首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although carbamazepine (CBZ) is used therapeutically in the treatment of various neurological and psychiatric conditions, its mechanism of action remains largely unknown. CBZ has now been shown to inhibit the binding of [(3)H]PK 11195 to peripheral benzodiazepine receptors (PBRs) in rat brain and ovary membranes in vitro with a potency (IC(50), approximately 60 microM) much lower than that of unlabeled PK 11195 (IC(50), approximately 2.0 nM). Administration of CBZ to rats induced dose (25 to 100 mg/kg, i.p.) and time (15 to 60 min) dependent increases in the concentrations of pregnenolone, progesterone, allopregnanolone, and allotetrahydrodeoxycorticosterone in both the cerebral cortex and plasma. CBZ also induced steroidogenesis in the brain of adrenalectomized-orchiectomized rats, suggesting that this effect is mediated in a manner independent of peripheral PBRs. The increase in brain concentrations of neuroactive steroids induced by a single injection of CBZ was associated with a marked protective effect against isoniazid-induced convulsions. In contrast, long-term administration of CBZ (50 mg/kg, twice a day for 30 days) induced tolerance to the anticonvulsant action of the drug. This same treatment, however, did not prevent the ability of a challenge dose of CBZ to stimulate steroidogenesis. These results indicate that CBZ-induced steroidogenesis might not be responsible for the anticonvulsant activity of this drug.  相似文献   

2.
The 2-phenyl-imidazo[1,2-a]pyridine derivative CB 34 is a ligand for peripheral benzodiazepine receptors. The binding of [3H]CB 34 to rat cerebrocortical membranes was characterized. Specific binding was rapid, reversible, saturable and of high affinity. Kinetic analysis yielded association and dissociation rate constants of 0.2x10(8) M(-1) min(-1) and 0.29 min(-1), respectively. Saturation binding experiments revealed a single class of binding sites with a total binding capacity of 188+/-8 fmol/mg protein and an apparent dissociation constant of 0.19+/-0.02 nM. Specific [3H]CB 34 binding was inhibited by ligands selective for peripheral benzodiazepine receptors, whereas, with the exception of flunitrazepam and diazepam, ligands for central benzodiazepine receptors were inactive. Of the brain regions examined, the density of the [3H]CB 34-binding sites was greatest in the hypothalamus and lowest in the cerebral cortex. [3H]CB 34 is thus a potent and selective ligand for peripheral benzodiazepine receptors and should be proven useful for studies of the roles of these receptors.  相似文献   

3.
A series of 36 imidazopyridineacetamides (2-37) were designed and synthesized to evaluate the effects of structural changes on the amide nitrogen at both central (CBRs) and peripheral benzodiazepine receptors (PBRs). These changes include variations in the length and number of the alkyl groups as well as introduction of different aromatic, heteroaromatic, and conformationally constrained groups. The affinities of these compounds for CBRs and PBRs were determined, and the results indicate that bulkiness of the substituents, their branching, and length beyond an optimal value may cause hindrance to the ligand in its interaction with the receptor. The presence of aromatic or conformationally constrained substituents on the carboxamide nitrogen can be conducive to high affinity and selectivity. Furthermore, the ability of a subset of the most active ligands to stimulate synthesis of neuroactive steroids in plasma and brain was evaluated in vivo and in vitro. Compound 3 exhibited very marked effects on the peripheral and central synthesis of neuroactive steroids, while 36 (potent at subnanomolar level) showed a slight ability to affect neuroactive steroid content in the cerebral cortex.  相似文献   

