首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Hyperinsulinaemia is a reported feature of the inherited multisystem disorder myotonic dystrophy. This phenomenon has been attributed to a compensatory beta cell response to tissue insulin resistance. In this study, circulating concentrations of insulin, proinsulin, and split proinsulin molecules were determined after an overnight fast in ten patients with myotonic dystrophy using two-site monoclonal antibody-based immunoradiometric assays. Results were compared with ten healthy control subjects matched for age, gender, and body mass index. Oral glucose tolerance (75 g), as defined by World Health Organization criteria, was normal in all subjects. Fasting plasma immunoreactive insulin concentration, as determined using a conventional radioimmunoassay, was almost three times higher (p<0.005) in the myotonic dystrophy patients than the healthy control subjects. By contrast, fasting concentrations (mean±SEM) of C-peptide (0.75±0.09 vs 0.52±0.03 nmol/l, p=0.07) and immunoradiometrically-determined insulin (60±12 vs 38±4 pmol/l, p=0.09) were not significantly different between the groups. Fasting concentrations of proinsulin (10.3±2.9 vs 1.6±0.3 pmol/l, p<0.01), and 32–33 split proinsulin (7.8±2.5 vs 2.9±0.4 pmol/l, p<0.05) were significantly elevated in the patients with myotonic dystrophy. Accordingly, the mean fasting proinsulininsulin ratio, expressed as a percentage, was significantly increased in the myotonic patients (20±5 vs 4±1%, p<0.01). The overall C-peptide response to the oral glucose challenge was significantly greater in the myotonic patients compared with the healthy control subjects (p<0.001). These results provide corroborative evidence of increased beta-cell secretion in myotonic dystrophy. In addition, myotonic dystrophy is characterised by elevated plasma concentrations of proinsulin-like molecules which may cross-react in insulin radioimmunoassays.  相似文献   

2.
Summary Microalbuminuria has recently been associated with insulin resistance in both insulin-dependent and non-insulin-dependent (NIDDM) diabetes mellitus. To establish whether microalbuminuria in non-diabetic subjects as well is associated with insulin resistance and associated abnormalities in glucose and lipid metabolism, oral glucose tolerance tests were performed with measurement of urinary albumin excretion rate, lipids and lipoproteins in 582 male non-diabetic first-degree relatives of patients with NIDDM. In addition, insulin sensitivity was assessed in 20 of these subjects with the euglycaemic hyperinsulinaemic clamp technique. Abnormal albumin excretion rate (AER), defined as AER 15–200 g/min, was associated with higher systolic blood pressure (p<0.05), higher fasting glucose values (p<0.05), lower HDL-cholesterol (p<0.05) and lower apolipoprotein A-I (p<0.05) concentrations than observed in subjects with normal AER. The rate of glucose metabolism was lower in subjects with abnormal compared to subjects with normal albumin excretion rate (38.0±2.8 vs 47.3±2.4 mol·kg lean body mass–1. min–1; p=0.028). This difference was almost completely accounted for by a reduction in non-oxidative glucose metabolism (17.7±1.9 vs 27.4±2.7 mol·kg lean body mass–1. min–1; p = 0.010), which correlated inversely with the AER (r=–0.543; p=0.013). These results suggest that in non-diabetic individuals genetically predisposed to NIDDM, abnormal AER is associated with insulin resistance and abnormalities in glucose and lipid metabolism.Abbreviations LBM lean body mass - IDDM Insulin-dependent diabetes mellitus - HDL high-density lipoprotein - NIDDM non-insulin-dependent diabetes mellitus - VLDL very low density lipoprotein - AER albumin excretion rate - OGTT oral glucose tolerance test  相似文献   

3.
While some antiarrhythmic agents have potential hypoglycemic effects and indeed some reports of hypoglycemic adverse effect of those drugs, no systematic reports have been issued. We studied the hypoglycemic effects of cibenzoline, a class I antiarrhythmic agent. Cibenzoline succinate (150–300 mg/day) was given orally for 12 weeks to 10 patients who had ventricular premature complexes (VPCs) of <1000 per 24 hours and abnormal glucose tolerance before treatment with cibenzoline. Abnormal glucose tolerance, judged by a 75-g oral glucose tolerance test (OGTT), was defined as the response designated as diabetic or borderline type according to the criteria specified by the Japan Diabetes Society. In OGTT, the insulinogenic index (defined as the ratio of the increment of IRI [immunoreactive insulin] to that of plasma glucose at 30 minutes after a glucose load) and the sum of IRI (IRI) were also determined. Holter ECG recordings, OGTT, and measurements of fasting plasma glucose IRI, and HbA1 c were performed before and during cibenzoline treatment. Cibenzoline caused VPC reduction of < 70% in 6 of the 10 patients. The drug significantly decreased fasting plasma glucose and HbA1 c (mean ± SD) 12 weeks after treatment, from 6.18 ± 0.92 mM/L to 5.54 ± 1.08 mM/L and from 6.17 ± 1.03% to 5.83 ± 0.96%, respectively (P < 0.05). While it significantly increased fasting IRI from 4.99 ± 1.50 to 6.51 ± 1.47 U/mL (P < 0.01), the insulinogenic index from 0.33 ± 0.26 to 0.65 ± 0.38 (P < 0.05), and IRI from 168 ± 67 U/mL to 199 ± 46 (P < 0.05). Cibenzoline exerted a hypoglycemic effect, facilitating insulin secretion in patients with abnormal glucose tolerance and ventricular arrhythmias.  相似文献   

