首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whishaw IQ  Brooks BL 《Hippocampus》1999,9(6):659-667
Allothetic and idiothetic navigation strategies rely on very different cues and computational procedures. Allothetic navigation uses the relationships between external cues (visual, auditory, and olfactory) and mapping or geometrical calculations to locate places. Idiothetic navigation relies on cues generated by self-movement (proprioceptive cues or cues from optic, auditory, and olfactory flow, or efference copy of motor commands) and path integration to locate a present location and/or a starting point. Whereas it is theorized that exploratory behavior is used by animals to create a central representation of allothetic cues, it is unclear whether exploration plays a role in idiothetic navigation. Computational models suggest that either a reference frame, calibrated by exploration, or vector addition, without reference to exploration, could support path integration. The present study evaluated the contribution of exploration in these navigation strategies by comparing its contribution to the solution of both allothetic and idiothetic navigation problems. In two experiments, rats were trained to forage on an open table for large food pellets, which they then carried to a refuge to eat. Once trained, they were given probe trials from novel locations in either normal light, which permits the use of allothetic cues, or in infrared light, which requires the use of idiothetic cues. When faced with a new problem in either lighting condition, the rats first explored the foraging table before navigating directly home with the food. That exploration is equally important for allothetic and idiothetic navigation, suggests that both navigation strategies require a calibrated representation of the environment.  相似文献   

2.
The cingulate cortex plays a central role in bridging neocortical and limbic structures involved in allothetic navigation, a form of navigation requiring the use of external cues. Animals can also navigate using idiothetic cues, which are cues generated by self-movement, but there have been no definitive tests of whether cingulate cortex also plays a role in idiothetic navigation. Rats with anterior cingulate (medial frontal) and posterior cingulate cortex (retrosplenial) suction ablations were trained to search for large food pellets on an open table, and the accuracy with which they returned home with the food was measured. In the idiothetic task they searched for food from a novel starting location under infrared light, and with surface olfactory cues displaced. The rats also received two tests of allothetic navigation. They were tested on a matching-to-place task in which they foraged for food from a number of successively presented new locations under normal room light, and they were trained to locate a hidden platform in a swimming pool (Morris place task). The group with posterior cingulate cortex lesions was severely impaired on all of the navigation tasks whereas the group with anterior cingulate cortex lesions displayed no deficit on the idiothetic task and only moderate deficits on the other tasks. The results demonstrate a role for posterior cingulate region in idiothetic navigation.  相似文献   

3.
In the absence of useful visual or other exteroceptive cues, rats can orient in their environment using idiothetic navigation, the process in which the information generated during self-motion is integrated to yield a homing vector leading the animal back to a point of departure. If perceivable exteroceptive cues in the visited environment are available, their spatial relationship is integrated with idiothetic information and stored in a cognitive map of the environment. Our previous experiments demonstrated that place navigation in rats is severely impaired after devaluation of the intramaze substratal information by shuffling, i.e. by its random displacement relative to the already traversed track. Several interpretative difficulties of the previous study have been eliminated in the present study by the use of an advanced version of the shuffling apparatus. The results show that shuffling-induced impairment of substratal idiothesis depends on the salience of intramaze cues, that on a stable featureless arena, idiothesis can be updated by non-visual allothetic cues, and that shuffling exposing the animal to sudden accelerations and decelerations interferes with idiothetic navigation by the inherent conflict between substratal and inertial idiothesis. It is concluded that pure substratal idiothesis not updated by extramaze and intramaze cues cannot provide reliable navigation over distances longer than 5 m.  相似文献   

4.
Spatial disorientation and learning problems belong to the integral symptoms of Alzheimer's disease (AD). A circular arena for human subjects (2.9 m diameter, 3 m high) was equipped with a computerized tracking system, similar to that used in animals. We studied navigation in 11 subjects diagnosed with early stages of Alzheimer's disease (AD), 27 subjects with subjective problems with memory or concentration, and 10 controls. The task was to locate one or several unmarked goals using the arena geometry, starting position and/or cues on the arena wall. Navigation in a real version and a computer map view version of the tests yielded similar results. The AD group was severely impaired relative to controls in navigation to one hidden goal in eight rotated positions. The impairment was largest when only the cues on the wall could be used for orientation. Also, the AD group recalled worse than controls the order of six sequentially presented locations, though they recalled similarly to controls the positions of the locations. The group with subjective problems was not impaired in any of the tests. Our results document the spatial navigation and non-verbal episodic memory impairment in the AD. Similar results in real and map view computer tests support the use of computer tests in diagnosis of cognitive disturbances.  相似文献   