4.
The substituent effects at positions 6 and 8 (compounds 17-31) as well as at the amide nitrogen (compounds 32-40) of a series of 2-phenylimidazo[1,2-a]pyridineacetamides were evaluated at both central (CBR) and peripheral (PBR) benzodiazepine receptors. The structure-activity relationship studies detailed herein indicate the key structural features required for high affinity and selectivity for PBR. Substitution on the imidazopyridine nucleus at position 8 with lipophilic substituents and the presence of one chlorine atom at the para position of the phenyl ring at C(2) are crucial features for high binding affinity and selectivity toward PBR. A small subset of active ligands (i.e., 17, 20, 26, 34, and 35) were evaluated in vitro in Xenopus oocytes expressing cloned human GABA(A) receptors for their effects at CBR and in vivo for their ability to stimulate the synthesis of neurosteroids such as pregnenolone, progesterone, allopregnanolone, and allotetrahydrodeoxycorticosterone (THDOC). Compounds 17, 20, 26, and 34 markedly increased the levels of neuroactive steroids in plasma and cerebral cortex, unlike compound 35.  相似文献   

5.
The peripheral benzodiazepine receptors (PBRs) have been identified to bind selectively benzodiazepine ligands and an isoquinoline carboxamide derivative PK 11195 with high affinity. PBRs are present in the central nervous system (CNS), peripheral tissues, and most organs in the human body. PBRs are different from the central benzodiazepine receptors (CBRs) related to the nerve cell membrane GABA(A) receptor and are thought to play several physiological and pathophysiological functions in the CNS and immune system due to their meanly localization in glial cells, the mitochondrial outer membrane of peripheral cells and blood leucocytes and to their important roles in steroidogenesis, cell proliferation and differentiation. Recent research has shown that the density of PBRs is significantly increased in CNS several disorders, such as epilepsy, multiple sclerosis, cerebral ischemia, astrocytoma, brain injury and neurodegenerative diseases. Recent progress in the pharmacology of PBRs is reviewed here with respect to the functions in the brain and peripheral tissues including apoptosis, immune system modulation, seizure promotion, reactions of anticonvulsants on peripheral blood cells, and adverse drug reactions (ADR) of anticonvulsants.  相似文献   

6.
We have investigated the effects of 2-ethylamino-6-chloro-4-methyl-4-phenyl-4H-3,1-benzoxazine hydrochloride (etifoxine) on GABA(A) receptor function. Etifoxine displaced [(35)S]TBPS (t-butylbicyclophosphorothionate) from GABA(A) receptors of rat cortical membranes with an IC(50) of 6.7+/-0.8 microM and [(3)H]PK11195 from peripheral (mitochondrial)-type benzodiazepine receptors (PBRs) of rat heart homogenates with an IC(50) of 27.3+/-1.0 microM. Etifoxine displayed anxiolytic properties in an anticonflict test in rats, and potentiated GABA(A) receptor-mediated membrane currents elicited by submaximal (5-10 microM) but not saturating (0.5 mM) concentrations of GABA in cultured rat hypothalamic and spinal cord dorsal horn neurones. In hypothalamic cultures, etifoxine induced a dose-dependent inward current for concentrations >1 microM which reflected the post-synaptic potentiation of a small ( approximately 20 pA) tonic and bicuculline-sensitive GABA(A) receptor-gated Cl(-) current. Etifoxine also increased the frequency of spontaneous and miniature GABAergic inhibitory post-synaptic currents without changing their amplitude and kinetic characteristics. Both effects of etifoxine were insensitive to flumazenil (10 microM), an antagonist of central-type benzodiazepine sites present at GABA(A) receptors, but were partly inhibited by PK11195 (10 microM) an antagonist of PBRs which control the synthesis of neurosteroids. Our results indicate that etifoxine potentiates GABA(A) receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of PBRs.  相似文献   