4.
Summary Individuals with insulin-dependent diabetes mellitus (IDDM or type 1 diabetes) are deficient in both insulin and amylin, peptides secreted by the beta cell. We have investigated the effects of amylin replacement therapy employing the human amylin analogue, pramlintide (25, 28, 29-pro-human amylin, previously referred to as AC137), upon the responses to a standardized insulin infusion (40 mU · kg–1 · h–1) for 100 min and a liquid Sustacal meal (360 kcal) in 84 healthy IDDM patients. Following baseline evaluations, patients were randomly assigned to receive subcutaneous injections of placebo, 30, 100 or 300 g pramlintide 30 min before meals for 14 days. There was no meaningful difference between adverse events reported by the 30-g pramlintide and the placebo groups, but ten subjects withdrew due to nausea, eight of these in the 300-g dose group. Peak plasma pramlintide concentrations for the 30-g group were 21±3 and 29±5 pmol/l on Days 1 and 14, respectively. These values are similar to postprandial plasma amylin concentrations in normal volunteers. The plasma glucose, free insulin, glucagon, epinephrine and norepinephrine concentrations during the insulin infusion test before and after therapy were identical in each of the groups. Prior to pramlintide therapy, Sustacal ingestion produced a 4.0–4.8 mmol/l rise in plasma glucose concentrations in each of the groups. Pramlintide therapy reduced postprandial hyperglycaemia as reflected by the 3-h incremental AUCglucose (AUCglucose above or below fasting glucose concentration) Day 1 vs Day 14: 30 g, 322±92 vs –38±161 mmol/l · min, p=0.010; 100 g, 317±92 vs –39±76 mmol/l · min, p=0.001; and 300 g, 268±96 vs –245±189 mmol/l · min, p=0.077. Thus, pramlintide therapy with these regimens did not appear to impair either in vivo insulin action or the counter-regulatory response to hypoglycaemia but did show a clear effect of blunting postprandial hyperglycaemia following a standardized meal.Abbreviations IDDM Insulin-dependent diabetes mellitus - AUCglucose area under the plasma glucose concentration curve - ANOVA analysis of variance  相似文献   

5.
Aims/hypothesis Insulin resistance and insulin deficiency are proposed as risk factors for IGT and type 2 diabetes. We assessed the predictive value of initial parameters for the outcome of an OGTT performed 24.3±2.9 years later in an unselected healthy non-obese population.Methods The K-value of an IVGTT was determined in 267 healthy subjects (mean±SD: age 31.0±12.0 years, BMI 21.8±2.8 kg/m2). First-phase insulin response to a glucose infusion test was estimated as an incremental 5- or 10-min (I5 or I10) value, and as insulinogenic indices (I5/G5 or I10/G10) adjusted for insulin sensitivity determined by homeostasis model assessment for insulin resistance ([I5/G5]/HOMA-IR).Results At follow-up, six subjects had type 2 diabetes and 47 had IGT; 214 retained normal glucose tolerance. Insulin sensitivity and early (30 min) insulin response decreased with decreasing outcome OGTT. Blood glucose (2 h) at OGTT correlated positively with initial age and BMI, and negatively with I5/G5, (I5/G5)/HOMA-IR and K-value. In multiple linear regression analysis, (I5/G5)/HOMA-IR, I10, K-value, age, HOMA estimate of insulin secretion, and fasting plasma glucose were significantly associated with 2-h OGTT blood glucose. Similar results were obtained on comparing differences between subjects with normal and decreased (IGT+diabetes) glucose tolerance.Conclusions/interpretation In 267 non-obese healthy subjects, initial K-value and first-phase insulin response to glucose adjusted for insulin sensitivity, but not insulin sensitivity itself, were strong predictors of the outcome of an OGTT performed 25 years later. Thus, in contrast to obese or other high-risk populations, in lean subjects, decreased beta cell function, but not insulin resistance itself, determines future glucose tolerance.This paper is dedicated to Rolf Luft, our mentor and collaborator over several decades, on the occasion of his 90th birthday.  相似文献   

