首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Abstract

Resistance to mitoxantrone is often associated with enhanced drug efflux mediated by members of the superfamily of adenosinetriphosphate-binding cassette (ABC) transporters, i.e. MDR1/P-gp (ABCB1), MRP1 (ABCC1), or BCRP (ABCG2). So far it is unclear whether the same ABC-transporter is always activated from the beginning of mitoxantrone treatment to the end of drug exposure. Here, we demonstrate that the expression of all three extrusion pumps is induced by increasing levels of mitoxantrone resistance, but in the end, merely the overexpression of a dominant single drug transporter, i.e. Mdr1/P-gp, is realized. This upregulation of Mdr1/P-gp was reflected by amplification of the Mdr1/P-gp encoding gene. Short mitoxantrone exposure demonstrated that upregulation of two different transporters, Mdr1/P-gp and Bcrp, was induced. The data indicate that mitoxantrone treatment influences the expression of several ABC-transporters, but in the end, merely a single extrusion pump will be dominant.  相似文献   

2.
Regulation of the Mdr1 isoforms in a p53-deficient mouse model   总被引:6,自引:0,他引:6  
Bush JA  Li G 《Carcinogenesis》2002,23(10):1603-1607
  相似文献   

3.
ABC transporter proteins may protect haematopoietic progenitor cells from chemotherapy-induced toxicity. By using an in vitro colony-forming assay, we found that bone marrow of Mdr1ab, Mrp1, Mdr1ab/Mrp1 knockout (KO) mice was two-, five- to 10- and 25-fold, respectively, more sensitive to vincristine than wild-type mice bone marrow. To study the impact of ABC transporters on in vivo bone marrow sensitivity without the added complication of altered pharmacokinetics, we created chimeras of wild-type mice transplanted with bone marrow from wild-type, Mrp1, Mdr1ab or Mdr1ab/Mrp1 KO donor mice. Following a single bolus injection of vincristine, the chimeras transplanted with wild-type or Mdr1ab KO marrow cells showed no reductions in WBC. A significant reduction was observed in Mrp1 KO chimeras, but the most pronounced effect was observed in mice receiving bone marrow from Mdr1ab/Mrp1 KO mice. A pharmacokinetic analysis in wild-type and KO mice showed that the absence of P-gp reduced the body clearance of vincristine, but that no further reduction occurred when Mrp1 was also absent. However, the tissue accumulation of vincristine in tissues of these Mdr1ab/Mrp1 KO mice was further increased. This study demonstrates that the presence of multiple drug transporters protects the bone marrow, and probably other tissues as well, against chemotherapeutic insults.  相似文献   

4.
PURPOSE: The brain is a pharmacologic sanctuary site, due to the presence of the blood-brain barrier (BBB). Whereas the effect of P-glycoprotein (P-gp) at the BBB is well established, the role of breast cancer resistance protein (BCRP) that is also expressed at the BBB is not. EXPERIMENTAL DESIGN: We have studied the effect of BCRP by administering topotecan to wild-type (WT), single Mdr1a/b(-/-) and Bcrp1(-/-), and compound Mdr1a/b(-/-)Bcrp1(-/-) knockout mice. Drug levels in plasma and tissues were determined by high-performance liquid chromatography. RESULTS: The area under the plasma and tissue concentration-time curve (AUC) of topotecan in brains of Mdr1a/b(-/-) and Bcrp1(-/-) mice was only 1.5-fold higher compared with WT mice, but in Mdr1a/b(-/-)Bcrp1(-/-) mice, where both transporters are absent, the AUC increased by 12-fold. The AUC in plasma was approximately 0.75-, 2.4-, and 3.7-fold higher in Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)Bcrp1(-/-) mice, respectively, resulting in 2.0-fold (P < 0.01), 0.65-fold (P, not significant), and 3.2-fold (P < 0.01), respectively, higher brain-to-plasma AUC ratios. Results using Mrp4(-/-) mice showed that this transporter had no effect on the brain penetration of topotecan. The P-gp/BCRP inhibitor elacridar fully inhibited P-gp-mediated transport of topotecan, whereas inhibition of Bcrp1-mediated transport by elacridar was minimal. CONCLUSIONS: Our results using Mdr1a/b(-/-)Bcrp1(-/-) mice clearly show the effect of Bcrp1 at the BBB and also show how two drug transporters act in concert to limit the brain penetration of topotecan. We expect that this finding will also apply to other drugs that are substrates of both P-gp and BCRP. Consequently, to improve the brain penetration of such compounds for targeting intracranial malignancies in patients, it will be essential to use potent inhibitors of both drug transporters.  相似文献   

