首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhythmic stimulation of nerve-muscle preparation of frog sternal muscle bathed in low-Ca(2+) saline increased the release of neurotransmitter (facilitation) and modified the shape of extracellular response of nerve terminal (decreased phase III amplitude). Iberiotoxin and 4-aminopyridine modified the dynamics these processes. We conclude that inactivation of potential-dependent K(+)-channels and activation of calcium-dependent K(+)-channels in frog motor nerve terminals during rhythmic activity modulate Ca(2+) influx into nerve terminals and contribute into facilitation of neurotransmitter secretion. The degree of these mechanisms depends on the rate of synaptic rhythmic activity.  相似文献   

2.
Measurements with extracellular microelectrode technique showed that depolarization of motor nerve terminals in frog cutaneous pectoris muscle with high-potassium solution (40 mM K+) increased frequency of miniature end-plate currents. Both fast intracellular calcium chelator BAPTA-AM and slow chelator EGTA-AM equally moderated the increase in the frequency of miniature end-plate currents. Intravital fluorescent microscopy with FM 1-43 dye showed that under conditions of stimulation of neurotransmitter exocytosis and secretion with high-potassium solution, internalization of the dye into newly-formed endocytotic synaptic vesicles proceeded both in the control and in the presence of EGTA-AM. In contrast, internalization of the dye was not observed in the presence of BAPTA-AM. It was concluded that asynchronous exocytosis of synaptic vesicles goes on in the active zones enriched with Ca-channels due to activation of highaffinity Ca-site in Ca-macrodomain. Endocytosis of vesicles is probably initiated by Camicrodomain during activation of low-affinity Ca-site in the immediate proximity to the Ca channel. Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 146, No. 12, pp. 608–612, December 2008  相似文献   

3.
We have studied the mechanisms of paired-pulse facilitation (PPF) of neurotransmitter release in isolated nerve-muscle preparations of the frog cutaneous pectoris muscle. In normal extracellular Ca2+ concentration ([Ca2+]o, 1.8 mM), as the interpulse interval was increased from 5 to 500 ms, PPF decayed as a sum of two exponential components: a larger but shorter first component (F1) and a smaller but more prolonged second component (F2). In low [Ca2+]o (0.5 mM), both F1 and F2 increased, and a third “early” component (Fe) appeared whose amplitude was larger and whose duration was shorter than F1 or F2. In the presence of the “fast” Ca2+ buffer BAPTA-AM, Fe disappeared, whereas F1 and F2 decreased in amplitude and duration. In contrast, the “slow” Ca2+ buffer EGTA-AM caused a decrease of Fe and reduction or complete blockade of F2, without any changes of F1. In solutions containing Sr2+ (1 mM), the magnitude of Fe was decreased, F1 was significantly reduced and shortened, but F2 was unaffected. Application of the calmodulin inhibitor W-7 (10 μM) at normal [Ca2+]o produced a marked decrease of F2, and at low [Ca2+]o, a complete blockade of Fe. These results suggest that PPF at frog motor nerve terminals is mediated by several specific for different PPF components intraterminal Ca2+ binding sites, which trigger neurotransmitter release. These sites have a higher affinity for Ca2+ ions and are located farther from the release-controlling Ca2+ channels than the Ca 2+ sensor that mediates phasic release.  相似文献   

4.
Rises in free [Ca2+]i in response to various tetanic stimuli (Ca2+ transient) in frog motor nerve terminals were measured by recording fluorescence changes of Ca2+ indicators and analyzed in relation to short-term synaptic plasticity. Ca2+ transients reached a plateau after 10-20 impulses at 100 Hz and decayed in a three-exponential manner, in which the fast component was predominant. The plateau and fast component of the Ca2+ transient were elevated infralinearly with an increase in tetanus frequency. Computer simulation showed that the Ca2+ transients estimated from fluorescence changes faithfully reflect the true changes in [Ca2+]i except for the initial 20 ms. A slow Ca2+ chelator, EGTA, loaded into the nerve terminal, decreased the magnitude of both the fast and slow components of facilitation of transmitter release and the time constant of the former. A fast Ca2+ chelator, BAPTA, decreased the magnitude of fast facilitation but slightly increased its time constant. These results suggest that Ca2+ transients in the frog motor nerve terminals are primarily caused by Ca2+ entry and are dissipated by three components, in which the rate of the fast component is equivalent to that of free Ca2+ diffusion. The residual Ca2+ in the nerve terminals after stimulation accounts for the fast component of facilitation.  相似文献   