6.
Summary Metabolic control, insulin secretion and insulin action were evaluated in seven Type 2 (non-insulin-dependent) diabetic patients with secondary failure to oral antidiabetic agents before and after two months of combined therapy with supper-time insulin (Ultratard: 0.4 U/kg body weight/day) plus premeal glibenclamide (15 mg/day). Metabolic control was assessed by 24 h plasma glucose, NEFA, and substrate (lactate, alanine, glycerol, ketone bodies) profile. Insulin secretion was evaluated by glucagon stimulation of C-peptide secretion, hyperglycaemic clamp (+7 mmol/l) and 24 h free-insulin and C-peptide profiles. The repeat studies, after two months of combined therapy, were performed at least 72 h after supper-time insulin withdrawal. Combining insulin and sulfonylurea agents resulted in a reduction in fasting plasma glucose (12.9±7 vs 10.4±1.2 mmol/l; p<0.05) and hepaic glucose production (13.9±1.1 vs 11.1±1.1 mol·kgc-min–1; p<0.05). Mean 24 h plasma glucose was also lower (13.7±1.2 vs 11.1±1.4 mmol/l; p<0.05). Decrements in fasting plasma glucose and mean 24 h profile were correlated (r=0.90; p<0.01). HbA1c also improved (11.8±0.8 vs 8.9±0.5%; p<0.05). Twenty-four hour profile for NEFA, glycerol, and ketone bodies was lower after teatment, while no difference occurred in the blood lactate and alanine profile. Insulin secretion in response to glucagon (C-peptide =+0.53±0.07 vs +0.43±0.07 pmol/ml) and hyperglycaemia (freeinsulin = 13.1±2.0 vs 12.3±2.2 mU/l) did not change. On the contrary, mean 24 h plasma freeinsulin (13.2±2.6 vs 17.5±2.2 mU/l; p<0.01) and C-peptide (0.76±0.10 vs 0.98±0.13 pmol/l; p<0.02) as well as the area under the curve (19.1±4.1 vs 23.6±3.1 U/24 h;p<0.01 and 1.16±0.14 vs 1.38±0.18 mol/24 h; p<0.02 respectively) were significantly increased. The ratio between glucose infusion (M) and plasma insulin concentration (I) during the hyperglycaemic clamp studies (M/I, an index of insulin sensitivity), was not statistically different (1.40±0.25 vs 1.81±0.40 mol·kg–1· min–1/mU·l–1). These data suggest that, in Type 2 diabetic patients with secondary failure to oral antidiabetic agents, the combination of supper-time longacting insulin and premeal sulfonylurea agents can improve metabolic control. This positive effect is possibly mediated through an increased secretion of insulin in response to physiologic stimuli.  相似文献   

7.
Summary Insulin resistance is a significant pathogenetic factor in the development of non-insulin-dependent diabetes mellitus (NIDDM). A new class of drugs, the thiazolidinediones, have been shown to lower blood glucose levels without stimulating insulin secretion. We report the metabolic effect of the thiazolidinedione, darglitazone, in obese NIDDM subjects. Nineteen subjects were enrolled in a doubleblind placebo-controlled study in which 25 mg of darglitazone was given once a day for 14 days. Nine subjects received the active drug and ten subjects received placebo. Darglitazone-treated subjects showed; 1) a decrease in 24-h plasma glucose area under the curve from 292.8±31.2 to 235.2±21.6 mmol · h–1 · l–1 p=0.002; 2) a decrease in 24-h serum insulin area under the curve from 1027.2±254.4 to 765.6±170.4 U · h–1 · l–1 p=0.045; 3) a decrease in 24-h non-esterified fatty acid area under the curve from 1900±236 to 947±63 g · h–1 · l–1 p=0.002; 4) a decrease in mean 24-h serum triglyceride by 25.9±6.2% as compared to – 3.9±4.8% for the placebo-treated group, p=0.012. Placebo-treated subjects showed no change in their metabolic parameters after treatment. Thus, darglitazone is effective in increasing insulin effectiveness in obese NIDDM subjects. The potential for this and similar drugs to treat or prevent NIDDM as well as the insulin-resistance syndrome needs to be explored.Abbreviations NIDDM Non-insulin-dependent diabetes mellitus - NEFA non-esterified fatty acids - IVGTT intravenous glucose tolerance test - AUC area under the curve  相似文献   

8.
Summary The presence of immunoreactive insulin in saliva and its relationship to plasma immunoreactive insulin was investigated in healthy subjects, newly diagnosed non-obese Type 2 (non-insulin-dependent) diabetic patients and obese non-diabetic subjects, basally and after an oral glucose tolerance test. The mean ± SEM fasting values of plasma and salivary immunoreactive insulin were significantly higher in diabetic patients and obese non-diabetic subjects than in normal volunteers (p<0.05). During the glucose challenge, the increase of salivary insulin was related with that of plasma in the three groups of subjects, with a time lag in normal and obese subjects. In normal volunteers, plasma and salivary peak values were respectively 49.5 ± 13.4 U/ml (p<0.05 vs obese subjects) at 60 min and 12.0±3.3U/min (p<0.05 vs obese subjects) at 120 min; in diabetic patients, the values were 51.7 ± 5.6 U/ml (p<0.05 vs obese subjects) and 14.6±4.1 U/min at 120 min; in obese subjects, the peak value for plasma insulin was 111.5±40.1 U/ml at 90 min and for salivary insulin 15.6 ± 5.1 U/min at 120 min. A positive linear relationship was shown between plasma and salivary insulin during the oral glucose tolerance test. The identity of salivary insulin was assessed by reversed-phase HPLC. We conclude that salivary immunoreactive insulin can be found in Type 2 diabetic patients and in obese non-diabetic subjects, as well as normal volunteers, that plasma and salivary insulin are related after a glucose load, and that differences exist in salivary insulin secretion patterns among the three groups of subjects.  相似文献   