5.
Navigation and the underlying brain signals are influenced by various allothetic and idiothetic cues, depending on environmental conditions and task demands. Visual landmarks typically control navigation in familiar environments but, in the absence of landmarks, self‐movement cues are able to guide navigation relatively accurately. These self‐movement cues include signals from the vestibular system, and may originate in the semicircular canals or otolith organs. Here, we tested the otolithic contribution to navigation on a food‐hoarding task in darkness and in light. The dark test prevented the use of visual cues and thus favored the use of self‐movement information, whereas the light test allowed the use of both visual and non‐visual cues. In darkness, tilted mice made shorter‐duration stops during the outward journey, and made more circuitous homeward journeys than control mice; heading error, trip duration, and peak error were greater for tilted mice than for controls. In light, tilted mice also showed more circuitous homeward trips, but appeared to correct for errors during the journey; heading error, trip duration, and peak error were similar between groups. These results suggest that signals from the otolith organs are necessary for accurate homing performance in mice, with the greatest contribution in non‐visual environments. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
This study focuses on age-related differences concerning two kinds of spatial memory assessed by: (1) Paired Associates Learning (PAL) test from the CANTAB and (2) a test of Real Idiothetic Memory (RIM) using real-life settings. Despite a clear age-related drop in PAL that is reported in existing studies, age-related differences in idiothetic navigation still remain unclear. In our study we tested 80 healthy volunteers classified according to their age into two groups, i.e. young (aged from 20 to 29 years of life; n=40; 20M/20F) and elderly (from 64 to 77 years; n=40; 20M/20F) healthy volunteers. They were asked in the PAL test to remember the spatial location of visual patterns presented on a computer screen, and in the RIM test to walk on the arena in darkness in order to find a cue place and then to return to the start/exit point. A white noise was switched on at entering the cue place and switched off at leaving this place. Elderly subjects indicated poorer performance than their younger counterparts on the PAL test, as evidenced by all tested outcome measures. In contrast, for the RIM test no clear age effect was evidenced. In both tests no gender effect was observed. A dissociation in age-related changes for these two tests indicates that visuo-spatial associative learning and idiothetic navigation may have different cognitive control which is probably rooted in an interplay of different brain structures.  相似文献   

7.
Animals navigate using cues generated by their own movements (self-movement cues or idiothetic cues), as well as the cues they encounter in their environment (distal cues or allothetic cues). Animals use these cues to navigate in two different ways. When dead reckoning (deduced reckoning or path integration), they integrate self-movement cues over time to locate a present position or to return to a starting location. When piloting, they use allothetic cues as beacons, or they use the relational properties of allothetic cues to locate places in space. The neural structures involved in cue use and navigational strategies are still poorly understood, although considerable attention is directed toward the contributions of the hippocampal formation (hippocampus and associated pathways and structures, including the fimbria-fornix and the retrosplenial cortex). In the present study, using tests in allothetic and idiothetic paradigms, we present four lines of evidence to support the hypothesis that the hippocampal formation plays a central role in dead reckoning. (1) Control but not fimbria-fornix lesion rats can return to a novel refuge location in both light and dark (infrared) food carrying tasks. (2). Control but not fimbria-fornix lesion rats make periodic direct high velocity returns to a starting location in both light and dark exploratory tests. Control but not fimbria-fornix rats trained in the light to carry food from a fixed location to a refuge are able to maintain accurate outward and homebound trajectories when tested in the dark. (3). Control but not fimbria-fornix rats are able to correct an outward trajectory to a food source when the food source is moved when allothetic cues are present. These, tests of spontaneous exploration and foraging suggest a role for the hippocampal formation in dead reckoning.  相似文献   

