首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University in China. Somatosensory evoked potentials were graded as normal, abnormal or absent (grades Ⅰ-Ⅲ) according to N20 amplitude and central conduction time. The outcome in patients with grade Ⅲ somatosensory evoked potential was in each case unfavorable. The prognostic accuracy of grade Ⅲ somatosensory evoked potential for unfavorable and non-awakening outcome was 100% and 80%, respectively. The prognostic accuracy of grade Ⅰ somatosensory evoked potential for favorable and wakening outcome was 86% and 100%, respectively. These results suggest that somatosensory evoked potential grade is closely correlated with coma severity and degree of recovery. Somatosensory evoked potential is a valuable diagnostic tool to assess prognosis in prolonged coma patients with diffuse axonal injury.  相似文献   

2.
Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs. In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction.  相似文献   

3.
In this study, stroke patients received constraint-induced movement therapy for 3 weeks. Before and after constraint-induced movement therapy, the flexibility of their upper limbs on the affected side was assessed using the Wolf motor function test, and daily use of their affected limbs was assessed using the movement activities log, and cerebral functional reorganization was assessed by functional magnetic resonance imaging. The Wolf motor function test score and the movement activities log quantity and quality scores were significantly increased, while action performance time in the Wolf motor function test was significantly decreased after constraint-induced movement therapy. By functional magnetic resonance imaging examination, only scattered activation points were visible on the affected side before therapy. In contrast, the volume of the activated area was increased after therapy. The activation volume in the sensorimotor area was significantly different before and after therapy, and the activation area increased and appeared adjusted. In addition to the activated area around the lesions being decreased, there were also some new activated areas, including the supplementary movement area, premotor area and the ipsilateral sensorimotor area. Our findings indicate that constraint-induced movement therapy significantly improves the movement ability and daily use of the affected upper limbs in stroke patients and promotes cerebral functional reorganization.  相似文献   

4.
It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30-180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in- creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potentia~ ~atency can reflect the degree of spinat cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury.  相似文献   

5.
BACKGROUND: It has been shown that although brain does not contain lining endothelial lymphatic vessel, it has lymphatic drain. Anterior lymphatic system of lymphatic vessel in brain tissue plays a key role in introducing brain interstitial fluid to lymphatic system; however, the significance of lymphatic drain and the effect on cerebral edema remains unclear. OBJECTIVE: To investigate the effect of cerebral lymphatic block on cerebral morphology and cortical evoked potential in rats. DESIGN: Randomized controlled animal study. SETTING: Institute of Cerebral Microcirculation of Taishan Medical College and Department of Neurology of Affiliated Hospital. MATERIALS: A total of 63 healthy adult male Wistar rats weighing 300-350 g were selected in this study. Forty-seven rats were used for the morphological observation induced by lymphatic drain and randomly divided into three groups: general observation group (n =12), light microscopic observation group (n =21) and electronic microscopic observation group (n =14). The rats in each group were divided into cerebral lymphatic block subgroup and sham-operation control subgroup. Sixteen rats were used for observing the effect of cerebral lymphatic block on cortical evoked potential, in which the animals were randomly divided into sham-operation group (n =6) and cerebral lymphatic block group (n =10). METHODS: The experiment was carried out in the Institute of Cerebral Microcirculation of Taishan Medical College from January to August 2003. Rats in cerebral lymphatic block group were anesthetized and separated bilateral superficial and deep cervical lymph nodes under sterile condition. Superior and inferior boarders of lymph nodes were ligated the inputting and outputting channels, respectively, and then lymph node was removed so as to establish cerebral lymphatic drain disorder models. Rats in sham-operation control group were not ligated the lymphatic vessel and removed lymph nodes, and other operations were as the same as those in cerebral lymphatic block group. Morphological changes of the brain and alterations of latency of cortical evoked potential were detected on the 1st, 2nd, 3rd, 5th, 7th, 10th and 15th days after operation under general, light microscope and electronic microscope observations. MAIN OUTCOME MEASURES: ① Cerebral morphological changes; ② latent changes of cortical evoked potential. RESULTS: A total of 63 rats were involved in the final analysis. ① Cerebral morphological changes: General observation showed that, for cerebral lymphatic block rats, the surface of brain was pale and full, and cerebral gyrus was wide and flattened sulci after cerebral lymphatic block; and cerebral tissue space prolongation, increased interstitial fluid, neuronal degeneration and necrosis, diffused phagocytes and satellitosis were observed under light microscope. Neuronal swell and necrosis, glial cell swell, apparent subcellular changes such as mitochondron were observed under electronic microscope. ② Latent changes of cortical evoked potential: As compared with sham-operation control group, latency of cortical evoked potential in cerebral lymphatic blockage group prolonged on the 5th day and 7th day after cerebral lymphatic block [(6.28±0.23), (6.97±0.35) ms; (6.23±0.22), (7.12±0.20) ms; P < 0.01]. CONCLUSION: ① Cerebral lymphatic block plays an important role in cerebral morphology, and may result in abnormality of sensitive impulse conduction and prolong latency of cortical evoked potential. ② Examination of cortical evoked potential is easy and convenient, so it is regarded as a key index for lymphatic disturbed cerebral injury.  相似文献   