5.
Despite accumulating evidence that multidrug resistance transporter proteins play a part in drug resistance in some clinical cancers, it remains unclear whether the relatively low levels of multidrug resistance transporter expression found in most untreated tumors could substantially affect their basal sensitivity to antineoplastic drugs. To shed light on this problem, the drug sensitivities of wild-type mouse cell lines were compared with those of lines in which the Mdr1a and Mdr1b genes encoding P-glycoprotein (P-gp) were inactivated and lines in which the Mrp1 gene was inactivated in addition to Mdr1a and Mdr1b. These models permit a clean dissection of the contribution of each transporter to drug resistance at expression levels similar to those in normal tissues and avoid complications that might arise from previous exposure of cell lines to drug selection. For substrate drugs, we found that these contributions can indeed be very substantial. Lines lacking functional P-gp were, on average, markedly more sensitive to paclitaxel (16-fold), anthracyclines (4-fold) and Vinca alkaloids (3-fold). Lines lacking both P-gp and Mrp1 were (compared with wild-type lines) hypersensitive to an even broader array of drugs, including epipodophyllotoxins (4-7-fold), anthracyclines (6-7-fold), camptothecins (3-fold), arsenite (4-fold) and Vinca alkaloids, especially vincristine (28-fold). Thus, even very low levels of P-gp and Mrp1 expression that may be difficult to detect in tumors could significantly affect their innate sensitivity to a wide range of clinically important substrate drugs. An implication is that the use of resistance reversal agents to sensitize drug-naive tumors may be appropriate in more cases than is presently appreciated.  相似文献   

6.
Docetaxel is one of the most widely used anticancer drugs. A major problem with docetaxel treatment, however, is the considerable interpatient variability in docetaxel exposure. Another disadvantage of the drug is that it has a very low oral bioavailability and can, therefore, only be administered intravenously. The drug-metabolizing enzyme CYP3A and the drug transporter MDR1 (P-glycoprotein) are major determinants of docetaxel pharmacokinetics. In vitro studies have indicated that docetaxel is also a substrate for the drug transporter MRP2, but the in vivo importance of MRP2 for docetaxel is currently unknown. We, therefore, investigated the role of MRP2 in the pharmacokinetics of docetaxel by utilizing Mrp2(-/-) mice. We also generated and characterized Cyp3a/Mdr1a/b/Mrp2(-/-) combination knockout mice to get more insight into how these drug-handling systems work together in determining docetaxel pharmacokinetics. The systemic exposure in Mrp2(-/-) mice was not significantly different from wild-type, after either oral or intravenous administration. Strikingly, however, in Cyp3a/Mdr1a/b/Mrp2(-/-) mice, systemic docetaxel exposure was increased 166-fold after oral administration when compared with wild-type mice, and 2.3-fold when compared with Cyp3a/Mdr1a/b(-/-) mice. Interestingly, this 166-fold increase was disproportionate compared with that for the separate Cyp3a (12-fold) or Mdr1a/b/Mrp2 (4-fold) knockouts. The oral bioavailability was increased to 73% in the Cyp3a/Mdr1a/b/Mrp2(-/-) strain, versus only 10% in wild-type mice. Our data thus indicate that in the absence of CYP3A and Mdr1a/b activity, Mrp2 has a marked impact on docetaxel pharmacokinetics. These findings could have important implications for improving the oral bioavailability and reducing the variability in docetaxel exposure.  相似文献   

