首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bao C  Lv Z  Zhang X  Zhu J  Ding F  Zhang Y  Mei J 《Transplant immunology》2012,26(2-3):128-132
Cardiac allograft vasculopathy (CAV) is the leading cause of late morbidity and mortality in heart-transplant patients. Increasing evidences support the important role of chemokines and their receptors in transplant immunology. Chemokine-chemokine receptor interaction and subsequent recruitment of T-lymphocytes to the graft are early events in the development of chronic rejection of transplanted hearts. In this study, we first inhibited CC-motif chemokine receptor 5 (CCR5) expression by using lentiviral-mediated gene transfer of an anti-CCR5 siRNA, which introduced through CD34(+) hematopoietic stem/progenitor cell transplantation. Stably marked lymphocytes expressing siRNA and consistent downregulation of CCR5 expression were detected. Our results showed that survival was significantly prolonged in CCR5 knock-down mice and donor hearts from siRNA-treated mice developed markedly less CAV. Infiltration of CD4(+) and CD8(+) T-lymphocytes into transplanted hearts was also markedly decreased. These findings suggest that CCR5 plays an important role in CAV development and inhibition of this chemokine could improve long-term survival after cardiac transplantation.  相似文献   

2.
3.
目的 研究CXC趋化因子受体6(CXCR6)在同种异体小鼠心脏移植中的表达及CXC趋化因子配体16(CXCL16)与CXCR6相互作用对移植物存活时间的影响.方法 以野生型Balb/c小鼠(H-2d)为供者(同种移植组),或以野生型C57BL/6小鼠(H-2b)为供者(同系移植组),以野生型C57BL/6小鼠为受者分别行小鼠腹腔异位心脏移植.测定同系和同种移植组小鼠移植心脏CXCR6mRNA的表达,并测定受者脾脏CD8+T淋巴细胞CXCR6的表达.另制作小鼠同种异位心脏移植模型(Balb/c小鼠为供者,C57BL/6小鼠为受者),将其分为实验组和对照组,实验组受者移植当天至发生排斥反应时腹腔注射抗CXCL16抗体,对照组受者同期注射对照抗体.记录两组移植心脏存活时间.进行CD8+T淋巴细胞的细胞毒试验,即用Balb/c小鼠脾细胞免疫C57BL/6小鼠后,获取C57BL/6小鼠脾脏CD8+T淋巴细胞,将Balb/c小鼠脾细胞与C57BL/6小鼠CD8+T淋巴细胞混合培养,分别加入抗CXCL16抗体、小鼠IgG(对照抗体)和抗CD40L抗体.结果 同种移植组移植心脏中CXCR6 mRNA的表达以及脾脏CD8+T淋巴细胞上CXCR6的表达均高于同系移植组和正常对照组.抗CXCL16抗体对CD8+T淋巴细胞的细胞毒活性无影响.与对照组相比较,实验组小鼠移植心脏存活时间并未明显延长.结论 小鼠心脏移植排斥反应中CD8+T淋巴细胞CXCR6的表达上升,阻断CXCL16/CXCR6相互作用并不能延长移植心脏的存活时间.  相似文献   

