首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Resistance to macrolides in pneumococci is generally mediated by methylation of 23S rRNA via erm(B) methylase which can confer a macrolide (M)-, lincosamide (L)-, and streptogramin B (S(B))-resistant (MLS(B)) phenotype or by drug efflux via mef(A) which confers resistance to 14- and 15-membered macrolides only. We studied 20 strains with unusual ML or MS(B) phenotypes which did not harbor erm(B) or mef(A). The strains had been isolated from patients in Eastern Europe and North America from 1992 to 1998. These isolates were found to contain mutations in genes for either 23S rRNA or ribosomal proteins. Three strains from the United States with an ML phenotype, each representing a different clone, were characterized as having an A2059G (Escherichia coli numbering) change in three of the four 23S rRNA alleles. Susceptibility to macrolides and lincosamides decreased as the number of alleles in isogenic strains containing A2059G increased. Sixteen MS(B) strains from Eastern Europe were found to contain a 3-amino-acid substitution ((69)GTG(71) to TPS) in a highly conserved region of the ribosomal protein L4 ((63)KPWRQKGTGRAR(74)). These strains formed several distinct clonal types. The single MS(B) strain from Canada contained a 6-amino-acid L4 insertion ((69)GTGREKGTGRAR), which impacted growth rate and also conferred a 500-fold increase in MIC on the ketolide telithromycin. These macrolide resistance mechanisms from clinical isolates are similar to those recently described for laboratory-derived mutants.  相似文献   

3.
Sixteen (1.5%) of the 1,043 clinical macrolide-resistant Streptococcus pneumoniae isolates collected and analyzed in the 1999-2000 PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) study have resistance mechanisms other than rRNA methylation or efflux. We have determined the macrolide resistance mechanisms in all 16 isolates by sequencing the L4 and L22 riboprotein genes, plus relevant segments of the four genes for 23S rRNA, and the expression of mutant rRNAs was analyzed by primer extension. Isolates from Canada (n = 4), Japan (n = 3), and Australia (n = 1) were found to have an A2059G mutation in all four 23S rRNA alleles. The Japanese isolates additionally had a G95D mutation in riboprotein L22; all of these originated from the same collection center and were clonal. Three of the Canadian isolates were also clonal; the rest were not genetically related. Four German isolates had A2059G in one, two, and three 23S rRNA alleles and A2058G in two 23S rRNA alleles, respectively. An isolate from the United States had C2611G in three 23S rRNA alleles, one isolate from Poland had A2058G in three 23S rRNA alleles, one isolate from Turkey had A2058G in four 23S rRNA alleles, and one isolate from Canada had A2059G in two 23S rRNA alleles. Erythromycin and clindamycin resistance gradually increased with the number of A2059G alleles, whereas going from one to two mutant alleles caused sharp rises in the azithromycin, roxithromycin, and rokitamycin MICs. Comparisons of mutation dosage with rRNA expression indicates that not all alleles are equally expressed. Despite their high levels of macrolide resistance, all 16 isolates remained susceptible to the ketolide telithromycin (MICs, 0.015 to 0.25 microg/ml).  相似文献   

4.
Ribosomal mutations in Streptococcus pneumoniae clinical isolates   总被引:9,自引:0,他引:9  
Eleven clinical isolates of Streptococcus pneumoniae, isolated in Finland during 1996 to 2000, had an unusual macrolide resistance phenotype. They were resistant to macrolides and streptogramin B but susceptible, intermediate, or low-level resistant to lincosamides. No acquired macrolide resistance genes were detected from the strains. The isolates were found to have mutations in domain V of the 23S rRNA or ribosomal protein L4. Seven isolates had an A2059C mutation in two to four out of the four alleles encoding the 23S rRNA, two isolates had an A2059G mutation in two alleles, one isolate had a C2611G mutation in all four alleles, and one isolate had a 69GTG71-to-69TPS71 substitution in ribosomal protein L4.  相似文献   