7.
GABA(A) receptors are ligand-gated chloride channels composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to a multiplicity of GABA(A) receptor subtypes with distinct subunit composition; regional, cellular and subcellular distribution; and pharmacology. Most of these receptors are composed of two α, two β and one γ2 subunits. GABA(A) receptors are the site of action of a variety of pharmacologically and clinically important drugs, such as benzodiazepines, barbiturates, neuroactive steroids, anaesthetics and convulsants. Whereas GABA acts at the two extracellular β(+) α(-) interfaces of GABA(A) receptors, the allosteric modulatory benzodiazepines interact with the extracellular α(+) γ2(-) interface. In contrast, barbiturates, neuroactive steroids and anaesthetics seem to interact with solvent accessible pockets in the transmembrane domain. Several benzodiazepine site ligands have been identified that selectively interact with GABA(A) receptor subtypes containing α2βγ2, α3βγ2 or α5βγ2 subunits. This indicates that the different α subunit types present in these receptors convey sufficient structural differences to the benzodiazepine binding site to allow specific interaction with certain benzodiazepine site ligands. Recently, a novel drug binding site was identified at the α(+) β(-) interface. This binding site is homologous to the benzodiazepine binding site at the α(+) γ2(-) interface and is thus also strongly influenced by the type of α subunit present in the receptor. Drugs interacting with this binding site cannot directly activate but only allosterically modulate GABA(A) receptors. The possible importance of such drugs addressing a spectrum of receptor subtypes completely different from that of benzodiazepines is discussed.  相似文献   

8.
The peripheral benzodiazepine receptors (PBR) might be involved in certain pathophysiological events, such as anxiety, by stimulating the production of neuroactive steroids in the brain. A recent electrophysiological study has revealed an interaction between PK11195, a PBR ligand and the anxiolytic compound etifoxine at micromolar concentrations. The present work was aimed at further characterizing the etifoxine-PBR interaction. In membrane preparations from intact male rat forebrain, etifoxine uncompetitively inhibited the binding of [(3)H]PK11195 with an IC(50) = 18.3 +/- 1.2 microM, a value consistent with etifoxine plasma and brain concentrations measured after an anxiolytic-like dose (50 mg/kg). In vivo, that etifoxine dose was associated with increased concentrations of pregnenolone, progesterone, 5alpha-dihydroprogesterone and allopregnanolone in plasma and brain of sham-operated animals. In adrenalectomized and castrated rats, etifoxine enhanced the brain levels of these steroids, suggesting a stimulation of their local synthesis and/or a decrease of their disappearance rate, independently of peripheral sources. Finasteride, an inhibitor of 5alpha-reductase that converts progesterone into its 5alpha-reduced metabolites like allopregnanolone, attenuated the anti-conflict effect of etifoxine even though brain allopregnanolone contents were drastically reduced. These results indicate that following activation of the PBR in the brain, an increased cerebral production of allopregnanolone, a potent positive modulator of the GABA(A) receptor function, may partially contribute to the anxiolytic-like effects of etifoxine.  相似文献   

9.
gamma-Aminobutyric acidA (GABAA) receptors on chick ciliary ganglion neurons can be modulated by benzodiazepines and identified by radiolabeled benzodiazepine binding. Enhancement of submaximal GABA responses by benzodiazepines was demonstrated using a multibarrel pipette to construct complete benzodiazepine dose-response curves for single cells in culture. EC50 values of 22 +/- 5 nM, 1.1 +/- 0.3 microM, and 4.6 +/- 0.5 microM were obtained for flunitrazepam, clonazepam, and chlordiazepoxide, respectively. Chlordiazepoxide shifted the GABA dose-response curve to lower GABA concentrations without increasing the maximal response to GABA, demonstrating that benzodiazepines enhance the GABA response by increasing the receptor affinity for GABA. The imidazodiazepine Ro15-1788 potentiated the GABA response with an EC50 of 250 +/- 70 nM, and Ro5-4864 (chlorodiazepam) partially blocked the GABA response both in the presence and absence of chlordiazepoxide. Scatchard analysis of data from binding studies with [3H]flunitrazepam to ganglion membrane homogenates was consistent with the presence of a single class of high affinity sites with a KD of 34 +/- 6 nM and a Bmax of 145 +/- 26 fmol/mg of protein. Several lines of evidence indicated that the sites were associated with GABAA receptors. The KD of [3H]flunitrazepam binding was similar to the EC50 for flunitrazepam modulation of the GABA response. The level of [3H]flunitrazepam binding was enhanced approximately 50% over control levels by GABA. The binding was decreased both by clonazepam and by Ro5-4864 at concentrations similar to those required for the compounds to modulate the GABA response. These studies demonstrate that ciliary ganglion GABAA receptors are similar in major respects to GABAA receptors in the central nervous system but may differ in minor pharmacological properties.  相似文献   