8.
Place cells in the rodent hippocampal formation (HF) are suggested to be the neural substrate for a spatial cognitive map. This specific spatial property of the place cells are regulated by both allothetic cues (i.e., intramaze local and distal cues) as well as idiothetic sensory inputs; the context signaled by the distal cues allows local and idiothetic cues to be employed for spatial tuning within the maze. To investigate the effects of distal cues on place-related activity of primate HF neurons, 228 neurons were recorded from the monkey HF during virtual navigation in a similar situation to a rodent water maze, in which distal cues were important to locate the animal's position. A subset of 72 neurons displayed place-related activity in one or more virtual spaces. Most place-related responses disappeared or changed their spatial tuning (i.e., remapping) when the arrangements of the distal cues were altered/moved in the virtual spaces. These specific features of the monkey HF might underlie neurophysiological bases of human episodic memory.  相似文献   

9.
Dead reckoning can be defined as the ability to navigate using idiothetic information based on self-movement cues without using allothetic information such as environmental cues. In the present study, we investigated the effects of hippocampal and parietal cortex lesions on homing behavior using dead reckoning in rats. Experimentally naive Wistar rats were trained with a homing task in which rats were required to take a food pellet from a cup in the arena and to return home with the pellet. After training, rats were divided into a control (CONT) group (n = 16), hippocampal lesioned (HIPP) group (n = 16), and parietal cortex lesioned (PARC) group (n = 16), and rats in the lesioned groups underwent surgery. After surgery, Test 1 (with four cups) and Test 2 (with one cup but the outgoing path was diverted by a barrier) were conducted. The HIPP group showed severe impairment in homing, but the performance of the PARC group did not differ from that of the CONT group. HIPP rats either approached wrong doors or ate the pellet in the arena. Circular statistics showed that homing directions of CONT and PARC rats showed concentration towards home, whereas those of HIPP rats did not. Our results exhibiting HIPP rats' failure in homing agree with many previous studies, but the results obtained from PARC rats were different from previous studies. These results indicate that the intact hippocampus is important for dead reckoning, but the role of the parietal cortex in dead reckoning is still not clear.  相似文献   

10.
In tasks for allothetic navigation, animals should orientate by means of distal cues. We have previously shown that mice use several forms of information to navigate, among which geometry, i.e. the shape of the environment, seems to play an important role. Here we investigated whether geometric features of the environment are necessary for allothetic navigation in mice. Mice were trained to navigate in a circular water maze by means of four distal landmarks distributed either symmetrically (symmetry group) or asymmetrically (asymmetry group) around the maze. Thus, mice could locate a hidden platform by either differentiating the landmarks based on their intrinsic features (symmetry group) or in addition by geometric information, i.e. based on the relative distances between landmarks (asymmetry group). Data indicated that place learning occurred only in the asymmetry group. The results support the idea that mice navigate by using the relational properties between distal landmarks and that geometric information is required for proper allothetic navigation in this species.  相似文献   

11.
Patients with developmental amnesia usually suffer from both episodic and spatial memory deficits. DM, a developmental amnesic, was impaired in her ability to process self-motion (i.e., idiothetic) information while her ability to process external stable landmarks (i.e., allothetic) was preserved when no self-motion processing was required. On a naturalistic and incidental episodic task, DM was severely and predictably impaired on both free and cued recall tasks. Interestingly, when cued, she was more impaired at recalling spatial context than factual or temporal information. Theoretical implications of that co-occurrence of deficits and those dissociations are discussed and testable cerebral hypothesis are proposed.  相似文献   

12.
Rats with dorsal hippocampus or associative parietal cortex (APC) lesions and sham-operated controls were trained on variants of the Morris water maze navigation task. In the 'proximal landmark condition', the rats had to localize the hidden platform solely on the basis of three salient object landmarks placed directly in the swimming pool. In the 'distal landmark condition', rats could rely only on distal landmarks (room cues) to locate the platform. In the 'beacon condition', the platform location was signaled by a salient cue directly attached to it. Rats with hippocampal lesions were impaired in the distal and to a less extent in the proximal landmark condition whereas rats with parietal lesions were impaired only in the proximal landmark condition. None of the lesioned groups was impaired in the beacon condition. These results suggest that the processing of information related to proximal, distal landmarks or associated beacon are mediated by different neural systems. The hippocampus would contribute to both proximal and distal landmark processing whereas the APC would be involved in the processing of proximal landmarks only. Navigation relying on a cued-platform would not require participation of the hippocampus nor the APC. Assuming that the processing of proximal landmarks heavily depends on the integration of visuospatial and idiothetic information, these results are consistent with the hypothesis that the APC plays a role in the combination of multiple sensory information and contributes to the formation of an allocentric spatial representation.  相似文献   