6.
BACKGROUND: It has been shown that although brain does not contain lining endothelial lymphatic vessel, it has lymphatic drain. Anterior lymphatic system of lymphatic vessel in brain tissue plays a key role in introducing brain interstitial fluid to lymphatic system; however, the significance of lymphatic drain and the effect on cerebral edema remains unclear. OBJECTIVE: To investigate the effect of cerebral lymphatic block on cerebral morphology and cortical evoked potential in rats. DESIGN: Randomized controlled animal study. SETTING: Institute of Cerebral Microcirculation of Taishan Medical College and Department of Neurology of Affiliated Hospital. MATERIALS: A total of 63 healthy adult male Wistar rats weighing 300-350 g were selected in this study. Forty-seven rats were used for the morphological observation induced by lymphatic drain and randomly divided into three groups: general observation group (n =12), light microscopic observation group (n =21) and electronic microscopic observation group (n =14). The rats in each group were divided into cerebral lymphatic block subgroup and sham-operation control subgroup. Sixteen rats were used for observing the effect of cerebral lymphatic block on cortical evoked potential, in which the animals were randomly divided into sham-operation group (n =6) and cerebral lymphatic block group (n =10). METHODS: The experiment was carried out in the Institute of Cerebral Microcirculation of Taishan Medical College from January to August 2003. Rats in cerebral lymphatic block group were anesthetized and separated bilateral superficial and deep cervical lymph nodes under sterile condition. Superior and inferior boarders of lymph nodes were ligated the inputting and outputting channels, respectively, and then lymph node was removed so as to establish cerebral lymphatic drain disorder models. Rats in sham-operation control group were not ligated the lymphatic vessel and removed lymph nodes, and other operations were as the same as those in cerebral lymphatic block group. Morphological changes of the brain and alterations of latency of cortical evoked potential were detected on the 1st, 2nd, 3rd, 5th, 7th, 10th and 15th days after operation under general, light microscope and electronic microscope observations. MAIN OUTCOME MEASURES: ① Cerebral morphological changes; ② latent changes of cortical evoked potential. RESULTS: A total of 63 rats were involved in the final analysis. ① Cerebral morphological changes: General observation showed that, for cerebral lymphatic block rats, the surface of brain was pale and full, and cerebral gyrus was wide and flattened sulci after cerebral lymphatic block; and cerebral tissue space prolongation, increased interstitial fluid, neuronal degeneration and necrosis, diffused phagocytes and satellitosis were observed under light microscope. Neuronal swell and necrosis, glial cell swell, apparent subcellular changes such as mitochondron were observed under electronic microscope. ② Latent changes of cortical evoked potential: As compared with sham-operation control group, latency of cortical evoked potential in cerebral lymphatic blockage group prolonged on the 5th day and 7th day after cerebral lymphatic block [(6.28±0.23), (6.97±0.35) ms; (6.23±0.22), (7.12±0.20) ms; P < 0.01]. CONCLUSION: ① Cerebral lymphatic block plays an important role in cerebral morphology, and may result in abnormality of sensitive impulse conduction and prolong latency of cortical evoked potential. ② Examination of cortical evoked potential is easy and convenient, so it is regarded as a key index for lymphatic disturbed cerebral injury.  相似文献   