4.
目的 研究CXC趋化因子受体6(CXCR6)在同种异体小鼠心脏移植中的表达及CXC趋化因子配体16(CXCL16)与CXCR6相互作用对移植物存活时间的影响.方法 以野生型Balb/c小鼠(H-2d)为供者(同种移植组),或以野生型C57BL/6小鼠(H-2b)为供者(同系移植组),以野生型C57BL/6小鼠为受者分别行小鼠腹腔异位心脏移植.测定同系和同种移植组小鼠移植心脏CXCR6mRNA的表达,并测定受者脾脏CD8+T淋巴细胞CXCR6的表达.另制作小鼠同种异位心脏移植模型(Balb/c小鼠为供者,C57BL/6小鼠为受者),将其分为实验组和对照组,实验组受者移植当天至发生排斥反应时腹腔注射抗CXCL16抗体,对照组受者同期注射对照抗体.记录两组移植心脏存活时间.进行CD8+T淋巴细胞的细胞毒试验,即用Balb/c小鼠脾细胞免疫C57BL/6小鼠后,获取C57BL/6小鼠脾脏CD8+T淋巴细胞,将Balb/c小鼠脾细胞与C57BL/6小鼠CD8+T淋巴细胞混合培养,分别加入抗CXCL16抗体、小鼠IgG(对照抗体)和抗CD40L抗体.结果 同种移植组移植心脏中CXCR6 mRNA的表达以及脾脏CD8+T淋巴细胞上CXCR6的表达均高于同系移植组和正常对照组.抗CXCL16抗体对CD8+T淋巴细胞的细胞毒活性无影响.与对照组相比较,实验组小鼠移植心脏存活时间并未明显延长.结论 小鼠心脏移植排斥反应中CD8+T淋巴细胞CXCR6的表达上升,阻断CXCL16/CXCR6相互作用并不能延长移植心脏的存活时间.  相似文献   

5.
目的 研究CXC趋化因子受体6(CXCR6)在同种异体小鼠心脏移植中的表达及CXC趋化因子配体16(CXCL16)与CXCR6相互作用对移植物存活时间的影响.方法 以野生型Balb/c小鼠(H-2d)为供者(同种移植组),或以野生型C57BL/6小鼠(H-2b)为供者(同系移植组),以野生型C57BL/6小鼠为受者分别行小鼠腹腔异位心脏移植.测定同系和同种移植组小鼠移植心脏CXCR6mRNA的表达,并测定受者脾脏CD8+T淋巴细胞CXCR6的表达.另制作小鼠同种异位心脏移植模型(Balb/c小鼠为供者,C57BL/6小鼠为受者),将其分为实验组和对照组,实验组受者移植当天至发生排斥反应时腹腔注射抗CXCL16抗体,对照组受者同期注射对照抗体.记录两组移植心脏存活时间.进行CD8+T淋巴细胞的细胞毒试验,即用Balb/c小鼠脾细胞免疫C57BL/6小鼠后,获取C57BL/6小鼠脾脏CD8+T淋巴细胞,将Balb/c小鼠脾细胞与C57BL/6小鼠CD8+T淋巴细胞混合培养,分别加入抗CXCL16抗体、小鼠IgG(对照抗体)和抗CD40L抗体.结果 同种移植组移植心脏中CXCR6 mRNA的表达以及脾脏CD8+T淋巴细胞上CXCR6的表达均高于同系移植组和正常对照组.抗CXCL16抗体对CD8+T淋巴细胞的细胞毒活性无影响.与对照组相比较,实验组小鼠移植心脏存活时间并未明显延长.结论 小鼠心脏移植排斥反应中CD8+T淋巴细胞CXCR6的表达上升,阻断CXCL16/CXCR6相互作用并不能延长移植心脏的存活时间.
Abstract:
Objective To investigate the expression of CXCR6 in allograft rejection and effect of CXCL16/CXCR6 interaction on allograft survival Methods Intra-abdominal heterotopic heart transplantation was performed using wild type (WT) Balb/c mice (H-2d) (allogeneic) as donors or WT C57BL/6 mice (B6, H-2b) (syngeneic) as donors, and using WT B6 mice as recipients. The intragraft expression of CXCR6 and expression of CXCR6 in CD8+ T cells of the spleens from syngeneic and allogeneic recipients were examined. The allogeneic recipients were further divided into the experimental group (n = 5) and control group (n = 6) randomly. The experiment group and control group were injected with anti-CXCL16 mAb or control mAb respectively until rejection occurred. The cardiac allograft survival in experimental group and control group was evaluated. Results Rejected allografts showed higher expression of CXCR6 than syngeneic cardiac grafts. More importantly,expression of CXCR6 in CD8+ T cells was also up-regulated by allograft rejection. However, injection of anti-CXCL16 mAb could not inhibit cytotoxic activity of CD8+ T cells. Moreover, experimental group could not prolong the cardiac graft survival time as compared with control group. Conclusion Expression of CXCR6 in CD8+ T cells is up-regulated in allograft rejection.  相似文献   