10.
Benzodiazepines and neuroactive steroids are positive c-aminobutyric acid(A) (GABA(A)) modulators acting at distinct binding sites; during benzodiazepine treatment, tolerance develops to many behavioral effects of benzodiazepines, although cross tolerance typically does not develop to neuroactive steroids. To determine whether differential changes in binding sites contribute to these behavioral differences, interactions between GABA(A) modulators were studied in two groups of four monkeys: one otherwise untreated group discriminated 0.178 mg/kg of the benzodiazepine midazolam; the other received 5.6 mg/kg/day of diazepam and discriminated 0.1 mg/kg of flumazenil, which binds to benzodiazepine sites without modulating GABA(A) receptors. In untreated monkeys, flumazenil antagonized midazolam but not the neuroactive steroid pregnanolone, whereas pentylenetetrazole (a negative modulator acting at a third site) antagonized both positive modulators. In diazepam-treated monkeys, 0.1 mg/kg of flumazenil or 32 mg/kg of pentylenetetrazole produced flumazenil-lever responding, which was reversed by midazolam and pregnanolone. As the flumazenil dose increased, larger doses of midazolam, but not pregnanolone, were needed to reverse flumazenil-lever responding. When the pentylenetetrazole dose increased, larger doses of both positive modulators were needed. Thus, interactions between GABA(A) modulators were not different between diazepam-treated and untreated monkeys and do not reveal changes in binding sites that could account for reported differences between benzodiazepines and neuroactive steroids.  相似文献   

11.
Although the structural features of binding sites for neuroactive steroids on gamma-aminobutryic acid type A (GABA A) receptors are still largely unknown, structure-activity studies have established a pharmacophore for potent enhancement of GABA A receptor function by neuroactive steroids. This pharmacophore emphasizes the importance of the position and stereochemistry of hydrogen-bonding groups on the steroid. However, the importance of the steroid ring system in mediating hydrophobic interactions with the GABA A receptor is unclear. We have taken the cyclopenta[ b]phenanthrene (tetracyclic compounds with a nonlinear ring system different from that of steroids) and cyclopenta[ b]anthracene (tetracyclic molecules with a linear 6-6-6-5 carbocyclic ring system) ring systems and properly substituted them to satisfy the pharmacophore requirements of the critical hydrogen-bond donor and acceptor groups found in neuroactive steroids. We have found these cyclopenta[ b]phenanthrene and cyclopenta[ b]anthracene analogues to have potent activity at the GABA A receptor, rivaling that of the most potent steroid modulators. Single-channel analysis of electrophysiological data indicates that similarly substituted analogues in the different ring systems affect the kinetic components of macroscopic currents in different ways. Mutations to the hydrogen bonding amino acids at the putative steroid binding site (alpha1Q241L mutation and alpha1N407A/Y410F double mutation) produce similar effects on macroscopic current amplitude by the different ring system analogues suggesting that the different kinetic effects are explained by the precise interactions of each analogue with the same binding site(s).  相似文献   

12.
The binding of gamma-aminobutyric acid (GABA) and benzodiazepine to receptors was examined in regions of rat brain at various times after subcutaneous injection of kainic acid (KA, 15 mg/kg). The animals exhibited pronounced convulsions 90 min-4 hr after this treatment. During this period (2 hr after the injection of kainic acid) no alterations in the binding of [3H]-GABA or [3H]flunitrazepam to receptors were detected in the frontal cortex, the hippocampus or the amygdala-pyriform cortex. After recovery from the acute convulsive phase, the rats appeared to be hyperexcitable, hyperactive, and displayed marked aggression and occasional clonic convulsions one to 80 days later. During this period a marked increase (80-200%) in the number of binding sites for GABA in the amygdala-pyriform cortex occurred but this was associated with a slow decrease in the number of binding sites for [3H]flunitrazepam to 70% control value at 3 weeks. Binding of the "peripheral"-type of benzodiazepine ligand, [3H]-Ro5-4864, was increased to 450% of control 3 weeks after injection. In addition, the ability of GABA to stimulate the binding of [3H]flunitrazepam was reduced when measured 3 days after the injection of kainic acid. It is suggested that the long-term behavioural syndrome observed in kainic acid-treated rats, as well as the reduced effectiveness of diazepam in preventing seizures in animals treated with kainic acid, (Czuczwar, Turski, Turski and Kleinrock, 1981) may be explained in part by a reduction in the number of neuronal benzodiazepine receptors and a "desensitization" of the GABA receptors which are coupled to benzodiazepine receptors.  相似文献   