5.
Release of stored calcium ions during activation of ryanodine receptors with ryanodine or caffeine elevates the mean amplitude of spontaneous miniature end-plate potentials. Blockade of these receptors with selective antagonists abolishes this effect. Preliminary loading of the motor nerve terminals with intracellular calcium buffer EGTA-AM, but not with BAPTA-AM, also completely prevented the ryanodine-induced increment of miniature end-plate potential amplitude probably induced by the release of stored calcium. Vesamicol, a selective blocker of acetylcholine transport into vesicles, prevented the ryanodine-induced increment of the mean amplitude of miniature end-plate potentials. This increment was 2-fold more pronounced after preliminary blockade of protein kinase C with chelerythrine and was completely abolished by blockade of protein kinase A with H-89.  相似文献   

6.
Experiments on frog neuromuscular synapses using extracellular microelectrode recording of endplate currents (EPC) and nerve ending (NE) responses were performed to study the mechanisms of facilitation of quantum secretion of acetylcholine on replacement of extracellular Ca ions with Sr ions. Solutions with a Ca ion concentration of 0.5 mM (calcium solutions) or a Sr ion concentration of 1 mM (strontium solutions) were used; the basal levels of neurotransmitter secretion (in conditions of low-frequency stimulation) were essentially identical. In calcium solutions, the drop in EPC facilitation on paired-pulse stimulation as the interimpulse interval was increased from 5 to 500 msec was described by the sum of three exponential components – the early, the first, and the second. In strontium solutions, facilitation was decreased as compared with the level in calcium solutions predominantly because of decreases in the early and first components. At the same time, EPC facilitation in conditions of rhythmic stimulation (10 or 50 impulses/sec) in strontium solution was significantly increased as compared with the level in calcium solutions. In strontium solutions in conditions of high-frequency stimulation at 50 impulses/sec, there was also a marked decrease in the amplitude of the third phase of the NE response, reflecting NE potassium currents. These data lead to the conclusion that the facilitation sites underlying the first and early components had lower affinities for Sr ions than for Ca ions. Increases in facilitation in strontium solutions in conditions of high-frequency rhythmic activity resulted from two mechanisms: more marked widening of the NE action potential and an increase in the divalent cation influx current due to weak activation of the Ca2+-dependent potassium current in the presence of Sr ions, as well as the slow dynamics of the removal of Sr ions from the NE axoplasm as compared with that in the presence of Ca ions. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 2, pp, 142–151, February, 2008.  相似文献   

7.
Studies on frog skin-pectoris muscle preparations using vital fluorescent microscopy showed that stimulation of transmitter secretion using high-potassium solutions with the endocytosis marker FM 1–43 induced bright spots in all motor nerve terminals, these representing accumulations of vesicles undergoing the exoendocytic cycle in the active zones of nerve endings. Stimulation of transmitter secretion with caffeine evoked bright spots only in some nerve terminals and only in some parts of the terminals. In summer, the number of bright spots on stimulation of transmitter secretion by caffeine increased sharply. Extracellular recording of spontaneous synaptic signals showed that high-potassium solutions, like caffeine, produced dose-dependent increases in the frequency of miniature endplate currents. However, while high-potassium solutions always increased the frequency, this occurred with caffeine in only a proportion of experiments. This leads to the conclusion that exoendocytosis processes can occur both because of the influx of Ca2+ ions into nerve endings as a result of depolarization (high-potassium solutions) and because of the release of Ca2+ ions from the endoplasmic reticulum (caffeine). The possible spatial localization of the endoplasmic reticulum in nerve endings is discussed. The endoplasmic reticulum is suggested to have a role in synapse remodeling processes. __________ Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 7, pp. 821–831, July, 2005.  相似文献   