9.
Summary The aim of these studies was to compare the pharmacokinetics, pharmacodynamics, counterregulatory hormone and symptom responses, as well as cognitive function during hypoglycaemia induced by s. c. injection of 0.15 IU/kg of regular human insulin (HI) and the monomeric insulin analogue [Lys(B28),Pro (B29)] (MI) in insulin-dependent-diabetic (IDDM) subjects. In these studies glucose was infused whenever needed to prevent decreases in plasma glucose below 3 mmol/l. After MI, plasma insulin increased earlier to a peak (60 vs 90 min) which was greater than after HI (294±24 vs 255±24 pmol/l), and plasma glucose decreased earlier to a 3 mmol/l plateau (60 vs 120 min) (p<0.05). The amount of glucose infused to prevent plasma glucose falling below 3 mmol/l was three times greater after MI than HI (293±26 vs 90±25 mol · kg–1 · 60–375 min–1, p<0.05). After MI, hepatic glucose production was more suppressed (0.7±1 vs 5.9±0.54 mol · kg–1 · min–1) and glucose utilization was less suppressed than after HI (11.6±0.65 vs 9.1±0.11mol · kg–1 · min–1) (p<0.05). Similarly, plasma NEFA, glycerol, and -OH-butyrate were more suppressed after MI than HI (p<0.05), whereas plasma lactate increased only after MI, but not after HI. Responses of counterregulatory hormones, symptoms and deterioration in cognitive function during plasma glucose plateau of 3 mmol/l were superimposable after MI and HI (p=NS). Post-hypoglycaemia hyperglycaemia was greater after MI than HI (at 480 min 12.1±1 vs 11±1 mmol/l) because of greater hepatic glucose production during insulin waning which occurred at least 135 min earlier with MI as compared to HI (p<0.05). It is concluded that counterregulatory hormones, symptoms and deterioration in cognitive function during hypoglycaemia respond similarly after MI and HI. The biological effect of MI appears greater than that of HI for at least 4 h after the s.c. injection and appears as a good candidate for achieving optimal post-prandial glucose control in IDDM.Abbreviations HI Human insulin - MI monomeric insulin - NEFA non-esterified fatty acid - HGO hepatic glucose production rate - -OH-butyrate -hydroxy-butyrate - IDDM insulin-dependent diabetes mellitus - NIDDM non-insulin-dependent diabetes mellitus  相似文献   

10.
Summary Recent observations indicate that gastric emptying may be influenced by patterns of previous nutrient intake. The aims of this study were to determine the effects of a high glucose diet on gastric emptying of glucose and fructose, and the impact of any changes in gastric emptying on plasma concentrations of glucose, insulin and gastric inhibitory polypeptide in response to glucose and fructose loads. Gastric emptying of glucose and fructose (both 75 g dissolved in 350 ml water) were measured in seven normal volunteers on separate days while each was on a standard diet and an identical diet supplemented with 440 g/day of glucose for 4–7 days. Venous blood samples for measurement of plasma glucose, insulin and gastric inhibitory polypeptide levels were taken immediately before and for 180 min after ingestion of glucose and fructose loads. Dietary glucose supplementation accelerated gastric emptying of glucose (50% emptying time 82±8 vs 106±10 min, p=0.004) and fructose (73±9 vs 106±9 min, p=0.001). After ingestion of glucose, plasma concentrations of insulin (p<0.05) and gastric inhibitory polypeptide (p<0.05) were higher during the glucose-supplemented diet. In contrast, plasma glucose concentrations at 60 min and 75 min were lower (p<0.05) on the glucose-supplemented diet. We conclude that short-term supplementation of the diet with glucose accelerates gastric emptying of glucose and fructose, presumably as a result of reduced feedback inhibition of gastric emptying from small intestinal luminal receptors. More rapid gastric emptying of glucose has a significant impact on glucose tolerance.Abbreviations GIP Gastric inhibitory polypeptide - T50 50% gastric emptying time  相似文献   