6.
目的 研究CXC趋化因子受体6(CXCR6)在同种异体小鼠心脏移植中的表达及CXC趋化因子配体16(CXCL16)与CXCR6相互作用对移植物存活时间的影响.方法 以野生型Balb/c小鼠(H-2d)为供者(同种移植组),或以野生型C57BL/6小鼠(H-2b)为供者(同系移植组),以野生型C57BL/6小鼠为受者分别行小鼠腹腔异位心脏移植.测定同系和同种移植组小鼠移植心脏CXCR6mRNA的表达,并测定受者脾脏CD8+T淋巴细胞CXCR6的表达.另制作小鼠同种异位心脏移植模型(Balb/c小鼠为供者,C57BL/6小鼠为受者),将其分为实验组和对照组,实验组受者移植当天至发生排斥反应时腹腔注射抗CXCL16抗体,对照组受者同期注射对照抗体.记录两组移植心脏存活时间.进行CD8+T淋巴细胞的细胞毒试验,即用Balb/c小鼠脾细胞免疫C57BL/6小鼠后,获取C57BL/6小鼠脾脏CD8+T淋巴细胞,将Balb/c小鼠脾细胞与C57BL/6小鼠CD8+T淋巴细胞混合培养,分别加入抗CXCL16抗体、小鼠IgG(对照抗体)和抗CD40L抗体.结果 同种移植组移植心脏中CXCR6 mRNA的表达以及脾脏CD8+T淋巴细胞上CXCR6的表达均高于同系移植组和正常对照组.抗CXCL16抗体对CD8+T淋巴细胞的细胞毒活性无影响.与对照组相比较,实验组小鼠移植心脏存活时间并未明显延长.结论 小鼠心脏移植排斥反应中CD8+T淋巴细胞CXCR6的表达上升,阻断CXCL16/CXCR6相互作用并不能延长移植心脏的存活时间.  相似文献   

7.
Acute rejection of human renal allografts is a frequent, serious posttransplantation complication, occurring in up to 50% of recipients. Leukocyte recruitment is a central feature of acute allograft rejection. Chemokine receptors are expressed on leukocytes in a cell type-specific manner. Recently CCR5+ and CXCR3+ cells have been observed in allograft biopsy specimens of patients undergoing acute cellular rejection (ACR). Herein we investigated the expression of Th1 (CCR5, CXCR3, and CCR2) and Th2 (CCR4, CCR3, and CCR8)-associated chemokine receptors on CD4 and CD8 T-cell populations. We sought to correlate chemokine receptor expression in peripheral blood T-cell subsets with the types of graft dysfunction (biopsy-proven rejections). In the peripheral blood CD4+ and CD8+ T-cell populations of patients with graft dysfunction, we observed a high frequency of Th1-associated chemokine receptors CCR5+ and CCR2+ but not CXCR3.  相似文献   

8.
BACKGROUND: Chemokines and chemokine receptors are critical in leukocyte recruitment, activation, and differentiation. Among them, CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 3 (CXCR3) have been reported to play important roles in alloimmune responses and may be potential targets for posttransplant immunosuppression. METHODS: Fully major histocompatibility complex (MHC)-mismatched murine cardiac and islet transplant models were used to test the effect in vivo of a novel, small-molecule compound TAK-779 by targeting CCR5 and CXCR3 in acute allograft rejection. An MHC class II mismatched cardiac transplant model was used to evaluate its efficacy in chronic allograft rejection. Intragraft expression of cytokines, chemokines, and chemokine receptors was measured by quantitative real-time polymerase chain reaction and by histological analysis. RESULTS: Treatment of TAK-779 significantly prolonged allograft survival across the MHC barrier in two distinct transplant models. The treatment downregulated local immune activation as observed by the reduced expression of several chemokines, cytokines, and chemokine receptors. Thereby, the recruitment of CD4, CD8, and CD11c cells into transplanted allografts were inhibited. Furthermore, TAK-779 treatment significantly attenuated the development of chronic vasculopathy, fibrosis, and cellular infiltration. CONCLUSIONS: Antagonism of CCR5 and CXCR3 has a substantial therapeutic effect on inhibiting both acute and chronic allograft rejection. CCR5 and CXCR3 are functional in the process of allograft rejection and may be potential targets in clinical transplantation in the future.  相似文献   