8.
The effects of dopamine and dibutyryl cyclic adenosine monophosphate (db-cAMP) on delayed release of transnutter were studied in vitro in the phrenic nervediaphragm muscle preparation of the rat using intracellular recording techniques. Dopamine at 1 × 10–4 mol 1–1 prevented the initial facilitation of delayed release of transmitter. This inhibitory phase was transformed into a transient facilitation of delayed release. We observed that dopamine hyperpolarized muscle fibres by about 9%. Thus motor nerve terminals may also have been hyperpolarized by dopamine; however, it is unlikely that this hyperpolarization explains the observed effects on delayed release of transmitter. Db-cAMP at 1 × 10–3 mol 1–1 predominantly augmented delayed release of acetylcholine. These effects of dopamine and db-cAMP on delayed release of transmitter are discussed in terms of a modulation of calcium fluxes in the presynaptic nerve terminal.  相似文献   

9.
Summary Stimulation of low threshold afferents in the peroneal nerve causes a short latency facilitation of individual tibialis anterior motor units considered to be due to the composite Ia EPSP. This facilitation is depressed by vibration 20 to 128 Hz applied over the tibialis anterior. The depression occurs without any change in the firing rate of the motor unit or in the facilitation from cutaneous afferents and so is unlikely to be due to postsynaptic inhibition. The depression can occur with vibration frequencies as low as 40 Hz and is therefore unlikely to be due to occlusion in Ia afferents. There is no evidence that vibration alters the electrical threshold of large afferents. A similar facilitation of soleus motor units resulting from stimulation of low threshold afferents in the tibial nerve is depressed for up to 75 ms following a 40 ms burst of 50 Hz vibration applied to the tendon of the tibialis anterior. The burst of vibration itself did not facilitate soleus motor units so there is no evidence to suggest that the vibration spread to soleus spindles. Homosynaptic depression is, therefore, unlikely. These findings provide further evidence that pesynaptic inhibition of Ia afferents occurs in man.  相似文献   

10.
Neurotransmitter release displays at least two kinetically distinct components in response to a single action potential. The majority of release occurs synchronously with action-potential-triggered Ca(2+) influx; however, delayed release--also called asynchronous release--persists for tens of milliseconds following the peak Ca(2+) transient. In response to trains of action potentials, synchronous release eventually declines, whereas asynchronous release often progressively increases, an effect that is primarily attributed to the buildup of intracellular Ca(2+) during repetitive stimulation. The precise relationship between synchronous and asynchronous release remains unclear at central synapses. To gain better insight into the mechanisms that regulate neurotransmitter release, we systematically characterized the two components of release during repetitive stimulation at excitatory autaptic hippocampal synapses formed in culture. Manipulations that increase the Ca(2+) influx triggered by an action potential--elevation of extracellular Ca(2+) or bath application of tetraethylammonium (TEA)--accelerated the progressive decrease in synchronous release (peak excitatory postsynaptic current amplitude) and concomitantly increased asynchronous release. When intracellular Ca(2+) was buffered by extracellular application of EGTA-AM, initial depression of synchronous release was equal to or greater than control; however, it quickly reached a plateau without further depression. In contrast, asynchronous release was largely abolished in EGTA-AM. The total charge transfer following each pulse--accounting for both synchronous and asynchronous release--reached a steady-state level that was similar between control and EGTA-AM. A portion of the decreased synchronous release in control conditions therefore was matched by a higher level of asynchronous release. We also examined the relative changes in synchronous and asynchronous release during repetitive stimulation under conditions that highly favor asynchronous release by substituting extracellular Ca(2+) with Sr(2+). Initially, asynchronous release was twofold greater in Sr(2+). By the end of the train, the difference was approximately 50%; consequently, the total release per pulse during the plateau phase was slightly larger in Sr(2+) compared with Ca(2+). We thus conclude that while asynchronous release--like synchronous release--is limited by vesicle availability, it may be able to access a slightly larger subset of the readily releasable pool. Our results are consistent with the view that during repetitive stimulation, the elevation of asynchronous release depletes the vesicles immediately available for release, resulting in depression of synchronous release. This implies that both forms of release share a small pool of immediately releasable vesicles, which is being constantly depleted and refilled during repetitive stimulation.  相似文献   