5.
Susceptibility testing results for Streptococcus pneumoniae isolates (n = 2,279) from eight European countries, examined in the PneumoWorld Study from 2001 to 2003, are presented. Overall, 24.6% of S. pneumoniae isolates were nonsusceptible to penicillin G and 28.0% were resistant to macrolides. The prevalence of resistance varied widely between European countries, with the highest rates of penicillin G and macrolide resistance reported from Spain and France. Serotype 14 was the leading serotype among penicillin G- and macrolide-resistant S. pneumoniae isolates. One strain (PW 158) showed a combination of an efflux type of resistance with a 23S rRNA mutation (A2061G, pneumococcal numbering; A2059G, Escherichia coli numbering). Six strains which showed negative results for mef(A) and erm(B) in repeated PCR assays had mutations in 23S rRNA or alterations in the L4 ribosomal protein (two strains). Fluoroquinolone resistance rates (levofloxacin MIC > or = 4 microg/ml) were low (Austria, 0%; Belgium, 0.7%; France, 0.9%; Germany, 0.4%; Italy, 1.3%; Portugal, 1.2%; Spain, 1.0%; and Switzerland, 0%). Analysis of quinolone resistance-determining regions showed eight strains with a Ser81 alteration in gyrA; 13 of 18 strains showed a Ser79 alteration in parC. The clonal profile, as analyzed by multilocus sequence typing (MLST), showed that the 18 fluoroquinolone-resistant strains were genetically heterogeneous. Seven of the 18 strains belonged to new sequence types not hitherto described in the MLST database. Europe-wide surveillance for monitoring of the further spread of these antibiotic-resistant S. pneumoniae clones is warranted.  相似文献   

6.
In this study, a multiplex rapid cycle PCR with microwell-format probe hybridization method was developed to perform high-volume screening for macrolide resistance determinants in isolates of Streptococcus pneumoniae and Streptococcus pyogenes. The method was then utilized to determine the distribution of macrolide resistance mechanisms in recent isolates of S. pneumoniae and S. pyogenes from Great Britain and Ireland. For 83 strains of macrolide resistant S. pneumoniae tested, 51 (61.4%) were positive for mef(A), 29 (34.9%) erm(B), two (2.4%) double mechanisms mef(A) + erm(B), and one (1.2%) negative for all mechanisms tested. For 56 strains of macrolide-resistant S. pyogenes tested, 33 (58.9%) were positive for erm(A) subclass erm(TR), 18 (32.1%) mef(A) and five (8.9%) erm(B).  相似文献   

7.
8.
The activity of a new ketolide, ABT-773, was compared to the activity of the ketolide telithromycin (HMR-3647) against over 600 gram-positive clinical isolates, including 356 Streptococcus pneumoniae, 167 Staphylococcus aureus, and 136 Streptococcus pyogenes isolates. Macrolide-susceptible isolates as well as macrolide-resistant isolates with ribosomal methylase (Erm), macrolide efflux (Mef), and ribosomal mutations were tested using the NCCLS reference broth microdilution method. Both compounds were extremely active against macrolide-susceptible isolates, with the minimum inhibitory concentrations at which 90% of the isolates tested were inhibited (MIC90s) for susceptible streptococci and staphylococci ranging from 0.002 to 0.03 microg/ml for ABT-773 and 0.008 to 0.06 microg/ml for telithromycin. ABT-773 had increased activities against macrolide-resistant S. pneumoniae (Erm MIC90, 0.015 microg/ml; Mef MIC90, 0.12 microg/ml) compared to those of telithromycin (Erm MIC90, 0.12 microg/ml; Mef MIC90, 1 microg/ml). Both compounds were active against strains with rRNA or ribosomal protein mutations (MIC90, 0.12 microg/ml). ABT-773 was also more active against macrolide-resistant S. pyogenes (ABT-773 Erm MIC90, 0.5 microg/ml; ABT-773 Mef MIC90, 0.12 microg/ml; telithromycin Erm MIC90, >8 microg/ml; telithromycin Mef MIC90, 1.0 microg/ml). Both compounds lacked activity against constitutive macrolide-resistant Staphylococcus aureus but had good activities against inducibly resistant Staphylococcus aureus (ABT-773 MIC90, 0.06 microg/ml; telithromycin MIC90, 0.5 microg/ml). ABT-773 has superior activity against macrolide-resistant streptococci compared to that of telithromycin.  相似文献   

9.
The susceptibilities of 468 recent Russian clinical Streptococcus pneumoniae isolates and 600 Streptococcus pyogenes isolates, from 14 centers in Russia, to telithromycin, erythromycin, azithromycin, clarithromycin, clindamycin, levofloxacin, quinupristin-dalfopristin, and penicillin G were tested. Penicillin-nonsusceptible S. pneumoniae strains were rare except in Siberia, where their prevalence rate was 13.5%: most were penicillin intermediate, but for three strains (two from Smolensk and one from Novosibirsk) the MICs of penicillin G were 4 or 8 micro g/ml. Overall, 2.5% of S. pneumoniae isolates were resistant to erythromycin. Efflux was the prevalent resistance mechanism (five strains; 41.7%), followed by ribosomal methylation encoded by constitutive erm(B), which was found in four isolates. Ribosomal mutation was the mechanism of macrolide resistance in three isolates; one erythromycin-resistant S. pneumoniae isolate had an A2059G mutation in 23S rRNA, and two isolates had substitution of GTG by TPS at positions 69 to 71 in ribosomal protein L4. All S. pyogenes isolates were susceptible to penicillin, and 11% were erythromycin resistant. Ribosomal methylation was the most common resistance mechanism for S. pyogenes (89.4%). These methylases were encoded by erm(A) [subclass erm(TR)] genes, and their expression was inducible in 96.6% of isolates. The rest of the erythromycin-resistant Russian S. pyogenes isolates (7.6%) had an efflux resistance mechanism. Telithromycin was active against 100% of pneumococci and 99.2% of S. pyogenes, and levofloxacin and quinupristin-dalfopristin were active against all isolates of both species.  相似文献   