9.
Demir Y  Chen Y  Metz C  Renz H  Heeger PS 《Transplantation》2003,76(1):244-247
BACKGROUND: Macrophage migration inhibitory factor (MIF) is a secreted proinflammatory lymphokine essential for elicitation of delayed-type hypersensitivity (DTH) reactions in vivo. We tested whether MIF blockade-absence affected acute or chronic murine cardiac allograft rejection. METHODS: Wild-type (WT) C57BL/6 (B6) mice underwent transplantation with BALB/c hearts with or without blocking anti-MIF antibody, and MIF knockout (KO) B6 mice underwent transplantation with MIF KO BALB/c hearts. Chronic immune injury was induced in WT and KO recipients using donor-specific transfusion and anti-CD40L antibody. RESULTS: Unexpectedly, the blockade or genetic absence of MIF did not prolong graft survival even if recipient T-cell cytotoxicity was additionally impaired. The histologic manifestations of acute and chronic immune injury to the allograft were similar between groups. CONCLUSIONS: MIF is not required for acute or chronic allograft rejection in mice. The findings raise questions about the role of DTH as an important mediator of cardiac allograft injury.  相似文献   

10.
The role of CC chemokine receptor 5 (CCR5) in islet allograft rejection   总被引:6,自引:0,他引:6  
Chemokines are important regulators in the development, differentiation, and anatomic location of leukocytes. CC chemokine receptor 5 (CCR5) is expressed preferentially by CD4(+) T helper 1 (Th1) cells. We sought to determine the role of CCR5 in islet allograft rejection in a streptozotocin-induced diabetic mouse model. BALB/c islet allografts transplanted into CCR5(-/-) (C57BL/6) recipients survived significantly longer (mean survival time, 38 +/- 8 days) compared with those transplanted into wild-type control mice (10 +/- 2 days; P < 0.0001). Twenty percent of islet allografts in CCR5(-/-) animals without other treatment survived >90 days. In CCR5(-/-) mice, intragraft mRNA expression of interleukin-4 and -5 was increased, whereas that of interferon-gamma was decreased, corresponding to a Th2 pattern of T-cell activation in the target tissues compared with a Th1 pattern observed in controls. A similar Th2 response pattern was also observed in the periphery (splenocytes responding to donor cells) by enzyme-linked immunosorbent spot assay. We conclude that CCR5 plays an important role in orchestrating the Th1 immune response leading to islet allograft rejection. Targeting this chemokine receptor, therefore, may provide a clinically useful strategy to prevent islet allograft rejection.  相似文献   