11.
We investigated long-term facilitation at the lobster neuromuscular synapse employing a combination of FM1-43 staining of synaptic vesicles, electron microscopy analysis, and electrical recordings of synaptic activity. Synaptic terminals were loaded with the fluorescent dye FM1-43 producing clusters of activity-dependent fluorescent spots. Electron microscopy analysis of synaptic ultrastructure suggested that fluorescent spots represent compartments of synaptic terminals filled with vesicles. Excitatory postsynaptic currents were recorded from the stained synaptic terminals using focal macropatch electrodes. Terminals were stained during the nerve stimulation at a low stimulation frequency (2, 5 or 10 Hz) before and after long-term facilitation was elicited by high-frequency stimulation (20 or 30 Hz for 5 min). We found that staining after long-term facilitation results in the appearance of new fluorescent spots, as well as in the increase in fluorescence of the spots that appeared before long-term facilitation. This increase in fluorescence accounted for the increase in quantal release. Activation of individual fluorescent spots was found to be non-uniform. In spite of overall increase in fluorescence, some synaptic compartments decreased their staining after long-term facilitation. Thus, our study demonstrates that long-term facilitation produces non-uniform activation of FM1-43 uptake in synaptic compartments that correlates with the increase in quantal neurosecretion.  相似文献   

12.
Previously, we have presented evidence for the presence of L-type voltage-dependent Ca2+ channels (VDCC) in 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, (acetoxymethyl)ester (BAPTA-AM)-incubated motor nerve terminals (MNTs) of the levator auris muscle of mature mice. The aim of the present work was to study the coupling of these L-type VDCC to neurotransmitter release by inhibiting protein phosphatases. We thus studied the effects of the protein phosphatase inhibitors okadaic acid (OA) and pervanadate on quantal content (QC) of transmitter release with the P/Q-type channels fully blocked. The QC was not significantly different under the three experimental conditions tested: incubation with dimethylsulphoxide (DMSO), ethylene-glycol-bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid, (acetoxymethyl)ester (EGTA-AM) and BAPTA-AM. After preincubation with OA (1 microM), but not with pervanadate, QC increased substantially in the BAPTA-AM-incubated (up to 400%) MNT, but not in those incubated with DMSO or EGTA-AM. The OA-induced increment of QC was attenuated greatly (approximately 95% reduction) by preincubation with either nitrendipine (10 microM) or calciseptine (300 nM). The effect of OA (1 microM) and pervanadate (0.1 mM) on spontaneous neurotransmitter release was also studied. After preincubation with OA, but not per-vanadate, miniature end-plate potential (MEPP) frequency increased only in the BAPTA-AM-incubated MNT (up to 700% increment). This response was attenuated (by approximately 80%) by nitrendipine (10 microM) or calciseptine (300 nM). In contrast, neither omega-agatoxin IVA (120 nM) nor omega-conotoxin GVIA (1 microM) affected this OA-induced increment significantly. We also evaluated the relationship between QC and extracellular [Ca2+] ([Ca2+]o) in BAPTA-AM-incubated MNT. Under conditions in which only P/Q-type VDCC were available to participate in neurotransmitter release, QC increased as [Ca2+]o was raised from 0.5 to 2 mM. However, when only L-type VDCC were available, QC increased when [Ca2+]o increased from 0.5 to 1 mM, but decreased significantly at 2 mM. The mean latency for P/Q-type VDCC-mediated EPP was 1.7-1.9 ms; for L-type VDCC-mediated EPP, 1.9-2.5 ms. The rise time of the L-type VDCC mediated EPP was significantly slower than that mediated by P/Q-type VDCC. Preincubation with H-7 (100 microM), a potent inhibitor of protein kinase C (PKC) and adenosine 3',5'cyclic monophosphate (cAMP)-dependent protein kinase (PKA), attenuated the OA-induced increment of both QC and MEPP frequency (50% and 70% decrement, respectively), suggesting the participation of at least these two protein kinases in the coupling of L-type VDCC. In summary, our results show coupling of L-type VDCC to neurotransmitter release when protein phosphatases are inhibited and intracellular [Ca2+] is buffered by the fast chelator BAPTA.  相似文献   