7.
Negative motor evoked potentials after cerebral infarction, indicative of poor recovery of limb motor function, tend to be accompanied by changes in fractional anisotropy values and the cerebral pe-duncle area on the affected side, but the characteristics of these changes have not been reported. This study included 57 cases of cerebral infarction whose motor evoked potentials were tested in the 24 hours after the first inspection for diffusion tensor imaging, in which 29 cases were in the negative group and 28 cases in the positive group. Twenty-nine patients with negative motor evoked potentials were divided into two groups according to fractional anisotropy on the affected side of the cerebral peduncle: a fractional anisotropy 〈 0.36 group and a fractional anisotropy 〉 0.36 group. All patients underwent a regular magnetic resonance imaging and a diffusion tensor imaging examina- tion at 1 week, 1, 3, 6 and 12 months after cerebral infarction. The FugI-Meyer scores of their hemiplegic limbs were tested before the magnetic resonance and diffusion tensor imaging exami-nations. In the negative motor evoked potential group, fractional anisotropy in the affected cerebral peduncle declined progressively, which was most obvious in the first 1-3 months after the onset of cerebral infarction. The areas and area asymmetries of the cerebral peduncle on the affected side were significantly decreased at 6 and 12 months after onset. At 12 months after onset, the area asymmetries of the cerebral peduncle on the affected side were lower than the normal lower limit value of 0.83. FugI-Meyer scores in the fractional anisotropy ≥0.36 group were significantly higher than in the fractional anisotropy 〈 0.36 group at 3-12 months after onset. The fractional anisotropy of the cerebral peduncle in the positive motor evoked potential group decreased in the first 1 month after onset, and stayed unchanged from 3-12 months; there was no change in the area of the cerebral peduncle in the first 1-12 months after cerebral infarction. These findings confirmed that if the fractional anisotropy of the cerebral peduncle on the affected side is 〈 0.36 and the area asym-metries 〈 0.83 in patients with negative motor evoked potential after cerebral infarction, then poor hemiplegic limb motor function recovery may occur.  相似文献   

8.
Facial synkinesis,a sequela of peripheral facial nerve palsy,is characterized by simultaneous involuntary facial movement during a voluntary desired one.Maladaptive cortical plasticity might be involved in the dysfunction of facial muscles.This cohort study investigated the cortical functional alterations in patients with unilateral facial synkinesis,using the task functional magnetic resonance imaging.Facial motor tasks,including blinking and smiling,were performed by 16 patients(aged 30.6 ± 4.5 years,14 females/2 males) and 24 age-and sex-matched healthy controls(aged 29.1 ± 4.2 years,19 females/5 males).Results demonstrated that activation in the cortico-facial motor representation area was lower during tasks in patients with facial synkinesis compared with healthy controls.Facial movements on either side performed by patients caused more intensive activation of the supplementary motor area on the contralateral side of the affected face,than those on the unaffected side.Our results revealed that there was cortical reorganization in the primary sensorimotor area and the supplementary motor area.This study was registered in Chinese Clinical Trial Registry(registration number: Chi CTR1800014630).  相似文献   

9.
The spinal nerve root may be subjected to compression in a variety of clinical conditions which may lead to disabling leg pain and disability. The objective documentation of the clinical symptoms by electrophysiological tests could be procedure dependent. In the experimental study of nerve root compression in animal models, electrophytsiological tests are one of the few available methods to assess the effects of in nerve root compression. The purpose of this study is to evaluate the effects of compression of the spinal nerve root on the motor conduction velocity(MCV) and cortical somatosensory evoked potentials(SCEP) over a period of 6 weeks in a feline model. Ten cats were used in this study. Under anaesthesia, a laminectomy at L6 and L7 was performed. The right L6 nerve root was exposed and compressed by a Surg i-loop around nerve root and maintained by a Ligacap. MCV was recorded by stimulating the proximal end of nerve root before and after compression. Stimulating the right posterior tibial nerve and recording at the skull performed CSEP. After nerve root compression, MCV showed a significant reduction of amplitudes (immediate:64 ± 11%; 3-week: 73± 13%; 6-week: 73± 12% p<0.01 ) . The lateneies of MCV were not significant changed. The amplitudes of CSEP were also reduced significantly (immediate:56±9%; 5-minute:74± 12%). The N1 peak disappeared and latencies prolonged. We conclude that amplitude changes of MCV and CSEP could be used for diagnosis of acute peripheral nerve injury in the feline model, which may have clinical implication.  相似文献   