11.
BACKGROUND: Interaction of chemokine receptor CXCR3 with its ligand IP-10 mediates effector cell trafficking to sites of allograft rejection in murine models of whole organ allotransplantation. We hypothesized that blocking the CXCR3/IP-10 interaction would impair posttransplantation leukocyte trafficking to and delay rejection of pancreatic islet allografts. METHODS: A/J strain murine islets were implanted to the kidney capsule of H-2 disparate, streptozotocin-induced diabetic wild type (WT), CXCR3 deficient (CXCR3(-/-)) or IP-10 antibody-treated WT (alphaIP-10) C57BL/6 recipients. Representative grafts from each group were harvested at day 7. Ribonuclease protection assay was used to determine gene expression for cell markers F4/80 (macrophages), CD8 (type I T cells), CD4 (type II T cells), and CD 19 (natural killer cells), and for chemokines IP-10, MIP-1alpha, MIP-1beta, MCP-1, and RANTES. Immunohistochemistry was used to confirm ribonuclease protection assay infiltrate data. Graft-site chemokine gene expression and cellular infiltrate were correlated with time to functional graft rejection. RESULTS: Untreated WT recipients demonstrated heavy graft-site cell infiltrates and increased graft-site gene expression for cell markers F4/80, CD8, CD4, and CD19, and for chemokines RANTES, IP-10, and MIP-1beta at day 7. In comparison with untreated WT, alphaIP-10-treated WT and CXCR3(-/-) recipients demonstrated the same degree of chemokine gene expression but less lymphocytic infiltrate. The mean length of allograft survival was 12.7 +/- 3.1 days in untreated WT versus 20.2 +/- 2.7 days (P <.05) for CXCR3(-/-)- and 19.7 +/- 2.3 days (P <.05) for alphaIP-10-treated WT recipients. CONCLUSIONS: CXCR3 gene deletion or alphaIP-10 antibody therapy modulates posttransplantation lymphocytic graft infiltration and statistically prolongs graft survival in murine islet allograft recipients.  相似文献   

12.
BACKGROUND: It has been shown that simultaneous blockade of CD28- and CD40-mediated costimulatory signals significantly prolongs allograft survival. Although these results led to an expectation of the establishment of specific immunotolerant therapy for organ transplantation, it became evident that these treatments rarely resulted in indefinite allograft survival. To uncover the mechanisms underlying these costimulation blockade-resistant allograft rejections, we studied the process of allogenic skin graft rejection in CD28 and CD40 ligand (L) double-deficient (double-knockout [dKO]) mice. METHODS: Skin grafts from BALB/c or BALB.B mice were transplanted to C57BL/6 background dKO mice. The frequency of CD4+ and CD8+ T cells responding to alloantigens presented by direct or indirect pathways were defined by the use of a cytostaining assay. RESULTS: BALB/c skin grafts were rapidly rejected by dKO mice. This CD28 and CD40L independent allograft rejection was inhibited by the depletion of CD8+ T cells. In vitro studies indicated that CD8+ T cells from BALB/c skin-grafted dKO mice responded to donor antigen presented only by the direct pathway. Unlike major histocompatibility complex (MHC)-mismatched donors, allogenic skin grafts from MHC-matched donors were accepted by dKO mice. CONCLUSION: In the absence of CD28 and CD40 costimulatory signals, CD8+ T cells recognize MHC antigens by the direct pathway, resulting in the rejection of skin grafts from MHC-mismatched donors. In contrast, MHC-matched and non-MHC-mismatched donor skin grafts indefinitely survive in dKO mice. These results indicated that donor-host MHC matching may still be critical to costimulation blockade therapy for organ transplantation.  相似文献   

13.
Previous studies showed that absence of chemokine receptor Cxcr3 or its blockade prolong mouse cardiac allograft survival. We evaluated the effect of the CXCR3 receptor antagonist MRL-957 on cardiac allograft survival, and also examined the impact of anti-CXCR3 mAb in human CXCR3 knock-in mice. We found only a moderate increase in graft survival (10.5 and 16.6 days, p < 0.05) using either the antagonist or the antibody, respectively, compared to control (8.7 days). We re-evaluated cardiac allograft survival with two different lines of Cxcr3−/- mice. Interestingly, in our hands, neither of the independently derived Cxcr3−/- lines showed remarkable prolongation, with mean graft survival of 9.5 and 10.8 days, respectively. There was no difference in the number of infiltrating mononuclear cells, expansion of splenic T cells or IFN-γ production of alloreactive T cells. Mechanistically, an increased other chemokine receptor fraction in the graft infiltrating CD8 T cells in Cxcr3−/- recipients compared to wild-type recipients suggested compensatory T-cell trafficking in the absence of Cxcr3. We conclude Cxcr3 may contribute to, but does not govern, leukocyte trafficking in this transplant model.  相似文献   

