首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Mechanism of thyroid hormone action.   总被引:9,自引:0,他引:9  
  相似文献   

9.
10.
Functions of thyroid hormone receptors in mice.   总被引:6,自引:0,他引:6  
D Forrest  B Vennstr?m 《Thyroid》2000,10(1):41-52
  相似文献   

11.
12.
Thyroid hormone receptors (TRs) and liver X receptors (LXRs) are members of the nuclear receptor superfamily. Although LXRs and TRs belong to two distinct receptor subgroups with respect to ligand-binding affinity, the two receptor systems show similarity with respect to molecular mechanism, target genes, and physiological roles. Since both TRs and LXRs play an important role in metabolic regulation, form heterodimers with retinoid X receptors (RXRs), and bind to direct repeat-4 (DR-4) with identical geometry and polarity, crosstalk between these two receptors has been reported, especially on lipid metabolism-related genes. Recently, several types of crosstalk between TRs and LXRs have been identified and crosstalk has also been observed in other physiological systems such as central nervous system rather than lipid metabolism. In this review, recent advances in elucidating the molecular mechanisms of the crosstalk between these two nuclear receptors are discussed, with the aim of finding a perspective on unknown roles of TRs and LXRs.  相似文献   

13.
During development, thyroid hormone deficiency results in delayed skeletal maturation and epiphyseal dysgenesis, resulting in reduced growth and skeletal abnormalities. Thyroid hormone also has effects on bones of adults. Thyrotoxicosis is frequently associated with increased bone turnover and decreased bone mass. However, the mechanisms that mediate its effects on bone tissue are poorly understood. Thyroid hormone acts indirectly in the skeleton, by increasing the secretion of growth hormone and insulin-like growth factor-1; or directly, by modulating target genes via specific nuclear receptors. In vitro findings, such as the presence of thyroid receptors (TRs) and the induction of genes and proteins in skeletal cells by thyroid hormone, emphasize the importance of direct actions. The aim of this review is to summarize the in vivo and in vitro findings related to the effects of thyroid hormone on the skeleton.  相似文献   

14.
15.
16.
Thyroid hormone (TH) is essential for normal brain development, but the specific actions of TH differ across developmental time and brain region. These actions of TH are mediated largely by a combination of thyroid hormone receptor (TR) isoforms that exhibit specific temporal and spatial patterns of expression during animal and human brain development. In addition, TR action is influenced by different co-factors, proteins that directly link the TR protein to functional changes in gene expression. Several recent studies now show that TRs may be unintended targets of chemicals manufactured for industrial purposes, and to which humans and wildlife are routinely exposed. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and bisphenol-A (BPA), and specific halogenated derivatives and metabolites of these compounds, have been shown to bind to TRs and perhaps have selective effects on TR functions. A number of common chemicals including polybrominated biphenyls (PBBs) and phthalates may also exert such effects. Considering the importance of TH in brain development, it will be important to pursue the possibilities that these chemicals - or interactions among chemical classes - are affecting children's health by influencing TH signaling in the developing brain.  相似文献   

17.
18.
Thyroid hormone (TH) affects diverse biological processes and can exert its effects through both gene regulation via binding the nuclear TH receptors (TRs) and non-genomic actions via binding to cell surface and cytoplasmic proteins. The critical importance of TH in vertebrate development has long been established, ranging from the formation of human cretins to the blockage of frog metamorphosis due the TH deficiency. How TH affects vertebrate development has been difficult to study in mammals due to the complications associated with the uterus-enclosed mammalian embryos. Anuran metamorphosis offers a unique opportunity to address such an issue. Using Xenopus as a model, we and others have shown that the expression of TRs and their heterodimerization partners RXRs (9-cis retinoic acid receptors) correlates temporally with metamorphosis in different organs in two highly related species, Xenopuslaevis and Xenopus tropicalis. In vivo molecular studies have shown that TR and RXR are bound to the TH response elements (TREs) located in TH-inducible genes in developing tadpoles of both species. More importantly, transgenic studies in X. laevis have demonstrated that TR function is both necessary and sufficient for mediating the metamorphic effects of TH. Thus, the non-genomic effects of TH have little or no roles during metamorphosis and likely during vertebrate development in general.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号