11.
Summary We measured the hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 (VLDL apoB) using a stable isotope gas-chromatography mass-spectrometry method in six patients with non-insulin-dependent diabetes mellitus (NIDDM) (four males, two females, age 57.5±2.2 years (mean±SEM), weight 88.2±5.5 kg, glycated haemoglobin (HbA1) 8.5±0.5%, plasma total cholesterol concentration 5.7±0.5 mmol/l, triglyceride 3.8±0.9 mmol/l, high-density lipoprotein (HDL) cholesterol 1.0±0.1 mmol/l) and six non-diabetic subjects matched for age, sex and weight (four males, two females, age 55.7±2.8 years, weight 85.8±5.6 kg, HbA1 6.5±0.1%, plasma total cholesterol concentration 5.7±0.5 mmol/l, triglyceride 1.2±0.1 mmol/l, HDL cholesterol 1.4±0.1 mmol/l). HbA1, plasma triglyceride and mevalpnic acid (an index of cholesterol synthesis in vivo) concentrations were significantly higher in the diabetic patients than in the non-diabetic subjects (p=0.006, p=0.02 and p=0.004, respectively). VLDL apoB absolute secretion rate was significantly higher in the diabetic patients compared with the non-diabetic subjects (2297±491 vs 921±115 mg/day, p<0.05), but there was no significant difference in the fractional catabolic rate of VLDL apoB. There was a positive correlation between VLDL apoB secretion rate and (i) fasting C-peptide (r=0.84, p=0.04) and (ii) mevalonic acid concentration (r=0.83, p<0.05) in the diabetic patients but not in the non-diabetic subjects. There was also a significant positive association between plasma mevalonic acid and plasma C-peptide (r=0.82, p<0.05) concentrations in the diabetic patients. We conclude that in NIDDM, there is increased hepatic secretion of VLDL apoB which may partly explain the dyslipoproteinaemia seen in this condition. We suggest that increased secretion of this apolipoprotein may be a consequence of resistance to the inhibitory effect of insulin on VLDL apoB secretion. Insulin resistance may also be the mechanism by which cholesterol synthesis, a regulator of apoB secretion, is increased in NIDDM.Abbreviations ApoB Apolipoprotein B-100 - VLDL very-low-density lipoprotein - GCMS gas-chromatography mass-spectrometry - MVA mevalonic acid - Hep G2 hepatoma G2 - -KIC -ketoisocaproic acid - TC total cholesterol - TG triglyceride - NEFA non-esterified fatty acids - FSR fractional secretion rate - ASR absolute secretion rate - m/z mass to charge ratio - CV coefficient of variation  相似文献   

12.
Summary To study the effect of changes in plasma non-esterified fatty acid concentration on suppression of hepatic glucose production by insulin eight Type 2 (non-insulin-dependent) diabetic patients participated in three euglycaemic, hyperinsulinaemic (108pmol · m2–1 · min–1) clamp studies combined with indirect calorimetry and infusion of [3-3H]-glucose and [1-14C]palmitate; (1) a control experiment with infusion of NaCl 154 mmol/l, (2) heparin was infused together with insulin, and (3) an antilipolytic agent, Acipimox, was administered at the beginning of the experiment. Six healthy volunteers participated in the control experiment. Plasma non-esterified fatty acid concentrations during the insulin clamp were in diabetic patients: (1) 151±36 mol/1, (2) 949±178 mol/l, and (3) 65±9 mol/l; in healthy control subjects 93±13 mol/l. Non-esterified fatty acid transport rate, oxidation and non-oxidative metabolism were significantly higher during the heparin than during the Acipimox experiment (p<0.001). Suppression of hepatic glucose production by insulin was impaired in the diabetic compared to control subjects (255±42 vs 51±29 mol/min, p<0.01). Infusion of heparin did not affect the suppression of hepatic glucose production by insulin (231±49 mol/min), whereas Acipimox significantly enhanced the suppression (21±53 mol/min, p<0.001 vs 154 mmol/l NaCl experiment). We conclude that insulin-mediated suppression of hepatic glucose production is not affected by increased non-esterified fatty acid availability. In contrast, decreased non-esterified fatty acid availability enhances the suppression of hepatic glucose production by insulin.  相似文献   

13.
Summary We studied the effect of gliclazide, a second-generation sulphonylurea, on rat skeletal muscle glucose uptake using perfused hindquarter muscle preparations. Gliclazide at concentrations of 10 to 1000 g/ml increased (p<0.05) the basal glucose uptake. The effect of gliclazide on glucose uptake was immediate and dose-dependent, reaching a plateau at a concentration of 300 g/ml; the half-maximal effect was obtained between 25 and 50 g/ml. The glucose uptake stimulated by gliclazide (300–1000 g/ ml) did not differ from that achieved by 10–9 mol/l insulin, and was lower (p<0.05) than that obtained with 10–7 mol/l insulin. The combination of gliclazide (300 g/ml) and 10–9 mol/l insulin produced an increase in glucose uptake (7.7±0.6 mol · g–1 · h–1, n=8, mean±SEM) which was higher (p<0.05) than that achieved with 10–9 mol/l insulin (5.6±0.7 mol · g–1 · h–1, n=11) and not different from that obtained with 10–7 mol/l insulin (9.8±1.0 mol · g–1 · h–1, n=11). Diazoxide (100 mol/l), an ATP-sensitive K+ channel opener, reversed the stimulatory effect of gliclazide (100 g/ml) on muscle glucose uptake from 3.1±0.4 to 0.5±0.2 mol · g–1 · h–1, (n=7, p<0.001). The addition of diazoxide prior to gliclazide into the perfusion medium blocked the gliclazide-induced glucose uptake by the hindquarter muscle preparations. In conclusion, gliclazide alone has an immediate stimulatory effect on glucose uptake by skeletal muscle and together with insulin has an additive effect on muscle glucose uptake. The effect of gliclazide on muscle glucose uptake seems to be due to the inhibition of ATP-sensitive K+ channels.Abbreviations NIDDM Non-insulin-dependent diabetes mellitus - GLUT glucose transporter  相似文献   