7.
8.
PURPOSE: VX-710 (biricodar, Incel) restores drug sensitivity to cells expressing P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP1). MRP1 is expressed in a high proportion of prostate tumors while P-gp expression is variable. Since mitoxantrone (M) and prednisone (P) are substrates for MDR transporters, we initiated a study to evaluate the safety, pharmacokinetics, and efficacy of VX-710 plus M/P in patients with hormone-refractory prostate cancer (HRPC). PATIENTS AND METHODS: Eligible patients had progressive HRPC (defined as new lesions, new disease-related pain, or 50% increase in PSA within 6 weeks of entry), testosterone <30 ng/ml, no prior chemotherapy, ECOG performance status of 0-3, and adequate organ function. Patients received VX-710 (120 mg/m(2) per h) as a 72-h continuous intravenous infusion with intravenous bolus mitoxantrone (12 mg/m(2)) administered 4 h after VX-710 was started and prednisone (5 mg twice daily) administered throughout the study treatment. Endpoints included serum PSA response, PSA response duration, time to PSA progression, pain reduction, and quality of life measures. RESULTS: Enrolled in the study were 40 patients and 184 courses of VX-710 plus M/P were administered. Intensive pharmacokinetics, which were performed on six patients who received one cycle of M/P alone, followed by VX-710 plus M/P for all other cycles, showed that VX-710 did not alter mitoxantrone clearance. VX-710 blood concentration at the time of mitoxantrone administration averaged 4.52 microg/ml. VX-710 plus M/P was well tolerated. Transient nausea/vomiting and mild neutropenia were the principal treatment toxicities. Five patients experienced an uncomplicated febrile neutropenic episode (12%), three had severe nausea/vomiting, and two experienced transient moderate to severe ataxia. Of the 40 patients, 12 (30%, 95% confidence interval 16-44%) had a reduction in PSA of >/=50% and 9 of the 12 patients (23% overall, 95% CI 10-35%) achieved a reduction in PSA of >/=80% that was sustained for the duration of treatment with M/P plus VX-710. The median time to PSA progression was 41 weeks (95% CI 34-68 weeks). Of the 40 patients, 15 completed treatment with stable disease and 13 had progressive disease with increasing serum PSA during study treatment. Median survival was 48 weeks for the intent-to-treat population of 40 patients. CONCLUSIONS: The addition of VX-710 to M/P therapy did not appear to increase the proportion of patients with significant serum PSA reductions compared to M/P alone. However, the duration of PSA response observed for the 12 PSA responders suggests that MDR inhibition may benefit some patients with HRPC. In addition to MRP1 or P-gp expression, other mechanisms of drug resistance are probably associated with the relative insensitivity of HRPC to cytotoxic therapy.  相似文献   

9.
BACKGROUND AND METHODS: Breast cancer resistance protein (BCRP/MXR/ABCP) is a multidrug-resistance protein that is a member of the adenosine triphosphate-binding cassette family of drug transporters. BCRP can render tumor cells resistant to the anticancer drugs topotecan, mitoxantrone, doxorubicin, and daunorubicin. To investigate the physiologic role of BCRP, we used polarized mammalian cell lines to determine the direction of BCRP drug transport. We also used the BCRP inhibitor GF120918 to assess the role of BCRP in protecting mice against xenobiotic drugs. Bcrp1, the murine homologue of BCRP, was expressed in the polarized mammalian cell lines LLC-PK1 and MDCK-II, and the direction of Bcrp1-mediated transport of topotecan and mitoxantrone was determined. To avoid the confounding drug transport provided by P-glycoprotein (P-gp), the roles of Bcrp1 in the bioavailability of topotecan and the effect of GF120918 were studied in both wild-type and P-gp-deficient mice and their fetuses. RESULTS: Bcrp1 mediated apically directed transport of drugs in polarized cell lines. When both topotecan and GF120918 were administered orally, the bioavailability (i.e., the extent to which a drug becomes available to a target tissue after administration) of topotecan in plasma was dramatically increased in P-gp-deficient mice (greater than sixfold) and wild-type mice (greater than ninefold), compared with the control (i.e., vehicle-treated) mice. Furthermore, treatment with GF120918 decreased plasma clearance and hepatobiliary excretion of topotecan and increased (re-)uptake by the small intestine. In pregnant GF120918-treated, P-gp-deficient mice, relative fetal penetration of topotecan was twofold higher than that in pregnant vehicle-treated mice, suggesting a function for BCRP in the maternal-fetal barrier of the placenta. CONCLUSIONS: Bcrp1 mediates apically directed drug transport, appears to reduce drug bioavailability, and protects fetuses against drugs. We propose that strategic application of BCRP inhibitors may thus lead to more effective oral chemotherapy with topotecan or other BCRP substrate drugs.  相似文献   

