL-60 cells were investigated. The Sargassum siliquastrum extract among the 14 species of brown algae exhibited profound growth inhibitory effect on HL-60 cells in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, therefore, S. siliquastrum was selected for use in further experiments. The highest inhibitory activity of S. siliquastrum on HL-60 cells was detected in the chloroform fraction, and the active compound was identified as a kind of chromene, sargachromanol E (SE). SE treatment showed significant growth inhibitory effects on HL-60 cells in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies, fragmented DNA ladder, and the accumulation of DNA in the sub-G1 phase of cell cycle. SE induced apoptosis was accompanied by downregulation of Bcl-xL, upregulation of Bax, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP). Moreover, z-DEVD-fmk, a caspase-3 inhibitor, significantly inhibited cell cytotoxicity, apoptotic characteristics such as apoptotic bodies, sub-G1 DNA content, and cleavage of PARP induced by SE. These results suggest that SE exerts its growth inhibitory effects on HL-60 cells through caspase-3-mediated induction of apoptosis. Therefore, SE offers promising chemotherapeuric potential to prevent cancers such as human leukemia.  相似文献   

6.
Decursin is a major biological active component of Angelicagigas Nakai and is known to induce apoptosis of metastatic prostatic cancer cells. However, the apoptotic mechanism of decursin using primary malignant tumor (RC-58T/h/SA#4)-derived human prostate cells is not known. In the present study, we show that treatment of prostate cancer cells with decursin inhibited cell proliferation in a dose-dependent manner. Decursin also induced apoptosis in RC-58T/h/SA#4 cells, as determined by flow cytometry, Hoechst 33258 staining, and DNA fragmentation. Decursin caused activation of caspases-8, -9, and -3 and promoted the apoptotic action of caspase-8-mediated Bid cleavage. Decursin increased the protein levels of Bax and cytosolic cytochrome c as well as cleavage of PARP while decreasing the protein levels of Bcl-2. Furthermore, the caspase-independent mitochondrial apoptosis factor, apoptosis-inducing factor (AIF), was upregulated by treatment with decursin. Taken together, these findings indicate that decursin inhibited the proliferation of RC-58T/h/SA#4 cells through induction of apoptosis, which is mediated by both caspase-dependent and -independent apoptotic pathways.  相似文献   

7.
To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 microM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.  相似文献   

8.
This study examined the apoptotic effects of crude saponins acquired from the roots of Platycodon grandiflorum (SPR) in HT-29 human colon cancer cells.SPR decreased HT-29 cell proliferation in dose- and time-dependent manners by inducing apoptosis via DNA fragmentation and poly (ADP-ribose) polymerase (PARP) cleavage. The apoptosis induced by SPR was associated with the activation of initiator caspases-8 and -9, as well as the effector caspase-3. SPR stimulated Bid cleavage, indicating that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. SPR increased the expression of the pro-apoptotic protein, Bax, and decreased the expression of the anti-apoptotic protein, Bcl-2. SPR also increased the expression of the caspase-independent mitochondrial apoptosis factor, AIF, in HT-29 cells. These results indicate that SPR inhibits HT-29 cell proliferation by inducing apoptosis, which may be mediated via both caspase-dependent and -independent pathways.  相似文献   

9.
The effects of lemon pure essential oils on the heat shock-induced apoptosis in human astrocytes cell line CCF-STTG1 were examined. In previous studies, heat shock has been reported to induce the apoptosis or programmed cell death through the activation of caspase-3. Treatment of heat shock on CCF-STTG1 cells markedly induced apoptotic cell death as determined by flow cytometry. Interestingly, pre-treatment with lemon pure essential oils on CCF-STTG1 cells inhibited the heat shock-induced apoptosis. Lemon oil also inhibited the heat shock-induced apoptosis in primary cultured rat astrocytes. To determine whether lemon oil inhibits the heat shock-induced activation of the apoptotic proteases, activation of caspase-3 was assessed by Western blotting. DNA fragmentation, giemsa staining, and heat shock-induced activation of caspase-3 were blocked by lemon pure essential oil, which is consistent with flow cytometry. Poly-ADP-ribose polymerase (PARP), the cysteine protease substrate, was fragmented as a consequence of apoptosis by heat shock. Lemon oil inhibited the PARP fragmentation. These results suggest that lemon pure essential oils may modulate the apoptosis through the activation of the interleukin-1 beta -converting enzyme-like caspases.  相似文献   