10.
The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pc DNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco's modified Eagle's medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1–4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the subarachnoid cavity to help repair spinal cord injury and promote the recovery of spinal cord function better than neural stem cell transplantation alone. These findings may lead to significant improvements in the clinical treatment of spinal cord injuries.  相似文献   

11.
Propagated sensation along the meridian can occur when acupoints are stimulated by acupuncture or electrical impulses. In this study, participants with notable propagated sensation along the me-ridian ...  相似文献   

12.
Operant conditioning of short-latency cervical somatosensory evoked potentials (CSEP) was demonstrated in five cervical cord injury subjects. Subjects were conditioned to augment the N14 potential, thought to originate from the dorsal column nucleus. Increased N14 potential was associated with an increase in N19 and P22 potentials, and either a decrease (base) or no change (train) in the brachial plexus potential. The N19 potential was correlated with significant reductions in the sensation-twitch ( ) ratio during conditioning sessions, indexing improved sensation to low-intensity percutaneous stimulation. Moreover, ratios decreased significantly during conditioning sessions, and were reduced significantly relative to initial baseline values. The results do not appear to be associated with trivial mediating influences.  相似文献   

13.
观察52例肌萎缩侧索硬化患者和30例健康人正中神经和胫后神经体感诱发电位变化,判断肌萎缩侧索硬化患者深感觉传导通路的功能状况。肌萎缩侧索硬化患者中,54%(28/52)出现体感诱发电位异常,且皆有下肢体感诱发电位异常。与健康对照者比较,近场皮质电位N20、P2、N2及中枢传导时间延长,可伴有波幅降低或者波形完全消失。表明54%肌萎缩侧索硬化患者体感诱发电位中四肢的中枢起源电位均发生明显异常,证实肌萎缩侧索硬化患者可伴有深感觉通路尤其是中枢深感觉传导障碍。  相似文献   

14.
大脑语言运动区手术中的神经电生理监测(附52例分析)   总被引:2,自引:0,他引:2  
目的研究大脑语言运动区病变手术中神经电生理监测的方法。方法对52例病变位于语言运动区的病人采用术中唤醒全麻,联合监测皮质体感诱发电位、直接皮质电刺激、肌电图及脑电图,同时行显微手术切除病变。结果全切除42例,次全切除10例。术中记录到典型的皮质体感诱发电位38例,其中波形倒置23例,最大波幅者20例。皮质电刺激与体感诱发电位所判定的中央前回位置完全相符者33例.皮质体感诱发电位不典型者电刺激阳性5例。肌电图变化与肌肉运动相符者20例,肌电图出现反应波而未见肌肉运动者10例。脑电图示癫痫波20例,广泛性慢波40例。术后症状改善或消失47例。结论语言运动区病变采用术中唤醒全麻,联合监测皮质体感诱发电位、直接皮质电刺激、肌电图与脑电图等神经电生理指标,有助于在最大限度保留脑功能的前提下全切除病变.保证手术安全.明显减少术后功能障碍的发生。  相似文献   

15.
Forearm amputees often experience non-painful sensations in their phantom when the amputation stump is touched. Cutaneous stimulation of specific stump areas may be perceived as stimulation of specific phantom fingers (stump hand map). The neuronal basis of referred phantom limb sensations is unknown. We used functional magnetic resonance imaging to demonstrate a somatotopic map of the phantom fingers in the hand region of the primary somatosensory cortex after tactile stump stimulation. The location and extent of phantom finger activation in the primary somatosensory cortex corresponded well to the location of normal fingers in a reference population. Stimulation of the stump hand map resulted in an increased bilateral activation of the primary somatosensory cortex compared with stimulation of forearm regions outside the stump hand map. Increased activation was also seen in contralateral posterior parietal cortex and premotor cortex. Ipsilateral primary somatosensory cortex activation might represent a compensatory mechanism and activation of the non-primary fronto-parietal areas might correspond to awareness of the phantom limb, which is enhanced when experiencing the referred sensations. It is concluded that phantom sensation elicited by stimulation of stump hand map areas is associated with activation of finger-specific somatotopical representations in the primary somatosensory cortex. This suggests that the primary somatosensory cortex could be a neural substrate of non-painful phantom sensations. The stump hand map phenomenon might be useful in the development of prosthetic hand devices.  相似文献   