10.
Resistance to macrolides in Streptococcus pneumoniae is usually mediated by methylation of 23S ribosomal RNA, encoded by the erm(B) methylation gene, or by efflux mediated by the mef(A) gene. Changes in the L4 and L22 ribosomal proteins have also been associated with macrolide resistance and reduced telithromycin activity. This study generated in vitro mutants from three parent strains of S. pneumoniae: 02J1175 [mef(A) +], 02J1095 [erm(B) +] and NCTC 13593 (macrolide susceptible). The erm(B) and the erm(B) upstream region, the mef(A) genes and the mef(A) upstream and downstream regions, the 23S rRNA genes encoding domains II and V and the L4 and L22 genes of the telithromycin-resistant strains were all amplified by PCR and all, except the mef(A) upstream and downstream regions, were sequenced. No changes were present in any of the genes of the mef(A) + mutants. No changes were found in the erm(B) genes, the 23S rRNA genes or the L4 protein genes of the erm(B) + mutants. However, a Lys-94 to Gln-94 amino acid mutation did occur in a mutant derived from erm(B) + with a telithromycin MIC of >32 mg/L. A 210 base pair deletion in the erm(B) upstream region was also present in this strain. We believe this is the first incidence of a Lys-94 to Gln-94 change in L22 associated with telithromycin resistance and also the first time that such a large deletion in the erm(B) upstream region has been identified in S. pneumoniae.  相似文献   

11.
A collection of 23 macrolide-resistant Campylobacter isolates from different geographic areas was investigated to determine the mechanism and stability of macrolide resistance. The isolates were identified as Campylobacter jejuni or Campylobacter coli based on the results of the hippurate biochemical test in addition to five PCR-based genotypic methods. Three point mutations at two positions within the peptidyl transferase region in domain V of the 23S rRNA gene were identified. About 78% of the resistant isolates exhibited an A-->G transition at Escherichia coli equivalent base 2059 of the 23S rRNA gene. The isolates possessing this mutation showed a wide range of erythromycin and clarithromycin MICs. Thus, this mutation may incur a greater probability of treatment failure in populations infected by resistant Campylobacter isolates. Another macrolide-associated mutation (A-->C transversion), at E. coli equivalent base 2058, was detected in about 13% of the isolates. An A-->G transition at a position cognate with E. coli 23S rRNA base 2058, which is homologous to the A2142G mutation commonly described in Helicobacter pylori, was also identified in one of the C. jejuni isolates examined. In the majority of C. jejuni isolates, the mutations in the 23S rRNA gene were homozygous except in two cases where the mutation was found in two of the three copies of the target gene. Natural transformation demonstrated the transfer of the macrolide resistance phenotype from a resistant Campylobacter isolate to a susceptible Campylobacter isolate. Growth rates of the resulting transformants containing A-2058-->C or A-2059-->G mutations were similar to that of the parental isolate. The erythromycin resistance of six of seven representative isolates was found to be stable after successive subculturing in the absence of erythromycin selection pressure regardless of the resistance level, the position of the mutation, or the number of the mutated copies of the target gene. One C. jejuni isolate showing an A-2058-->G mutation, however, reverted to erythromycin and clarithromycin susceptibility after 55 subcultures on erythromycin-free medium. Investigation of ribosomal proteins L4 and L22 by sequence analysis in five representative isolates of C. jejuni and C. coli demonstrated no significant macrolide resistance-associated alterations in either the L4 or the L22 protein that might explain either macrolide resistance or enhancement of the resistance level.  相似文献   