10.
We investigated the mechanism by which 4-hydroxynonenal (HNE), a major aldehydic product of lipid peroxidation, induces apoptosis in tumor cells. Treatment of human colorectal carcinoma (RKO) cells with HNE-induced poly-ADP-ribose-polymerase (PARP) cleavage and DNA fragmentation in a dose- and time-dependent manner. The induction of PARP cleavage and DNA fragmentation paralleled caspase-2, -3, -8, and -9 activation. Pretreatment of cells with an inhibitor of caspase-3, z-DEVD-fmk, or a broad spectrum caspase inhibitor, z-VAD-fmk, abolished caspase activation and subsequent PARP cleavage. Constitutive expression of high levels of Bcl-2 protected cells from HNE-mediated apoptosis. In addition, Bcl-2 overexpression inhibited cytochrome c release from mitochondria and subsequent caspase-2, -3, and -9 activation. These findings demonstrate that HNE triggers apoptotic cell death through a mitochondrion-dependent pathway involving cytochrome c release and caspase activation. Bcl-2 overexpression protected cells from HNE-induced apoptosis through inhibition of cytochrome c release.  相似文献   

11.
AIM: To study the mechanisms by which N-demethyl-clarithromycin (NDC) induces human cervical cancer HeLa cell apoptosis in vitro. METHODS: The viability of N-demethyl-clarithromycin-induced HeLa cells was measured by MTT assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis. Measurement of mitochondrial transmembrane potential was analyzed by a FACScan flowcytometer. Caspase-3, poly-(ADP-ribose) polymerase (PARP), caspase-activated DNase (ICAD), Bcl-2, Bax, p53, and SIRT1 protein expression and the release of cytochrome c were detected by Western blot analysis. RESULTS: N-demethyl-clarithromycin, an anti-inflammatory substance, inhibited HeLa cell growth in a dose- and time-dependent manner. N-demethyl-clarithro-mycin induced HeLa cell death through the apoptotic pathways. The pan-caspase inhibitor (z-VAD-fmk), caspase-3 inhibitor (z-DEVD-fmk) and the caspase-9 inhibitor (z-LEHD-fmk) partially enhanced cell viability induced by N-demethyl-clarithromycin, but the caspase-8 inhibitor (z-IETD-fmk) had almost no effect. Caspase-3 was activated then followed by the degradation of caspase-3 substrates, the inhibitor of ICAD and PARP. Simultaneously, mitochondrial transmembrane potential was markedly reduced and the release of cytochrome c in the cytosol was increased. N-demethyl-clarithromycin upregulated the expression ratio of mitochondrial Bax/Bcl-2, and significantly increased the expression of the p53 protein. It also downregulated anti-apoptotic protein SIRT1 expression. CONCLUSION: N-demethyl-clarithromycin induced apoptosis in HeLa cells via the mitochondrial pathway.  相似文献   