10.
PURPOSE: Acute myeloid leukemia (AML) is considered a stem cell disease. Incomplete chemotherapeutic eradication of leukemic CD34+38- stem cells is likely to result in disease relapse. The purpose of this study was to investigate the role of the breast cancer resistance protein (BCRP/ATP-binding cassette, subfamily G, member 2) in drug resistance of leukemic stem cells and the effect of its modulation on stem cell eradication in AML. EXPERIMENTAL DESIGN: BCRP expression (measured flow-cytometrically using the BXP21 monoclonal antibody) and the effect of its modulation (using the novel fumitremorgin C analogue KO143) on intracellular mitoxantrone accumulation and in vitro chemosensitivity were assessed in leukemic CD34+38- cells. RESULTS: BCRP was preferentially expressed in leukemic CD34+38- cells and blockage of BCRP-mediated drug extrusion by the novel fumitremorgin C analogue KO143 resulted in increased intracellular mitoxantrone accumulation in these cells in the majority of patients. This increase, however, was much lower than in the mitoxantrone-resistant breast cancer cell line MCF7-MR and significant drug extrusion occurred in the presence of BCRP blockage due to the presence of additional drug transport mechanisms, among which ABCB1 and multiple drug resistance protein. In line with these findings, selective blockage of BCRP by KO143 did not enhance in vitro chemosensitivity of leukemic CD34+38- cells. CONCLUSIONS: These results show that drug extrusion from leukemic stem cells is mediated by the promiscuous action of BCRP and additional transporters. Broad-spectrum inhibition, rather than modulation of single mechanisms, is therefore likely to be required to circumvent drug resistance and eradicate leukemic stem cells in AML.  相似文献   

11.
Multidrug resistance (MDR) is the major cause of failure of effective chemotherapeutic treatment of disseminated neoplasms. The "classical" MDR phenotype of human malignancies is mediated by drug extrusion by the adenosine triphosphate binding cassette (ABC)-transporter P-glycoprotein (MDR1/P-gp). For stable reversal of "classical" MDR by RNA interference (RNAi) technology, an H1-RNA gene promoter-driven expression vector encoding anti-MDR1/P-gp short hairpin RNA (shRNA) molecules was constructed. By introduction of anti-MDR1/P-gp shRNA expression vectors into the extremely high drug-resistant human gastric carcinoma cell line EPG85-257RDB, the MDR phenotype was completely reversed. The reversal of MDR was accompanied by a complete suppression of MDR1/P-gp expression on mRNA and protein level, and by a considerable increased intracellular anthracyline accumulation in the anti-MDR1/P-gp shRNA-treated cells. The data indicate that stable shRNA-mediated RNAi can be tremendously effective in reversing MDR1/P-gp-mediated MDR and is therefore a promising strategy for overcoming MDR by gene therapeutic applications.  相似文献   

12.
A high incidence of relapses following induction chemotherapy is a major hindrance to patient survival in acute myelogenous leukemia (AML). There is strong evidence that activation of the phosphoinositide 3 kinase (PI3K)/Akt signaling network plays a significant role in rendering AML blasts drug resistant. An important mechanism underlying drug resistance is represented by overexpression of membrane drug transporters such as multidrug resistance-associated protein 1 (MRP1) or 170-kDa P-glycoprotein (P-gp). Here, we present evidence that MRP1, but not P-gp, expression is under the control of the PI3K/Akt axis in AML blasts. We observed a highly significant correlation between levels of phosphorylated Akt and MRP1 expression in AML cells. Furthermore, incubation of AML blasts with wortmannin, a PI3K pharmacological inhibitor, resulted in lower levels of phosphorylated Akt, downregulated MRP1 expression, and decreased Rhodamine 123 extrusion in an in vitro functional dye efflux assay. We also demonstrate that wortmannin-dependent PI3K/Akt inhibition upregulated p53 protein levels in most AML cases, and this correlated with diminished MRP1 expression and enhanced phosphorylation of murine double minute 2 (MDM2). Taken together, these data suggest that PI3K/Akt activation may lead to the development of chemoresistance in AML blasts through a mechanism involving a p53-dependent suppression of MRP1 expression.  相似文献   

13.
The multidrug resistance (MDR) phenotype, induced by the overexpression of several ABC transporters or by antiapoptotic mechanisms, has been identified as the major cause of drug resistance in the treatment of patients with acute myeloid leukemia (AML). In this study, we have shown that valproic acid (VPA) (a histone deacetylase inhibitor) can inhibit the proliferation of both P-glycoprotein (P-gp)- and MDR-associated protein 1 (MRP1)-positive and -negative cells. VPA also induced apoptosis of P-gp-positive cells. VPA induced apoptosis in K562 cells led to decrease in Flip (FLICE/caspase-8 inhibitory protein) expression with Flip cleavage, which could not be observed in HL60 cells. In HL60/MRP cell line, which proved to be resistant to apoptosis by VPA, we observed an abnormal expression of apoptotic regulatory proteins, overexpression of Bcl-2 and absence of Bax. Also, the Bcl-2 antagonist HA14-1 rapidly restored apoptosis in this cell line. Cotreatment with cytosine arabinoside induced very strong apoptosis in both K562/DOX and HL60/DNR cell lines. VPA also induced apoptosis in AML patient cells expressing P-gp and/or MRP1. Our findings show VPA as an interesting drug that should be tested in clinical trials for overcoming the MDR phenotype in AML patients.  相似文献   