13.
The binding of [3H]Ro 5-4864 to peripheral benzodiazepine receptors (PBRs) was studied in normal and malignant submandibular glands of rats. The carcinoma was induced by implantation of 7,12-dimethylbenz[a]anthracene (DMBA) into the glands. [3H]Ro 5-4864 binding to normal and malignant submandibular glands indicated one population of binding sites with high affinity (KD of 3.4 and 4.4 nM for normal and malignant respectively) and saturability (Bmax) of 487 and 321 pmol/g tissue for normal and malignant respectively). Subcellular localization of PBRs indicates that mitochondria was the primary locale of the receptor in both cases and the decrease in Bmax was due primarily to a decrease in the binding capacity of PBRs in mitochondria.  相似文献   

14.
Interactions of lipids with peripheral-type benzodiazepine receptors   总被引:2,自引:0,他引:2  
Peripheral-type benzodiazepine receptors (PBRs) are present at high densities in the rat kidney distal tubule. [3H]RO 5-4864 binding to PBRs in kidney membranes is inhibited by several unidentified low molecular weight hydrophobic compounds in urine and serum. We tested representative hydrophobic compounds from several lipid classes for ability to inhibit binding to rat kidney PBRs of two high affinity ligands, [3H]RO 5-4864 and [3H]PK 11195. Unsaturated fatty acids and alcohols inhibited [3H]RO 5-4864 binding with half-maximal inhibition occurring at 3 X 10(-6) M to 10(-4) M. Inhibitory potency increased with the degree of unsaturation. Phospholipids inhibited [3H]RO 5-4864 in the same concentration range, with inhibitory potency in this case dependent both upon an unsaturated fatty acid moiety and upon the polar head group. Phosphatidylethanolamine was the most potent phospholipid tested (IC50 = 2 X 10(-6) M), whereas phosphatidylcholine was not inhibitory. Although phospholipids inhibited both [3H]RO 5-4864 and [3H]PK 11195 binding equally, unsaturated fatty acids had a much greater inhibitory effect upon [3H]RO 5-4864 than upon [3H]PK 11195 binding. Similar effects were obtained with digitonin-solubilized PBRs. These data demonstrate that in our experiments PBR binding was inhibited by specific lipids and that binding of proposed agonist (RO 5-4864) and antagonist (PK 11195) ligands was differentially affected by unsaturated fatty acids.  相似文献   

15.
A series of imidazopyridine acetamides were synthesized to evaluate the effects of structural changes at both central (CBRs) and peripheral benzodiazepine receptors (PBRs). These changes include the introduction of polar substituents or ionizable functional groups at the 2- and 8-position of the imidazopyridine skeleton. The results suggest that substituents endowed with hydrogen bonding acceptor and/or donor properties in the para position of the phenyl ring lead to high affinity for PBR. In electrophysiological studies, it was found that compounds 9, 12, 13, and 28 markedly enhanced GABA-evoked Cl (-) currents in Xenopus oocytes expressing alpha 1beta 2gamma 2 GABA A receptors. The capability of flumazenil to reduce the stimulatory effect exerted by compound 9 supports the conclusion that the modulatory effects of the examined compounds occur involving the CBR. The ability of compound 16 to increase GABA A receptor-mediated miniature inhibitory postsynaptic currents in CA1 pyramidal neurons is indicative of its ability to stimulate the local synthesis and secretion of neurosteroids.  相似文献   