14.
Summary Decreased insulin sensitivity and glucose-dependent glucose disposal (glucose effectiveness) have been demonstrated in poorly-controlled Type 1 (insulin-dependent) diabetic patients. We have therefore examined the effects of successful pancreas transplantation that results in long-term physiologic normoglycaemia as measured by insulin sensitivity index and glucose effectiveness in 14 Type 1 diabetic recipients (Group 1) using the Bergman minimal model method. Their results were compared with those of five non-diabetic patients with kidney transplant alone (Group 2) and 10 healthy control subjects (Group 3). Mean plasma glucose levels were indistinguishable in Group 1 when compared to Groups 2 and 3. However, mean basal plasma insulin levels were two-and eight-fold greater in Group 1 (36±6 U/ml) than in Group 2 (17±7 U/ml) and Group 3 (4.5±0.6 U/ml), respectively. Following intravenous glucose (t=0 min) and tolbutamide (t=20), peak incremental insulin levels were significantly (p<0.001) greater in Group 1 vs Groups 2 and 3. Mean insulin sensitivity index was 65% and 50% lower in Group 1 (2.89±0.45) and Group 2 (4.11±1.30), respectively, when compared to GroupS (8.40±1.24×10–1 min–1 (U/ml)–1. In contrast, glucose effectiveness was similar in the three groups (Group 1, 2.48±0.26; Group 2, 2.05±0.21; and Group 3, 2.10±0.17×10–2·min–1). We conclude that, despite prednisone-induced insulin resistance, normal glucose tolerance is achieved by hyperinsulinaemia and normalisation of glucose-dependent glucose disposal following pancreas-kidney transplantation in Type 1 diabetic patients.  相似文献   

15.
Summary Trestatin (Ro 9-0154), a new specific -amylase inhibitor of microbial origin, was tested in six normal subjects and seven Type 2 (non-insulin-dependent) diabetic patients. In normal subjects the maximal increases in blood glucose following a 115-g starch meal were 2.19±0.57 mmol/l (mean±SEM) with placebo, but 1.32±0.39 mmol/l with 10 mg, 1.06±0.26 mmol/l with 20 mg, 0.43±0.07 mmol/l with 50 mg (p<0.05) and 0.26±0.14 mmol/l with 100 mg (p<0.05) Trestatin. The corresponding increases in plasma insulin were 116.5±19.6mU/l; 74.8±17.5 mU/l; 50.7±8.3 mU/l; 28.7±6.9 mU/l (p<0.05) and 16.5±3.2 mU/l (p<0.05). In the diabetic patients the maximal increases in blood glucose following a 50-g starch meal were 6.09±0.02 mmol/l with placebo, but 3.17±0.59 mmol/ (p<0.05) with 10 mg and 1.69±0.41 mmol/l (p<0.05) with 30 mg Trestatin. The corresponding insulin increases were: 58.8±12.7 mU/l, 31.5±9.7mU/l (p<0.05) and 23.4±4.8 mU/l (p<0.05). Trestatin fully retained this pharmacological activity during treatment for 4 weeks in the diabetic patients. Trestatin did not influence glucose and insulin profiles after oral glucose and sucrose. These results are consistent with a specific inhibition of -amylase in man.  相似文献   