14.
The 2 clones, LoVo 5 and LoVo 7, derived from untreated LoVo WT human colon adenocarcinoma cells and exhibiting different sensitivity to doxorubicin (DOX), were compared in order to identify possible determinants of intrinsic drug resistance. A multidrug resistant variant cell line, selected from LoVo WT cells by continuous exposure to DOX (LoVo DX), was also included in the study. Analysis of the expression and organization of cytoskeletal elements by flow cytometry and fluorescence microscopy evidenced a positive correlation between vimentin expression and DOX resistance in LoVo 7 and LoVo DX cells, whereas differences in actin, tubulin or cytokeratin did not seem to relate to drug response. The expression and localization of different drug transporters commonly implicated in drug resistance, i.e., the MDR1 gene product P-glycoprotein (P-gp), the multidrug resistance-related protein MRP and the lung resistance-related protein LRP were also investigated by means of flow cytometry and fluorescence microscopy, following labeling with specific monoclonal antibodies. Surface expression of P-gp was only detected in LoVo DX cells, which also exhibited increased MRP and LRP protein levels. However, significant amounts of P-gp were found at intracellular sites in the intrinsically resistant LoVo 7 clone. Modulation of P-gp function by cyclosporin A was found to alter DOX accumulation and efflux in LoVo 7 cells, indicating that intracellular P-gp plays a functional role in drug trafficking and suggesting possible implications in determining the intrinsic resistance displayed by this clone.  相似文献   

15.
D Steinbach  O Legrand 《Leukemia》2007,21(6):1172-1176
More than 30 years ago it was discovered that permeability glycoprotein (P-gp) can cause drug resistance. Over the following decades numerous studies showed that high expression of P-gp is associated with poor prognosis in acute myeloid leukemia in adults and that it causes multidrug resistance via ATP-dependent drug efflux. It was hoped that an inhibition of P-gp could sensitize resistant leukemic cells to chemotherapy and thus improve treatment results. Today we know that the family of ATP-binding cassette transporters (ABC transporters) comprises 48 different proteins. Some of them seem to be able to cause drug resistance as well as P-gp. This review focuses on emerging data on the clinical relevance of other ABC transporters, such as BCRP, MRP3, and ABCA3. When Heracles fought the ancient Hydra, he had to fight all the heads at ones but only one head was vital for the beast. Can we block all the relevant ABC transporters at once? Is there one transporter that is more important than the others?  相似文献   

16.
Mouse fibroblast cell lines lacking functional Mdr1a, Mdr1b, and Mrp1 genes were selected for resistance to topotecan, mitoxantrone, or doxorubicin. Each of the resulting drug-resistant lines showed marked gene amplification of Bcrp1, the mouse homologue of the human ATP-binding cassette transporter gene BCRP/MXR/ABCP, and greatly elevated expression of Bcrp1 mRNA. All three of the resistant cell lines were highly cross-resistant to topotecan and mitoxantrone and, to a variable extent, doxorubicin. All showed greatly reduced cellular accumulation and greatly increased efflux of mitoxantrone that was dependent on cellular ATP and efficiently reversed by the compound GF120918. The mouse Bcrp1 cDNA encodes a 657-amino-acid protein with 81% identity (86% similarity) to the human breast cancer resistance protein (BCRP) and a virtually superimposable hydrophobicity profile. Our data argue strongly that mouse Bcrp1 is functionally comparable with human BCRP, conferring multidrug resistance to topotecan, mitoxantrone, doxorubicin, and related compounds. Mouse models and cell lines should, therefore, be highly informative in understanding the clinical, pharmacological, and physiological roles of BCRP.  相似文献   