16.
BACKGROUND AND PURPOSE: The aim of the present study was to determine whether binding of [(35)S]t-butylbicyclophosphorothionate ([(35)S]TBPS) to the convulsant binding site of GABA(A) receptors in human postmortem brain samples can be used as an in vitro index of the functional activation of these receptors. EXPERIMENTAL APPROACH: Postmortem stability of [(35)S]TBPS binding was assessed in rat brain samples harvested at various times after death and the binding properties of [(35)S]TBPS binding (K(D) and B(max)) were determined in human postmortem brain using radioligand binding studies. In addition, the ability of human brain [(35)S]TBPS binding to be allosterically modulated by compounds that bind at recognition sites distinct from the convulsant binding site was measured. KEY RESULTS: Whereas binding of [(3)H]Ro 15-1788 to the benzodiazepine binding site and [(3)H]muscimol to the agonist (GABA) binding site were retained over a 20 h postmortem interval, there was a significant decrease in the affinity and number of [(35)S]TBPS binding sites. Nevertheless, [(35)S]TBPS binding in human brain could be inhibited by TBPS, picrotoxin, loreclezole and pentobarbital and modulated by GABA with potencies comparable to those observed in rats. In addition, the GABA-induced reduction in human brain [(35)S]TBPS binding could be modulated by benzodiazepine site ligands in a manner that reflected their intrinsic efficacies. CONCLUSIONS AND IMPLICATIONS: These results suggest that allosteric coupling between the [(35)S]TBPS, GABA and benzodiazepine binding sites is preserved in postmortem human brain and that [(35)S]TBPS binding in this tissue may be used to study functional characteristics of native human GABA(A) receptors.  相似文献   

17.
Specific high affinity binding of [3H]flunitrazepam to membranes from human brain was stimulated by gamma-aminobutyric acid (GABA), pentobarbital, 1-ethyl-4-(isopropylidene-hydrazino)-1H-pyrazolo[3,4b]pyridine-5-carboxy lic acid ethyl ester hydrochloride (SQ 20009) and avermectin B1a and was unaffected by 2 microM 4'-chlorodiazepam (Ro 5-4864) indicating that [3H]flunitrazepam in human brain as well as in rat brain predominantly binds to benzodiazepine receptors specific to brain, which was associated with a GABA receptor and several modulatory binding sites for drugs. The potency of several selective and non-selective ligands for benzodiazepine receptors for inhibition of the binding of [3H]flunitrazepam was compared in membranes from human or rat brain cerebellum, hippocampus and cerebral cortex. It was demonstrated that all these compounds, derived from different chemical structures, had a remarkably similar potency for inhibition of the binding of [3H]flunitrazepam in the corresponding regions of the human or rat brain. However, irreversible labelling of benzodiazepine binding sites with [3H]flunitrazepam and subsequent SDS-polyacrylamide gel electrophoresis and fluorography revealed more photolabelled protein bands in human than in rat cerebellum and hippocampus. The results seem to indicate that, although the pharmacological properties of reversible binding of [3H]flunitrazepam are remarkably similar in membranes from rat or human brain, the molecular heterogeneity of benzodiazepine binding sites is even greater in human than in rat brain.  相似文献   