12.
The waxy cell walls of mycobacteria provide intrinsic tolerance to a broad range of antibiotics, and this effect is augmented by specific resistance determinants. The inducible determinant erm(38) in the nontuberculous species Mycobacterium smegmatis confers high resistance to lincosamides and some macrolides, without increasing resistance to streptogramin B antibiotics. This is an uncharacteristic resistance pattern falling between the type I and type II macrolide, lincosamide, and streptogramin B (MLS(B)) phenotypes that are conferred, respectively, by Erm monomethyltransferases and dimethyltransferases. Erm dimethyltransferases are typically found in pathogenic bacteria and confer resistance to all MLS(B) drugs by addition of two methyl groups to nucleotide A2058 in 23S rRNA. We show here by mass spectrometry analysis of the mycobacterial rRNA that Erm(38) is indeed an A2058-specific dimethyltransferase. The activity of Erm(38) is lethargic, however, and only a meager proportion of the rRNA molecules become dimethylated in M. smegmatis, while most of the rRNAs are either monomethylated or remain unmethylated. The methylation pattern produced by Erm(38) clarifies the phenotype of M. smegmatis, as it is adequate to confer resistance to lincosamides and 14-member ring macrolides such as erythromycin, but it is insufficient to raise the level of resistance to streptogramin B drugs above the already high intrinsic tolerance displayed by this species.  相似文献   

13.
We screened 615 gram-positive isolates from 150 healthy children for the presence of the erm(A), erm(B), erm(C), erm(F), and mef(A) genes. The mef(A) genes were found in 20 (9%) of the macrolide-resistant isolates, including Enterococcus spp., Staphylococcus spp., and Streptococcus spp. Sixteen of the 19 gram-positive isolates tested carried the other seven open reading frames (ORFs) described in Tn1207.1, a genetic element carrying mef(A) recently described in Streptococcus pneumoniae. The three Staphylococcus spp. did not carry orf1 to orf3. A gram-negative Acinetobacter junii isolate also carried the other seven ORFs described in Tn1207.1. A Staphylococcus aureus isolate, a Streptococcus intermedius isolate, a Streptococcus sp. isolate, and an Enterococcus sp. isolate had their mef(A) genes completely sequenced and showed 100% identity at the DNA and amino acid levels with the mef(A) gene from S. pneumoniae.  相似文献   

14.
Twenty macrolide and/or lincosamide resistant Streptococcus pneumoniae clinical isolates from various sources with 50S ribosomal mutations were identified. Mutations were identified in the 23S rDNA with substitutions at A2058, A2059, or C2611 and in L4 or L22 ribosomal protein genes. Fourteen were A2059G substitutions, one was A2058G, two were C2611T, two had an altered L4 and one isolate contained an altered L22 gene. Susceptibility testing with erythromycin, josamycin, clindamycin, and two ketolides including cethromycin was performed. The L4 mutants had the amino acid changes of (69)GTG(71) to (69)TPS(71). The isolate with the L22 mutation contained an 18 base pair tandem duplication/insertion at the 3' end of the gene. 50s ribosomal mutations are the least frequent mechanism of S. pneumoniae resistance, occurring at an extremely low frequency and are identified only by genome sequence data.  相似文献   

15.
16.
17.
OBJECTIVE: Two clinical strains of Streptococcus pyogenes, 237 and 544, one isolated in Slovakia and the other in Croatia, that were resistant to azithromycin (MIC 8 and 2 mg/L, respectively) but susceptible to erythromycin (MIC 0.5 and 0.12 mg/L, respectively) did not contain any gene known to confer macrolide resistance by ribosomal modification (erm gene) or efflux [mef(A) and msr(A) genes]. The aim of the study was to determine the mechanisms of macrolide resistance in both strains. METHODS: Portions of genes encoding ribosomal proteins L22 and L4, and 23S rRNA (domains II and V) in the two macrolide-resistant strains and in control strains susceptible to macrolides, were analysed by PCR and single-strand conformational polymorphism, to screen for mutations. The DNA sequences of amplicons from resistant strains that differed from those of susceptible strains, in terms of their electrophoretic migration profiles, were determined. RESULTS: S. pyogenes 237 displayed a KG insertion after position 69 in ribosomal protein L4. S. pyogenes 544 contained a C2611U mutation in domain V of 23S rRNA. CONCLUSION: Mutations at a similar position in ribosomal protein L4 and 23S rRNA have been reported previously in macrolide-resistant pneumococci. This report shows that similar mutations can be found in macrolide-resistant S. pyogenes.  相似文献   