16.
Summary Insulin resistant glucose metabolism is a key element in the pathogenesis of Type 2 (non-insulin-dependent) diabetes mellitus. Insulin resistance may be of both primary (genetic) and secondary (metabolic) origin. Before and after diet-induced improvement of glycaemic control seven obese patients with newly-diagnosed Type 2 diabetes were studied with the euglycaemic clamp technique in combination with indirect calorimetry and forearm glucose balance. Muscle biopsies were obtained in the basal state and again after 3 h of hyperinsulinaemia (200 mU/l) for studies of insulin receptor and glycogen synthase activities. Similar studies were performed in seven matched control subjects. Insulin-stimulated glucose utilization improved from 110±11 to 183±23 mg·m–2·min–1 (p<0.03); control subjects: 219+23 mg·m–2·min–1 (p=NS, vs post-diet Type 2 diabetes). Nonoxidative glucose disposal increased from 74±17 to 138+19 mg·m–2·min–1 (p<0.03), control subjects: 159±22 mg· m–2·m–1 (p=NS, vs post-diet Type 2 diabetic patients). Forearm blood glucose uptake during hyperinsulinaemia increased from 1.58±0.54 to 3.35±0.23 mol·l–1·min–1 (p<0.05), control subjects: 2.99±0.86 mol·l–1·min–1 (p=NS, vs post-diet Type 2 diabetes). After diet therapy the increase in insulin sensitivity correlated with reductions in fasting plasma glucose levels (r=0.97, p<0.001), reductions in serum fructosamine (r=0.77, p<0.05), and weight loss (r=0.78, p<0.05). Values of muscle glycogen synthase sensitivity to glucose 6-phosphate (A0.5 for glucose 6-phosphate) were similar in the basal state. However, insulin stimulation of glycogen synthase was more pronounced after diet treatment (A0.5: 0.43±0.06 (before) vs 0.30±0.04 mmol/l (after); p<0.03; control subjects: 0.22±0.03 mmol/l). Muscle insulin receptor binding and kinase activity were similar before and after diet treatment and comparable to values in the control group. The data suggest that impaired insulin stimulation of in vivo glucose turn-over and muscle glycogen synthase activity tend to be restored during successful diet treatment of patients with Type 2 diabetes.  相似文献   

17.
Summary Glutathione functions to scavenge oxidants or xenobiotics by covalently binding them and transporting the resulting metabolites through an adenosine 5-triphosphate-dependent transport system. It has been reported that the intracellular concentration of glutathione decreases in diabetes mellitus. In order to elucidate the physiological significance and the regulation of anti-oxidants in diabetic patients, changes in the activity of the glutathione-synthesizing enzyme, -glutamylcysteine synthetase, and transport of thiol [S-(2,4-dinitrophenyl)glutathione] were studied in erythrocytes from patients with non-insulin-dependent diabetes and K562 cells cultured with 27 mmol/l glucose for 7 days. The activity of -glutamylcysteine synthetase, the concentration of glutathione, and the thiol transport were 77%, 77% and 69%, respectively in erythrocytes from diabetic patients compared to normal control subjects. Treatment of patients with an antidiabetic agent for 6 months resulted in the restoration of -glutamylcysteine synthetase activity, the concentration of glutathione, and the thiol transport. A similar impairment of glutathione metabolism was observed in K562 cells with high glucose levels. The cytotoxicity by a xenobiotic (1-chloro-2,4-dinitrobenzene) was higher in K562 cells with high glucose than in control subjects (50% of inhibitory concentration. 300±24 mol/l vs 840±29 mol/l, p<0.01). Expression of -glutamylcysteine synthetase protein was augmented in K562 cells with high glucose, while enzymatic activity and expression of mRNA were lower than those in the control subjects. These results suggest that inactivation of glutathione synthesis and thiol transport in diabetic patients increases the sensitivity of the cells to oxidative stresses, and these changes may lead to the development of some complications in diabetes mellitus.Abbreviations ATP Adenosine 5-triphosphate - NIDDM non-insulin-dependent diabetes mellitus - GSH -glutamylcysteinyl glycine - GSSG glutathione disulphide - -GCS -glutamylcysteine synthetase - mRNA messenger ribonucleic acid - DNA deoxyribonucleic acid - C50 50% inhibitory concentration - CDNB 1-chloro-2,4-dinitrobenzene - GS-DNP S-(2,4-dinitrophenyl)glutathione - PSL photostimulated luminescence  相似文献   

18.
Summary Insulin-receptor internalization and processing are defective in insulin-resistant subjects. To assess the reversibility of these defects, we cultured Epstein-Barr virus-transformed-lymphoblasts from six normal, six obese, and six non-insulin-dependent diabetic (NIDDM) subjects in media containing low (5 mmol/l) or high (25 mmol/l) glucose concentrations, and studied the insulin-receptor internalization and processing in vitro. In cells from normal, obese, and NIDDM subjects cultured in low glucose concentrations, exposure to 100 nmol/l insulin for 30 min at 37C reduced cell-surface 125I-insulin binding to a similar extent (82±2, 77±5, and 82±5 % of initial values, respectively). The same results were obtained with cells cultured in high glucose concentrations. In cells cultured under both glucose conditions, and exposed to 100 nmol/l insulin for 30 min at 37C, a complete recovery of the initial 125I-insulin binding was observed in normal but not in obese and NIDDM subjects. Release of intracellular insulin and its degradation in vitro was determined by incubating cells with 600 pmol/l of 125I-insulin for 60 min at 37C, acid washing cells, and re-incubating in insulin-free buffer at 37C. The radioactivity released by cells was characterized by trichloroacetic acid precipitability, Sephadex G-50 column Chromatograph, and rebinding to fresh cells. Rates of release of internalized radioactivity were reduced in obese and NIDDM subjects (t1/2=61±9 min, p<0.02; 58±10 min, p<0.05; and 38±4 min in obese, NIDDM, and normal subjects, respectively). The percentage of intact insulin released from cells was significantly higher in obese and NIDDM subjects than in the normal subjects. The t1/2 of intracellular dissociation of insulin-receptor complexes measured by a polyethylene glycol assay was lower in normal (6±1 min) than in obese (12±2 min, p<0.03) and NIDDM subjects (14±3 min, p<0.02). The results suggest that in insulin-resistant subjects a primary defect in intracellular dissociation of insulin is responsible for alterations of receptor recycling and insulin processing.Abbreviations NIDDM Non-insulin-dependent diabetes mellitus - EBV Epstein-Barr virus - RPMI - FCS fetal calf serum - PEG polyethylene glycol - ANOVA analysis of variance  相似文献   