12.
SC-1, the aqueous phase of soybean fermentation products by bacteria (Bacillus subtilis and Bacillus brevis), significantly inhibited the growth and clonogenesity of human hepatocellular (Hep 3B), mouse hepatocellular (ML-1), and human colorectal (HCT 116 and HT-29) carcinoma cells. Cytotoxicity of SC-1 in Hep 3B cells was through the process of apoptosis characterizing by increase in cell population of sub-G(1) phase, fragmentation of DNA, and change of nuclear morphology. Treatment of Hep 3B cells with SC-1 activated caspase 8 and caspase 3. Elevation of nuclear DNA fragmentation factor 40 (DFF40) and cleavage form of poly(ADP-ribose) polymerase (PARP) were also observed. SC-1 also activated intrinsic pathway via increase of pro-apoptotic (tBid, Bak and Bax) and decrease of anti-apoptotic (Bcl-2 and Bcl-x(L)) proteins on mitochondria, disruption of mitochondrial membrane potential, release of cytochrome c and Smac (second mitochondria-derived activator of caspase/direct IAP binding protein with low PI) from mitochondria, and activation of caspase 9. Inhibition on protein expression of Ku70 in cytosol and cyclooxygenase (COX)-2, but not COX-1, in whole cell lystes were revealed in SC-1-treated Hep 3B cells. These results suggest caspase 8, Ku70 and mitochondria are involved in the antitumor mechanism of SC-1 in Hep 3B cells.  相似文献   

13.
Indole-3-carbinol (I3C) has anti-tumor effects in various cancer cell lines. However, the anti-tumor effect of I3C on human lung cancers has been rarely reported. We investigated the anti-tumor effects and its mechanism of I3C on human lung carcinoma A549 cell line. Treatment of the A549 cells with I3C significantly reduced cell proliferation, increased formations of fragmented DNA and apoptotic body, and induced cell cycle arrest at G0/G1 phase. I3C increased not only the protein levels of cyclin D1, phosphorylated p53, and p21 but also the expression of Fas mRNA. Cleavage of caspase-9, -8, -3 and PARP also was increased by I3C. Treatment with wortmannin significantly suppressed both I3C-induced Ser15 phosphorylation and accumulation of p53 protein. The inhibition of caspase-8 by z-IETD-FMK significantly decreased cleavage of procaspase-8,-3 and PARP in I3C-treated A549 cells. Taken together, these results demonstrate that I3C induces cell cycle arrest at G0/G1 through the activation of p-p53 at Ser 15 and induces caspase-8 mediated apoptosis via the Fas death receptor. This molecular mechanism for apoptotic effect of I3C on A549 lung carcinoma cells may be a first report and suggest that I3C may be a preventive and therapeutic agent against lung cancer.  相似文献   

14.
The objective of this study was to investigate the fermented culture broth of Antrodia camphorata (A. camphorata) to induce apoptosis and inhibit cyclooxygenase-2 (COX-2) in estrogen-nonresponsive (MDA-MB-231) human breast cancer cells. Treatment of the highly invasive MDA-MB-231 cells with A. camphorata (40-240 microg/ml) resulted in dose and time-dependent sequences of events marked by apoptosis, as evidenced by loss of cell viability, chromatin condensation, and internucleosomal DNA fragmentation. Apoptosis in the MDA-MB-231 cells was accompanied by release of cytochrome c, activation of caspase-3, -8, and -9, and specific proteolytic cleavage of poly (ADP-ribose) polymerase (PARP). Although the A. camphorata-induced apoptosis was associated with a reduction in Bcl-2 protein levels, negligible Bax increase was observed. Furthermore, A. camphorata treatment inhibited COX-2 protein expression and prostaglandin E2 (PGE2) production in MDA-MB-231 cells. Analysis of the study data suggests that A. camphorata exerts growth inhibition on (highly invasive) estrogen-nonresponsive human breast cancer cells through apoptosis induction associated with COX-2 inhibition, and that it may possess anticancer properties potentially valuable for application in drug products.  相似文献   