13.
Navigation in real environments is often impaired by traumatic brain injury (TBI). These deficits in wayfinding appear to be due to disruption of cognitive processes underlying navigation and may in turn be due to damage to the hippocampus and frontal lobes. These wayfinding problems after TBI were investigated using a virtual simulation of a Morris Water Maze (MWM), a standard test of hippocampal function in laboratory animals. The virtual environment consisted of a large virtual arena in a very large virtual room whose walls provided views of a naturalistic landscape. Eleven community-dwelling TBI survivors and 12 comparison participants, matched for gender, age and education were tested to see if they could find a location in the arena marked by one of the following: (a) a visible platform, (b) a single proximal object, (c) a single proximal object among seven other distracter objects, or (d) distal features inside and outside the room. The proximal objects allowed participants to use egocentric (body-centered) navigational strategies that rely on relatively simple stimulus-response associations. The absence of proximal cues forced the participants to rely on distal features of the environment (room walls, landscape elements) and tested their ability to use allocentric (world-based) navigational strategies requiring cognitive mapping. Results indicated that the navigation of TBI survivors was not impaired when the proximal cues were present but was impaired when proximal cues were absent. These results provide more evidence that the navigational deficit after TBI is due to an inability to form, remember or use cognitive maps.  相似文献   

14.
In order to demonstrate that rats solve dead reckoning (path integration) tasks in which they return to a starting location using self-movement (idiothetic) cues, it is necessary to remove external (allothetic) cues. Odor cues, especially those generated by a rat on a single passage, are difficult to control and they can potentially serve as a cue to guide a homeward trip. Because it is presently unknown whether rats can track the cues that they themselves leave, as opposed to the odor trails left by other rats, we investigated this question in the present study. A tracking task was used in which rats: (1) followed a scented string from a refuge to obtain a food pellet located on a large circular table; (2) followed odors left on the table; (3) followed odors left by the passage of another rat; or (4) followed odors left by themselves. Groups of rats were presented with strings scented with either the rat's own odor (Group Own), a conspecific's odor (Group Other), or another scent, vanilla (Group Vanilla). After training, a series of discrimination tests were given to determine the nature of the stimulus that controls scent tracking. The results indicated that Own, Other, and Vanilla groups were equally proficient in discriminating and following their respective odors. The rats were also able to follow odor trails on the table surface as well as a trail left by the single passage of another rat or their own passage. This is the first study to demonstrate that rats can discriminate between conspecific odors and their own odor left during a single passage. The results are discussed in relation to their implications for experimental methodology and olfactory contributions to spatial navigation in general and dead reckoning in particular.  相似文献   

15.
Animals can use both allocentric and egocentric strategies to learn a spatial task. Our results suggest that allocentric cues are more dominant than idiothetic cues in guiding navigation. Animals do not necessarily learn an egocentric strategy automatically, instead they probably hold just one solution to any particular task at a time until forced to learn an alternative strategy. Further, with overtraining animals do not always switch from allocentric to an egocentric learning strategy perhaps challenging suggestions of a stored hierarchy of strategies.  相似文献   

16.
The role of the vestibular system in acquisition and performance of a spatial navigation task was examined in rats. Male Long-Evans rats received sham or bilateral sodium arsanilate-induced vestibular lesions. After postoperative recovery, under partial water-deprivation, rats were trained (16 trials/day) to find a water reward in one corner of a black square enclosure. A cue card fixed to one wall of the enclosure served as a stable landmark cue. The orientation of the rat at the start of each trial was pseudo-randomized such that the task could not be solved by an egocentric response strategy. Rats with vestibular lesions acquired the task in fewer trials than the sham treated control rats. Vestibular lesions did not influence the motivation or motor function necessary to perform the task. Performance of sham rats was maintained during probe trials in which the cue card was removed from the enclosure, while lesioned rats were markedly impaired. Rotation of the cue card (+/-90 degrees ) caused an equivalent shift in corner choice behavior of the lesioned rats. However, sham rats often disregarded the rotated cue card and made place responses. These results suggest that the vestibular lesions disrupt idiothetic navigation or path integration and render navigational behavior critically dependent upon external landmarks. These results are consistent with the navigational abilities of humans with bilateral vestibular dysfunction.  相似文献   