18.
The in vitro activities of telithromycin and cethromycin (ABT-773) against 412 Streptococcus pyogenes isolates, consecutively collected in 17 Spanish hospitals from different geographical areas, were evaluated and compared with those of erythromycin A, penicillin G, clindamycin and quinupristin-dalfopristin. With a susceptibility testing breakpoint of < or = 1 mg/L for both compounds, 96.1% of isolates were susceptible to telithromycin and 99.8% to cethromycin. Erythromycin non-susceptible isolates (intermediate plus resistant, MIC > or = 0.5 mg/L) comprised 23% of those tested, and were analysed for the genetic basis of their resistance by PCR. Among these isolates (n = 95), 72.6% harboured mef(A), 8.4%, erm(B), and 3.2%, erm(A), as sole macrolide resistance gene, whereas the presence of mef(A) plus erm(A) (11.6%) or mef(A) plus erm(B) (4.2%) was also observed. Both ketolides displayed a significant in vitro activity against S. pyogenes regardless of the macrolide resistance mechanisms. Nevertheless, in the case of telithromycin, 11 out of 19 of the erm(B)-positive isolates (2.7% of total population) exhibited an MIC range of 4-32 mg/L. According to the present results, telithromycin and cethromycin offer a wide coverage against S. pyogenes isolates in a geographic area with a high incidence of resistance to currently used macrolides.  相似文献   

19.
OBJECTIVES: To evaluate erythromycin resistance in recent invasive isolates of Streptococcus pneumoniae in Italy, to study the phenotypic and genotypic characteristics of the isolates, and to compare data with those obtained in a previous survey. METHODS: Invasive pneumococcal isolates were obtained from 56 laboratories throughout the country, in 2001-2003. Isolates were serotyped and antimicrobial susceptibilities determined by Sensititre panels and Etest. A new PCR was performed to detect erythromycin resistance genes. Typing methods for selected erythromycin-resistant isolates included PFGE and multilocus sequence typing (MLST). RESULTS: One hundred and fifty-five isolates out of 444 (34.9%) were resistant to erythromycin: 95 isolates (21.4%) carried erm(B), 56 (12.6%) carried mef(A) and three carried both genes. One isolate, carrying neither erm(B) nor mef(A), showed a point mutation in domain V of the 23S rRNA genes. The mef(A)-positive isolates carried subtype mef(A) (47 isolates), subtype mef(E) (nine isolates), and both subtype mef(E) and erm(B) (three isolates). All subtype mef(A) strains, except two, belonged to serotype 14, appeared to be clonally related by PFGE and related to the England14-9 clone by MLST. The two isolates belonging to other serotypes showed different genetic backgrounds. CONCLUSIONS: Erythromycin resistance in S. pneumoniae has increased in the last few years in Italy. erm(B) is still the predominant resistance determinant; however, the increase in erythromycin resistance (34.9% versus 28.8% of the previous years) is mainly due to an increase in the proportion of isolates carrying the efflux pump mef(A), whereas the proportion of isolates carrying erm(B) has not changed.  相似文献   

20.
The population structure (serotypes, pulsed-field gel electrophoresis [PFGE] types, and multilocus sequencing types) of 45 mef-positive Streptococcus pneumoniae isolates [carrying mef alone (n = 17) or with the erm(B) gene n = 28)] were studied. They were selected from among all erythromycin-resistant isolates (n = 244) obtained from a collection of 712 isolates recovered from different Spanish geographic locations in the prevaccination period from 1999 to 2003. The overall rates of resistance (according to the criteria of the CLSI) among the 45 mef-positive isolates were as follows: penicillin G, 82.2%; cefotaxime, 22.2%; clindamycin, 62.2%; and tetracycline, 68.8% [mainly in isolates carrying erm(B) plus mef(E); P < 0.001]. No levofloxacin or telithromycin resistance was found. Macrolide resistance phenotypes (as determined by the disk diffusion approximation test) were 37.7% for macrolide resistance [with all but one due to mef(E)] and 62.2% for constitutive macrolide-lincosamide-streptogramin B resistance [cMLS(B); with all due to mef(E) plus erm(B)]. Serotypes 14 (22.2%), 6B (17.7%), 19A (13.3%), and 19F (11.1%) were predominant. Twenty-five different DNA patterns (PFGE types) were observed. Our mef-positive isolates were grouped (by eBURST analysis) into four clonal complexes (n = 18) and 19 singleton clones (n = 27). With the exception of clone Spain(9V)-3, all clonal complexes (clonal complexes 6B, Spain(6B)-2, and Sweden(15A)-25) and 73.6% of singleton clones carried both the erm(B) and the mef(E) genes. The international multiresistant clones Spain(23F)-1 and Poland(6B)-20 were represented as singleton clones. A high proportion of mef-positive S. pneumoniae isolates presented the erm(B) gene, with all isolates expressing the cMLS(B) phenotype. A polyclonal population structure was demonstrated within our Spanish mef-positive S. pneumoniae isolates, with few clonal complexes overrepresented within this collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号