17.
Tet调控的乳腺癌耐受蛋白表达细胞系的建立及功能研究   总被引:8,自引:2,他引:6  
Yuan JH  He ZM  Yu YH  Chen ZC 《癌症》2004,23(10):1127-1133
背景与目的:乳腺癌耐受蛋白(breastcancerresistanceprotein,BCRP)是1998年发现的新的ATP结合盒式(ATPbindingcassette,ABC)跨膜转运蛋白超家族成员。本研究拟建立Tet调控的具有功能的BCRP表达细胞系,为研究BCRP介导的药物耐受机制和探寻耐受逆转方法提供理想的实验平台。方法:利用Tet-on基因表达调控系统,先后将调控质粒pTet-on和反应质粒pTRE-BCRP转染入PA317细胞,并用G418和潮霉素分别进行二轮筛选,挑取6个单细胞克隆并扩增培养;不同浓度的强力霉素(doxycycline,Dox)诱导后,用RT-PCR和Westernblot检测并选取BCRP表达量与Dox剂量具有较好量-效关系的PA317/Tet-on/TRE-BCRP细胞克隆;采用MTT方法检测米托蒽醌(mitoxantrone)对不同浓度Dox诱导下的PA317/Tet-on/TRE-BCRP克隆细胞的杀伤作用;采用BCRP特异性抑制剂Ko143的干扰试验来检测PA317/Tet-on/TRE-BCRP细胞对米托蒽醌的药物敏感性;米托蒽醌处理不同BCRP表达量的细胞后,利用流式细胞仪检测细胞内存留米托蒽醌所释放出来的荧光强度。结果:发现5号PA317/Tet-on/TRE-BCRP克隆细胞BCRP表达量与Dox诱导剂量具有较好的量-效关系;其药物耐受性与BCRP表达量呈正相关(r=0.995,P=0.002);Ko143能显著增强PA317/Tet-on/TRE-BCRP细胞对米托蒽醌的药物敏感性(P<0.05  相似文献   

18.
Melanoma cells exhibit, both in vivo and in vitro, intrinsic drug resistance to various chemotherapeutic agents. Cultured human melanoma cells (M14) intrinsically express significant amounts of multidrug resistance-related protein (MRP1) and P-glycoprotein (P-gp) in the Golgi apparatus, but do not express these drug transporters on the plasma membrane. A panel of multidrug resistant (MDR) melanoma cell lines (M14Dx), showing different degrees of resistance to doxorubicin (DOX), were isolated. In M14Dx lines, the appearance of surface P-gp, but not of MRP1 or lung resistance related protein (LRP), occurred in cells grown in the presence of DOX concentrations higher than 60 nM. Furthermore, P-gp levels appeared to be dose-dependent. Flow cytometry, laser scanning confocal microscopy and cytotoxicity studies demonstrated that the activity of the drug extrusion system was related to both surface P-gp expression and resistance to DOX. In conclusion, P-gp, but not MRP1 or LRP, might play a pivotal role in the pharmacologically-induced MDR phenotype of melanoma cells.  相似文献   

19.
目的:探讨辐射促细胞转染的多药耐药(multidrug resistance,MDR)基因Mdr1反义寡核苷酸(ASON)逆转肿瘤细胞SW1990/Fu的耐药效果。方法应用RT-PCR方法和流式细胞仪,检测2种不同的转染方法对SW1990/Fu细胞的Mdr1-mRNA及其表达产物P-糖蛋白( P-gp)的调控情况。结果反转录RT-PCR和流式细胞仪的结果显示,联合辐射的阳性脂质体介导ASON组的SW1990/Fu细胞Mdr1-mRNA的表达水平及细胞膜糖蛋白( P-gp)的阳性率均明显低于反义寡核苷酸(ASON)组(P<0.01)。结论辐射促转染的Mdr1ASON联合磁性载药微球对肿瘤细胞具有较好的耐药逆转作用。  相似文献   

20.
A major impediment to cancer treatment is the development of resistance by the tumor. P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP1) are involved in multidrug resistance. In addition to the extrusion of chemotherapeutic agents through these transporters, it has been reported that there are differences in the intracellular distribution of chemotherapeutic agents between drug resistant cells and sensitive cells. Cepharanthine is a plant alkaloid that effectively reverses resistance to anticancer agents. It has been previously shown that cepharanthine is an effective agent for the reversal of resistance in P-gp-overexpressing cells. Cepharanthine has also been reported to have numerous pharmacological effects besides the inhibition of P-gp. It has also been found that cepharanthine enhanced sensitivity to doxorubicin (ADM) and vincristine (VCR), and enhanced apoptosis induced by ADM and VCR of P-gp negative K562 cells. Cepharanthine changed the distribution of ADM from cytoplasmic vesicles to nucleoplasm in K562 cells by inhibiting the acidification of cytoplasmic organelles. Cepharanthine in combination with ADM should be useful for treating patients with tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号