13.
Electrophysiological and optical methods were used to study exo- and endocytosis of synaptic vesicles underlying secretion of the neurotransmitter from motor nerve terminals in frog sternocutaneous muscle. Increase in extracellular concentration of K+ or sucrose produced similar increase in the frequency of miniature endplate currents recorded by extracellular microelectrode. Fluorescent microscopy revealed bright spots in nerve terminal during stimulation of secretion with high-potassium solutions in the presence of endocytosis marker FM1-43. These spots corresponded to clusters of synaptic vesicles that passed through the cycles of exo- and endocytosis. Subsequent high-potassium stimulation of exocytosis in normal Ringer solution led to disappearance of marker spots, while in hyperosmotic saline the spots were preserved. No spots were seen after stimulation of neurotransmitter secretion with sucrose in the presence of FM1-43. It is concluded that quantal secretion of the neurotransmitter in frog motor nerve endings can be realized via both complete exocytosis of synaptic vesicles with subsequent endocytosis and kiss-and-run mechanism with the formation of a temporary pore.  相似文献   

14.
Arachidonic acid and prostaglandin E2 decreased the frequency of miniature endplate potentials with producing any changes in the their amplitude-time parameters. Arachidonic acid and prostaglandin E2 decreased the quantum composition of endplate currents and the amplitude of the third phase of the nerve ending response, which reflects currents though potential-dependent K+ channels. A perineural method was used to demonstrate that arachidonic acid and prostaglandin E2 suppressed the nerve ending Ca2+ current. The cyclooxygenase blocker indomethacin increased neurotransmitter secretion and decreased the third phase of the nerve ending response. The effects of arachidonic acid and prostaglandin E2 on evoked neurotransmitter release were not seen in the presence of indomethacin, while the third phase of the response continued to show a reduction. It is suggested that prostaglandin E2 mediates the effects of arachidonic acid on spontaneous and evoked neurotransmitter secretion, Ca2+ currents, and Ca2+-dependent K+ currents. In addition, arachidonic acid and prostaglandin E2 had their own effects on potential-dependent K+ currents in nerve endings. __________ Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 3, pp. 268–276, March, 2005.  相似文献   

15.
Experiments on the mouse diaphragm muscle using intracellular microelectrode recordings and fluorescence microscopy were performed to study the dynamics of transmitter secretion and synaptic vesicle recycling processes (the exocytosis-endocytosis cycle) in motor nerve endings (NE) during prolonged rhythmic stimulation (20 impulses/sec). During stimulation, there were triphasic changes in the amplitude of endplate potentials (EPP): an initial rapid reduction, followed by prolonged (1–2 min) stabilization of amplitude, i.e., a plateau, and then a further slow decrease. Restoration of EPP amplitude after stimulation for 3 min occurred over a period of several seconds. Loading of synaptic vesicles with the fluorescent endocytic stain FM1-43 showed that rhythmic stimulation led to a gradual (over 5–6 min) decrease in NE fluorescence, demonstrating exocytosis of synaptic vesicles. Quantum analysis of the electrophysiological data and comparison of these data with results from fluorescence studies suggested that mouse NE have a high rate of endocytosis and reutilization of synaptic vesicles (the mean recycling time was about 50 sec), which may support the maintenance of reliable synaptic transmission during prolonged high-frequency activity. The sizes of the release-ready and recycling pools of synaptic vesicles were determined quantitatively. It is suggested that vesicle recycling in mouse NE occurs via a short, rapid pathway with incorporation into the recycling pool. Vesicles of the reserve pool are not used for transmitter secretion in the stimulation conditions used here. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 2, pp. 129–141, February, 2008.  相似文献   