16.
We investigated the neuromagnetic responses to mechanical stimulation of the oesophagus. In six healthy right-handed volunteers (mean age 31.6 years) the proximal and distal oesophagus were stimulated by electronically controlled pump-inflation of a silicone balloon once every 4.5-5.5 sec (dwell time 145 msec). The balloon volume was adjusted to induce different sensation levels (i) just above threshold of perception, (ii) strong sensation and (iii) painful sensation. Evoked magnetic brain responses were recorded time-locked to stimulus onset with a Neuromag-122TM whole-head neuromagnetometer and modelled as equivalent current diploe (ECD) sources. ECDs were superimposed on individual magnetic resonance imaging (MRI) scans. Magnetic brain responses following distal oesophageal stimulation were adequately explained by a time-varying 2-4 dipole model with unilateral or bilateral sources in second somatosensory cortex and later sources in the frontal cortex. With increasing stimulus intensities, latencies of the sources decreased and amplitudes increased. Proximal oesophageal stimulation led to activation of source areas spatially similar to those of distal oesophageal stimulation but with shorter response latencies. Both painful and nonpainful mechanical stimulation of the oesophagus activate the second somatosensory cortex (SII). Evidence for topographic organization of oesophageal afferents in SII is poor.  相似文献   

17.
目的初步探讨神经电生理监测技术在椎管内疾病手术中的临床应用价值。方法回顾性分析30例椎管内疾病病人的临床资料。术前Frankel分级:C级4例,D级16例,E级10例。术中应用皮质体感诱发电位(CSEP)与肌电图(EMG)监测脊髓和神经根功能,分析手术过程并评价其效果。结果肿瘤全切10例,次全切13例,大部切除2例,部分切除2例;另有脊髓栓系综合征3例,术中完全松解黏连病变。术后10 d Frankel分级:改善6例,无变化22例,加重2例;术后1年Frankel分级:改善14例,无变化15例,加重1例。术前Frankel分级3组病人进行比较,术后10 d和1年的疗效差异均无统计学意义(均P>0.05)。结论在椎管内手术中联合应用CSEP与EMG监测可以更好地保护脊髓和神经根功能。  相似文献   

18.
The somatosensory evoked potentials (SEPs) to stimulation of the tibial nerve were studied in 88 children ranging in age from 1 day to 16 years. SEPs were not evidenced in 10 out of 44 infants less than 1 year old. In others it was a major positive wave (P) with a variable topographic distribution on the midline. The onset and peak latencies of this P were highly variable in different subjects of the same age or body-size, and in the same subject with the active electrode placed in different locations. The lowest values for latency were in subjects about 3 years old. The ascending time of P was the only parameter strictly correlated with age. The results are compared with SEPs to upper limb stimulation, which are constant and more reliable. These results indicate: that the maturation of the peripheral somatosensory pathway proceeds at a faster rate than that of the central somatosensory pathway; that the maturation of the somatosensory pathway of the upper limb precedes that of the lower limb; and that the ascending time of P is a good index of thalamo-cortical maturation. The clinical utility of these SEPs in pediatrics is discussed.  相似文献   

19.
The periventricular gray (PVG) matter is an established anatomical target for chronic deep brain stimulation (DBS) in the treatment of certain intractable pain syndromes. Data relating to the representation of pain and other somatosensory modalities within the PVG in humans are negligible. We examined the character and location of somatosensory responses elicited by electrical stimulation along the length of the PVG in a patient who underwent unilateral DBS for intractable nociceptive head pain. Consistent responses were obtained and indicated the presence of a somatotopic representation in this region. The contralateral lower limb was represented cranially, followed by the upper limb and trunk, with the face area located caudally, near the level of the superior colliculi. Bilateral representation was only observed in the forehead and scalp.  相似文献   

20.
The effects of operant conditioning somatosensory evoked potential (SEP) amplitude on nociceptive sensitivity were studied in albino rats. SEPs were evoked by stimulation to the descending trigeminal tract. Rewarding medial forebrain bundle stimulation (at intensities predetermined to sustain bar pressing) was made contingent upon the animal making the amplitude of the SEP 0.5 standard deviation (S.D.) larger (uptraining) or 0.5 S.D. smaller (downtraining) than the predetermined mean value. Nociceptive sensitivity was measured immediately following the conditioning session by heating the rat's face and noting the latency of a defensive face rubbing response directed at the area of the face. Increasing the amplitude of the SEP (uptraining) was associated with a decrease in noxious sensitivity. Decreasing the amplitude of the SEP (downtraining) was associated with an increase in noxious sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号