15.
Seven structurally related flavonoids including luteolin, nobiletin, wogonin, baicalein, apigenin, myricetin and fisetin were used to study their biological activities on the human leukemia cell line, HL-60. On MTT assay, wogonin, baicalein, apigenin, myricetin and fisetin showed obvious cytotoxic effects on HL-60 cells, with wogonin and fisetin being the most-potent apoptotic inducers among them. The cytotoxic effects of wogonin and fisetin were accompanied by the dose- and time-dependent appearance of characteristics of apoptosis including DNA fragmentation, apoptotic bodies and the sub-G1 ratio. Treatment with an apoptosis-inducing concentration of wogonin or fisetin causes rapid and transient induction of caspase 3/CPP32 activity, but not caspase 1 activity. Further, cleavage of poly(ADP-ribose) polymerase (PARP) and decrease of pro-caspase 3 protein were detected in wogonin- and fisetin-treated HL-60 cells. An increase in the pro-apoptotic protein, bax, and a decrease in the anti-apoptotic protein, Mcl-1, were detected in fisetin- and wogonin-treated HL-60 cells. However, Bcl-2, Bcl-XL, and Bad all remained unchanged in wogonin- and fisetin-treated HL-60 cells. In vitro chromatin digestion revealed that endonuclease activity was profoundly enhanced in wogonin- and fisetin-treated HL-60 cells, and the addition of ethylenediaminetetraacetic acid (EDTA) or ethyleneglycoltetraacetic acid (EGTA) into the reaction blocked endonuclease activation and at an optimum pH of 7.5. The caspase 3 inhibitor, Ac-DEVD-CHO, but not the caspase 1 inhibitor, Ac-YVAD-CHO, attenuated wogonin- and fisetin-induced DNA ladders, PARP cleavage, and endonuclease activation. Pretreatment of HL-60 cells with N-acetyl-cysteine or catalase efficiently inhibited H(2)O(2) (200 microM)-induced apoptosis, but showed no inhibitory effect on wogonin- and fisetin-induced DNA ladders, caspase 3 activation, or bax protein induction. Decrease in endogenous ROS production was detected in wogonin- and fisetin-treated HL-60 cells by DCHF-DA assay. In conclusion, our experiments indicate that a decrease in intracellular peroxide level was involved in wogonin- and fisetin-induced apoptosis; activation of caspase 3 and endonuclease, induction of bax protein and suppression of Mcl-1 protein were detected in the process.  相似文献   

16.
N,N-dimethyl phytosphingosine (DMPS) blocks the conversion of sphingosine to sphingosine-1-phosphate (S1P) by the enzyme sphingosine kinase (SK). In this study, we elucidated the apoptotic mechanisms of DMPS action on a human leukemia cell line using functional pharmacologic and genetic approaches. First, we demonstrated that DMPS-induced apoptosis is evidenced by nuclear morphological change, distinct internucleosomal DNA fragmentation, and an increased sub-G1 cell population. DMPS treatment led to the activation of caspase-9 and caspase-3, accompanied by the cleavage of poly(ADP-ribose) polymerase (PARP) and led to cytochrome c release, depolarization of the mitochondrial membrane potential, and downregulation of the anti-apoptotic members of the bcl-2 family. Ectopic expression of bcl-2 and bcl-xL conferred resistance of HL-60 cells to DMPS-induced cell death, suggesting that DMPS-induced apoptosis occurs predominantly through the activation of the intrinsic mitochondrial pathway. We also observed that DMPS activated the caspase-8–Bid–Bax pathway and that the inhibition of caspase-8 by z-IETD-fmk or small interfering RNA suppressed the cleavage of Bid, cytochrome c release, caspase-3 activation, and apoptotic cell death. In addition, cells subjected to DMPS exhibited significantly increased reactive oxygen species (ROS) generation, and ROS scavengers, such as quercetin and Tiron, but not N-acetylcysteine (NAC), inhibited DMPS-induced activations of caspase-8, -3 and subsequent apoptotic cell death, indicating the role of ROS in caspase-8-mediated apoptosis. Taken together, these results indicate that caspase-8 acts upstream of caspase-3, and that the caspase-8-mediated mitochondrial pathway is important in DMPS-induced apoptosis. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in DMPS-treated leukemia cells.  相似文献   