19.
Summary Recent evidence suggests that the post-prandial hyperglycaemia in impaired glucose tolerance is primarily due to impaired suppression of basal hepatic glucose output. This in turn appears to be secondary to decreased first phase insulin secretion, although decreased hepatic insulin sensitivity, which is a feature of non-insulin-dependent diabetes mellitus, might also play a role. Eight mildly overweight subjects with impaired glucose tolerance and eight closely matched control subjects with normal glucose tolerance underwent an intravenous glucose tolerance test to assess first phase insulin secretion. Insulin sensitivity was examined by a 150-min hyperinsulinaemic-euglycaemic clamp. Somatostatin was infused from 150 min to suppress endogenous insulin secretion, and glucagon and insulin were replaced by constant infusion. Glucose with added dideuterated glucose (labelled infusion technique) was infused to maintain euglycaemia. First phase insulin secretion ( 0–10 min insulin area ÷ 0–10 min glucose area) was significantly decreased in the subjects with impaired glucose tolerance (median [range]: 1.2 [0.2–19.4] vs 9.1 [2.6–14.5] mU·mmol–1; p<0.01). During the clamp, circulating insulin (93±8 [mean±SEM] and 81±10 mU·l–1) and glucagon (54±4 and 44±6 ng·l–1) levels were comparable. Total glucose disposal was decreased in subjects with impaired glucose tolerance (2.78±0.27 vs 4.47±0.53 mg·kg–1·min–1; p<0.02), and was primarily due to decreased non-oxidative glucose disposal. However, hepatic glucose output rates were comparable during the clamp (0.38±0.10 and 0.30±0.18 mg·kg–1·min–1). Therefore, the main defects in subjects with impaired glucose tolerance are decreased first phase insulin secretion and peripheral non-oxidative glucose disposal, but hepatic glucose output shows normal responsiveness to insulin.Abbreviations FPIS First phase insulin secretion - PG plasma glucose - NIDDM non-insulin-dependent diabetes mellitus - IGT impaired glucose tolerance - HGO hepatic glucose output - IVGTT intravenous glucose tolerance test - OGTT oral glucose tolerance test  相似文献   

20.
Summary Products similar to non-enzymatic glycation end products are known to arise from the interactions between proteins and lipid peroxides in vitro. In this study, we assessed the effect of vitamin E, which possibly modifies lipid peroxide, on advanced glycation end products or similar products in vivo by measuring the fluorescence and thermal rupture time of tail tendon collagen in streptozotocin-induced diabetic rats. The diabetic rats and non-diabetic rats were fed a vitamin E supplemented diet, and a control diet starting 3 days after the streptozotocin injection. After the 4-week treatment, the serum lipid peroxide levels expressed as thiobarbituric acid reactants in the diabetic rats on control diet (15.9 ± 2.6 mol/l [SEM]) were significantly (p <0.05) higher than in the non-diabetic rats (7.9 ± 1.3 mol/l on control diet and 3.3 ± 0.4 mol/l on supplemented diet), but the levels in the diabetic rats on supplemented diet (7.9 + 2.3 mol/l) were reduced to the normal levels. No significant differences were found in serum glucose and glycated haemoglobin levels within the diabetic rats on control and supplemented diets. Both the fluorescence and thermal rupture time of collagen were significantly (p <0.05) increased in the diabetic rats on both diets compared with those in the corresponding non-diabetic rats. Although there was no significant difference in the collagen-linked fluorescence within the diabetic rats on control and supplemented diets, the thermal rupture time was significantly (p <0.01) shortened with supplemented diet (10.8 ± 0.7 min on supplemented diet vs 15.0 ± 0.7 min on control diet). The effect of vitamin E on the thermal rupture time was not observed in non-diabetic rats (6.6 ± 0.5 min on supplemented diet vs 6.2 ± 0.5 min on control diet). These results indicate that the formation of advanced glycation end products or similar products seen in hyperglycaemia can be partially inhibited by vitamin E supplementation by lowering lipid peroxide levels or oxidative stress. This study is thought to be the first to show vitamin E as an anti-oxidant agent limiting the formation of advanced glycation end products or similar products in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号