18.
The fluoroethoxy and fluoropropoxy substituted 2-(6-chloro-2-phenyl)imidazo[1,2- a]pyridin-3-yl)- N, N-diethylacetamides 8 (PBR102) and 12 (PBR111) and 2-phenyl-5,7-dimethylpyrazolo[1,5- a]pyrimidin-3-yl)- N, N-diethylacetamides 15 (PBR099) and 18 (PBR146) were synthesized and found to have high in vitro affinity and selectivity for the peripheral benzodiazepine receptors (PBRs) when compared with the central benzodiazepine receptors (CBRs). The corresponding radiolabeled compounds [ (18)F] 8 [ (18)F] 12, [ (18)F] 15, and [ (18)F] 18 were prepared from their p-toluenesulfonyl precursors in 50-85% radiochemical yield. In biodistribution studies in rats, the distribution of radioactivity of the [ (18)F]PBR compounds paralleled the known localization of PBRs. In the olfactory bulbs, where the uptake of radioactivity was higher than in the rest of the brain, PK11195 and Ro 5-4864 were able to significantly inhibit [ (18)F] 12, while little or no pharmacological action of these established PBR drugs were observed on the uptake of [ (18)F] 8, [ (18)F] 15, and [ (18)F] 18 compared to control animals. Hence, [ (18)F] 12 appeared to be the best candidate for evaluation as an imaging agent for PBR expression in neurodegenerative disorders.  相似文献   

19.
RATIONALE: Previous behavioral and biochemical studies suggest that allosteric coupling processes initiated by benzodiazepines, barbiturates and neuroactive steroids can be sub-categorized on the basis of their sensitivities to antagonism by increased atmospheric pressure. However, biochemical evidence supporting this hypothesis was limited to single concentration studies in long sleep (LS) mice. OBJECTIVE: The present paper addresses these issues by extending biochemical investigation of pressure effects on allosteric modulators across a range of concentrations that allosterically enhance gamma-aminobutyric acid (GABA)A receptor function and alter behavior using two mouse genotypes. In addition, the effects of pressure on ligand binding were explored to further investigate the mechanism of pressure antagonism of allosteric modulation. METHODS: The effects of 12 times normal atmospheric pressure (ATA) of helium-oxygen gas (heliox) on allosteric modulation of GABA(A) receptor function and [3H]flunitrazepam binding was tested in LS and C57BL mouse brain membranes (microsacs) using chloride flux and high-affinity binding assays. RESULTS: In both genotypes, exposure to 12 ATA heliox antagonized the allosteric enhancement of GABA(A) receptor function by flunitrazepam (0.1-10 microM) and pentobarbital (0.1-50 microM) but did not affect allosteric modulation by 3alpha-hydroxy-5beta-pregnan-20-one (0.1-1 microM). Pressure did not affect benzodiazepine receptor affinity (Kd) or the number of benzodiazepine receptors (Bmax). CONCLUSIONS: The results: (1) confirm that there are differences in sensitivity to pressure antagonism of allosteric coupling among GABA(A) allosteric modulators; (2) demonstrate that these differences are not concentration or genotype dependent; (3) add evidence that pressure antagonizes allosteric modulation by uncoupling the receptor and (4) support the hypothesis that allosteric modulation of receptor function can be sub-categorized on the basis of sensitivity to pressure antagonism.  相似文献   

20.
Receptor autoradiography has been employed to investigate the effect of gamma-aminobutyric acid (GABA) preincubation on the interaction of the GABAA receptor with its ligands. [3H]GABA (50 nM) binding to the GABAA receptors is increased by 60% compared to control sections after GABA (100 microM) preincubation. Receptor autoradiography shows that the increase is more pronounced in certain brain areas. The allosteric interactions between the GABA and benzodiazepine recognition sites were also examined. An increase in [3H]GABA (50 nM) binding to rat brain sections by co-incubation with the benzodiazepine, flunitrazepam (FNZ) has been observed autoradiographically. This effect has been quantitated in several brain regions; the overall brain increase in [3H]GABA binding induced by 1 microM FNZ was 20%. The increase in [3H]FNZ (1 nM) binding by co-incubation with GABA has also been observed autoradiographically, and the effect quantitated in four brain regions. The overall brain increase in [3H]FNZ binding induced by 100 microM GABA was 34%. After GABA preincubation these allosteric responses are significantly reduced in size. The increase in the [3H]GABAA binding as a consequence of GABA preincubation appears to reflect an increase in receptor affinity for [3H]GABA with no significant change in the maximum number of binding sites. We suggest that GABA preincubation converts the GABAA receptor to a higher affinity desensitised receptor conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号