16.
Bradykinin did not change the amplitude and duration of growth and decrease of individual currents of the terminal plate, but potentiated the depression of amplitudes of consecutive currents during stimulation of the motor nerve at a frequency of 10–60 Hz under conditions of two-electrode fixation of potential on a frog neuromuscular preparation. The origin of this effect is presynaptic, because it does not depend on the activity of acetylcholinesterase and is associated with a longer increase in the terminal plate currents which are synchronous with the amplitude depression. The deconvolution method revealed a slower kinetics of the mediator secretion under the effect of bradykinin. Bradykinin impairs the conduction of rhythmic pulse series through the synapse by augmenting the asynchronism of the transmitter quantum secretion from the motor nerve endings, which may underlie the development of muscular asthenia observed in inflammatory and allergic reactions. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 126, No. 9, pp. 256–258, September, 1998  相似文献   

17.
The uptake and release of catecholamines was investigated in the isolated perfused adrenal gland of the rat after preloading the preparation with [3H]norepinephrine, and the effects of various agents were examined on the stimulation-evoked secretion of catecholamines and total tritium. Large quantities of tritium were found in the adrenal medulla after either intravenous injection of [3H]norepinephrine to the rat, or perfusion of the isolated adrenal gland with Krebs-bicarbonate solution containing [3H]norepinephrine. The retention of the tritium was inhibited 90% by desipramine. Acute treatment with guanethidine and chronic treatment with 6-hydroxydopamine abolished the secretion of tritium without affecting the secretion of catecholamines evoked at 1 Hz. Nicotine, muscarine and acetylcholine enhanced the secretion of catecholamines but not tritium, whereas tyramine and ephedrine enhanced the secretion of tritium but not catecholamines. It is concluded that chromaffin cells do not possess the norepinephrine uptake mechanism and that the uptake of [3H]norepinephrine occurs mainly in sympathetic nerve terminals present in the adrenal gland and the surrounding blood vessels (adrenal and renal veins). The differential localization of [3H]norepinephrine and catecholamines allowed us to test the effects of a variety of pharmacological agents that alter neurotransmitter release by acting on receptors on the neuronal membrane, acting on sodium and potassium channels, or acting to alter the intracellular concentrations of adenosine 3',5'-cyclic monophosphate and protein kinase C. Transmural stimulation (1 Hz for a total of 300 pulses) markedly enhanced the release of catecholamines and tritium which was blocked by tetrodotoxin (sodium channel-blocker) and potentiated by tetraethylammonium and gallamine (potassium channel-blockers). Phentolamine, an alpha adrenergic blocking agent which acts on both alpha-1 and alpha-2 receptors, caused a 3- to 4-fold facilitation of the tritium secretion while inhibiting catecholamine secretion by 45%. [Met]enkephalin almost completely inhibited the evoked-secretion of tritium but had very little effect on the secretion of catecholamines. Forskolin inhibited the tritium secretion by 80% but produced more than a 2-fold facilitation of catecholamine secretion. Phorbol 12,13-dibutyrate caused facilitation of evoked secretion of both catecholamines and tritium. A combination of phorbol ester and forskolin had a synergistic effect on stimulation-evoked secretion of catecholamines, whereas phorbol ester partially reversed the inhibitory effects of forskolin on the tritium secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The involvement of different types of voltage-dependent calcium channels in nerve-evoked release of neurotransmitter was studied during recovery from neuromuscular paralysis produced by botulinum toxin type A intoxication. For this purpose, a single subcutaneous injection of botulinum toxin (1 IU; DL50) on to the surface of the mouse levator auris longus muscle was performed. The muscles were removed at several time-points after injection (i.e. at one, two, three, four, five, six and 12 weeks). Using electrophysiological techniques, we studied the effect of different types of calcium channel blockers (nitrendipine, omega-conotoxin-GVIA and omega-agatoxin-IVA) on the quantal content of synaptic transmission elicited by nerve stimulation. Morphological analysis using the conventional silver impregnation technique was also made. During the first four weeks after intoxication, sprouts were found at 80% of motor nerve terminals, while at 12 weeks their number was decreased and the nerve terminals were enlarged. The L-type channel blocker nitrendipine (1 microM) inhibited neurotransmitter release by 80% and 30% at two and five weeks, respectively, while no effects were found at later times. The N-type channel blocker omega-conotoxin-GVIA (1 microM) inhibited neurotransmitter release by 50-70% in muscles studied at two to six weeks, respectively, and had no effect 12 weeks after intoxication. The P-type channel blocker omega-agatoxin-IVA (100 nM) strongly reduced nerve-evoked transmitter release (>90%) at all the time-points studied. Identified motor nerve terminals were also sensitive to both nitrendipine and omega-conotoxin-GVIA. This study shows that multiple voltage-dependent calcium channels were coupled to transmitter release during the period of sprouting and consolidation, suggesting that they may be involved in the nerve ending functional recovery process.  相似文献   