17.
Zinc is proposed to be antiapoptotic for it has been shown to inhibit late events of apoptotic pathways such as Ca(2+)/Mg(2+)-dependent endonuclease cleavage of chromatin DNA, poly-ADP ribose polymerase cleavage, and caspase-3 activity. Because caspase-3 is a critical executioner caspase in apoptosis, this study was undertaken to examine specifically a correlation between zinc inhibition of caspase-3 activation and apoptosis in HeLa cells. Cultured HeLa cells were exposed to 100 microM ZnCl(2) for 1 h prior to 12 h treatment with 1.0 microM doxorubicin (DOX), an important anticancer agent that causes apoptosis in a wide variety of tumor cells. Western blot analysis of HeLa cells treated with DOX for 12 h revealed that DOX caused proteolytic activation of caspase-3 and zinc inhibited this activation. Interestingly, zinc did not inhibit DOX-induced apoptosis as measured by a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Furthermore, a microculture tetrazolium assay confirmed that cell death occurred in the presence of zinc. These results demonstrate that zinc specifically inhibits DOX-induced activation of caspase-3 in HeLa cells, but does not suppress DOX-induced apoptosis or otherwise cell death, thus suggesting DOX-induced caspase-3 activation may not play a major role in overall cell death and/or non-caspase-3 pathways are involved in DOX-induced apoptosis in HeLa cells.  相似文献   

18.
Zou J  Chen Q  Jin X  Tang S  Chen K  Zhang T  Xiao X 《Toxicology》2011,285(3):104-113
Olaquindox is used in China as feed additive for growth promotion in pigs. Recently, we have demonstrated that olaquindox induced genome DNA damage and oxidative stress in HepG2 cells. The aim of this study was to explore the molecular mechanism of cell cycle arrest and apoptosis induced by olaquindox in HepG2 cells. In the present study olaquindox induced cell cycle arrest to the S phase and dose-dependent apoptotic cell death in HepG2 cells, indicated by accumulation of sub-G1 cell population, nuclear condenstion, DNA fragmentation, caspases activation and PARP cleavage. Meanwhile, the data showed that olaquindox triggered ROS-mediated apoptosis in HepG2 cells correlated with both the mitochondrial DNA damage and nuclear DNA damage, collapse of Δψm, opening of mPTP, down-regulation of Bcl-2 and up-regulation of Bax. Furthermore, we also found that olaquindox increased the expression of p53 protein and induced the release of cytochrome C from mitochondria to cytosol. In conclusion, olaquindox induced apoptosis of HepG2 cells through a caspase-9 and -3 dependent mitochondrial pathway, involving p53, Bcl-2 family protein expression, Δψm disruption and mPTP opening.  相似文献   

19.
Previous reports have demonstrated that cadmium (Cd) may induce cell death via apoptosis, but the mechanism responsible for cellular death is not clear. In this study, we investigated the signaling pathways implicated in Cd-induced apoptosis in lung epithelial fibroblast (WI 38) cells. Apoptotic features were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, propidium iodide staining and DNA laddering. A treatment of cadmium caused the caspase-8-dependent Bid cleavage, the release of cytochrome c (Cyt c), activation of caspase-9 and -3, and PARP cleavage. A caspase-8 specific inhibitor prevented the Bid cleavage, caspase-3 activation and cell death. Alternatively, we observed that full-length Bax was cleaved into 18-kDa fragment (p18/Bax); this was initiated after 12 h and by 36 h the full-length Bax protein was totally cleaved to the p18/Bax, which caused a drastic release of Cyt c from mitochondria. The p18/Bax was detected exclusively in the mitochondrial fraction, and it originated from mitochondrial full-length Bax, but not from the cytosol full-length Bax. Cd also induced the activation of the mitochondrial 30-kDa small subunit of calpain that was preceded by Bax cleavage. Cd induced the upregulation of Bcl-2 and the degradation of p53 protein. N-acetyl cysteine effectively inhibited the Cd-induced DeltaPsim reduction, indicating ROS acts upstream of mitochondrial membrane depolarization. Taken together, our results suggest that Cd-induced apoptosis was thought to be mediated at least two pathways; caspase-dependent Bid cleavage, and the other is calpain-mediated mitochondrial Bax cleavage. Moreover, we found that the function of Bid and Bax was not dependent of Bcl-2, and that ROS can also contribute in the Cd-induced cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号