17.
This research examined whether rats can use idiothetic cues to form spatial memories in the radial-arm maze (RM) and whether the hippocampus is involved in such ability. A possible contribution of the vestibular system to RM performance was also investigated. Rats with excitotoxic hippocampal lesions and sham-operated controls were trained on two versions of the RM task. In the Light condition, a unique visual insert was apposed on each arm floor and rats could choose which arm to enter next by relying on visual and/or idiothetic stimuli. In the Dark condition, the task was administered in darkness and success required processing of idiothetic cues to remember visited locations on the maze. In experiment 1, the performance of lesioned rats was impaired in the Light condition, but both control and lesioned rats learned to avoid already visited arms. In the Dark condition, the performance of controls improved over time whereas a severe deficit was observed in rats with hippocampal lesions. Thus, control rats, but not hippocampal lesioned rats, can form spatial memories by processing idiothetic inputs. Experiment 2 showed that vestibular lesions disrupt performance in both the Light and the Dark conditions and confirmed that rats use idiothetic information, especially vestibular cues, while navigating in the RM. Therefore, cues generated during locomotion play an important role in hippocampal-dependent spatial memory.  相似文献   

18.
Animal navigation to hidden goals (place navigation) ranks among the most intensively studied types of behaviour because it requires brain representations of environments in the form of cognitive maps, demonstrated to depend on hippocampal function. Intact function of muscarinic receptors in the brain was originally assumed to be crucial for place navigation, however, recent studies using non-spatial pretraining demonstrated that animals with central blockade of muscarinic acetylcholine receptors can also learn and retrieve spatial memory engrams. In the present study we addressed whether navigation in the active allothetic place avoidance (AAPA) task, which requires animals to separate spatial stimuli into coherent representations and navigate according to the representation relevant for the task, is dependent on intact muscarinic receptors in the brain. We studied the effect of three doses of scopolamine (0.5, 1.0 and 2.0mg/kg) administered 20 min prior to training on the retention of the AAPA and re-acquisition of the AAPA in a new environment. The dose of 2.0mg/kg was found to impair both AAPA retention and re-acquisition of the AAPA in a new environment, whereas the 1.0mg/kg dose only impaired the reinforced retention of AAPA. It is concluded that, unlike navigation in classic paradigms, efficient orientation in the AAPA task is critically dependent on muscarinic receptors in the brain.  相似文献   

19.
The purpose of this study was to investigate experimentally, factors determining the navigation accuracy of the MKM navigation system by Zeiss. The MKM consists of an operating microscope mounted to a six-axis motor-driven robot arm and an alpha-workstation. The image-guided surgery device provides navigation information based on calculation of the cartesian coordinates of the robot arm, and coordinates of the focus point assessed by laser assisted measurement. Navigation information (current position, direction and distance to a previously selected target) is optically projected into the microscopic field. Following factors were examined in an experimental setting for their impact on accuracy of the MKM: optical system, mechanical precision of the robot arm, and registration procedure. The robot arm and the optical system of the microscope allow high precision measurements of any focus point (error < 2 mm if the following aspects are considered: the use of auto-focus function instead of manual focusing, positioning of the registration points as a square or a triangle focus point should be selected on a surface that is perpendicular to the optical axis.  相似文献   

20.
Path integration, a component of spatial navigation, is the process used to determine position information on the basis of information about distance and direction travelled derived from self-motion cues. Following on from studies in the animal literature that seem to support the role of the hippocampal formation in path integration, this facility was investigated in humans with focal brain lesions. Thirty-three neurosurgical patients (17 left temporal lobectomy, LTL; 16 right temporal lobectomy, RTL) and 16 controls were tested on a number of blindfolded tasks designed to investigate path integration and on a number of additional control tasks (assessing mental rotation and left-right orientation). In a test of the ability to compute a homing vector, the subjects had to return to the start after being led along a route consisting of two distances and one turn. Patients with RTL only were impaired at estimating the turn required to return to the start. On a second task, route reproduction was tested by requiring the subjects to reproduce a route consisting of two distances and one turn; the RTL group only were also impaired at reproducing the turn, but this impairment did not correlate with the homing vector deficit. There were no group differences on tasks where subjects were required to reproduce a single distance or a single turn. The results indicate that path integration is impaired in RTL patients only and suggest that the right temporal lobe plays a role in idiothetic spatial memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号