19.
Bertrand PP 《Neuroscience》2004,128(1):51-63
Sensory neurons intrinsic to the wall of the intestine receive input from stimuli in the lumen. These stimuli interact with the mucosal epithelium causing release of sensory mediators that depolarize the sensory nerve terminals. The depolarization and the subsequent pattern of action potential (AP) discharge controls the type and magnitude of the reflex evoked. The characteristics of this AP discharge were investigated in 60 intrinsic sensory neurons from the myenteric plexus of the guinea-pig ileum. Intracellular electrophysiological recordings were made from neurons near intact mucosa during electrical stimulation of the mucosa and/or neuronal soma. Most neurons (87%) responded to mucosal stimulation with a burst of 3.8+/-0.3 APs (average instantaneous frequency, fINT 39+/-4 Hz). In 38%, a somatically evoked AP triggered a similar burst of 2.9+/-0.3 APs (fINT 52+/-6 Hz) while in 50% of neurons, there was ongoing spontaneous bursting (3.8+/-0.2 APs, fINT 48+/-6 Hz). APs in all of these bursts had an inflection on the rising phase and they persisted during somatic hyperpolarization indicating they were generated in a distal process rather than the soma. Collision experiments confirmed this and suggested that bursts originated near the mucosal sensory nerve terminals. A reduction in membrane excitability reduced the number of APs in a burst suggesting a brief depolarizing event, such as a voltage- or ligand-gated ion channel, was responsible. Bursting behavior in the intrinsic sensory neurons is common for mucosal stimuli and may involve a novel transmitter acting at the sensory nerve terminal. Further, some bursting involves positive feedback between the nerve terminals and other elements in the epithelium. This is a novel and potentially important component of intestinal sensory transduction.  相似文献   

20.
A perifusion system was applied for the study on stimulus-enzyme secretion coupling in dispersed pancreatic acini. The system is highly simple, preserves the acini up to more than 3 hr, and makes feasible clear-cut examination on the time course of enzyme secretion caused by secretagogues. Caerulein (10(-9) M) and carbamylcholine (10(-5) M) caused a biphasic amylase secretory pattern consisting of an initial burst secretion and a sustained one. Caerulein induced a persistent amylase release even after cessation of the stimulation, while carbamylcholine-stimulated amylase release returned to basal levels. Atropine inhibited completely carbamylcholine-stimulated amylase release and the successive stimulation by caerulein evoked the amylase secretion with a decreased initial burst secretion. In calcium free medium, caerulein and carbamylcholine induced only a slight secretion, particularly in the sustained secretion phase and a gradual increase occurred with the addition of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号