14.
Fan K  Wang H  Wei H  Zhou Q  Kou G  Hou S  Qian W  Dai J  Li B  Zhang Y  Zhu T  Guo Y 《Transplantation》2007,84(6):746-754
BACKGROUND: Previous studies have shown that blockade of LIGHT, a T-cell costimulatory molecule belonging to the tumor necrosis factor (TNF) superfamily, by soluble lymphotoxin beta receptor-Ig (LTbetaR-Ig) inhibited the development of graft-versus-host disease. The cardiac allografts were significantly prolonged in LIGHT deficient mice. No data are yet available regarding the role of the LIGHT/HVEM pathway in more stringent fully allogeneic models such as skin and islet transplantation models. METHODS: Streptozotocin-induced chemical diabetic BALB/C mice underwent transplantation with allogeneic C57BL/6 islets and were treated with LTbetaR-Ig, CTLA4-Ig or a combination of both in the early peritransplant period. RESULTS: Administration of CTLA4-Ig or LTbeta R-Ig alone only increased graft survival to 55 days and 27 days respectively, whereas simultaneous blockade of both pathways significantly prolonged the islet allograft survival for more than 100 days. Long-term survivors were retransplanted with donor-specific (C57BL/6) islets and the grafted islets remained functional for more than 100 days. All of islet allografts were protected against rejection when the mixtures of 1x10(6) CD4+ T cells from tolerant mice and islet allografts were cotransplanted under the renal capsule of the na?ve BALB/c recipients. CONCLUSIONS: These data indicate that: 1) a synergistic effect for prolonged graft survival can be obtained by simultaneously blocking LIGHT and CD28 signaling in the stringent model of islet allotransplantation; 2) development of donor-specific immunological tolerance is associated with the presence of regulatory T-cell activity; and 3) local cotransplantation of the allografts with the regulatory T cells can effectively prevent allograft rejection and induce donor-specific tolerance in lymphocytes-sufficient recipients.  相似文献   

15.
The generation of GT-Ko mice has provided unique opportunities to study allograft and xenograft rejection in the context of anti-alpha1,3-Gal antibody (anti-Gal Ab) responses. In this study we used the allotransplantation model of C3H hearts into galactosyltransferase-deficient (GT-Ko) mice and the xenotransplantation model of baby Lewis rat hearts into GT-Ko mice to investigate the ability of CTLA-41g in combination with anti-CD40L mAb to control graft rejection and anti-Gal Ab production. Murine CTLA-41g or anti-CD40L monotherapy prolonged allograft survival, and the combination of these reagents was most immunosuppressive. However short-term treatment with murine cytotoxic T lymphocyte associated antigen-4 (muCTLA-41g) and/or CD40 ligand (CD154) monoclonal antibodies (anti-CD40L mAbs) was unable to induce indefinite allograft survival. CTLA-4-immunoglobulin fusion protein (CTLA-41g) or anti-CD40L monotherapy only marginally prolonged xenograft survival; the combination of human CTLA-41g and anti-CD40L significantly prolonged xenograft survival (74days), while the combination of murine CTLA-41g and anti-CD40L resulted in graft survival of >120days. CTLA-41g or anti-CD40L monotherapy or the combination of these agents inhibited the production of alloAbs, including anti-Gal Abs. CTLA-41g or anti-CD40L monotherapy partially controlled xenoAb and anti-Gal Ab production, while the combination was more effective. These observations corroborate our previous observations that humoral, including anti-Gal Ab, responses and rejection following allograft or concordant xenograft transplantation in GT-Ko mice are T-cell dependent and can be controlled by costimulation blockade.  相似文献   

16.
目的 观察阻断ICOS/B7h信号的供体特异性输血(DST)对异基因小鼠心脏移植术后体内CD4+CD25+调节性T细胞(Treg)的影响.方法 按陈氏方法建立小鼠颈部异位心脏移植模型,实验分3组,异基因组及同基因组:供心分别来源于BALB/C和C57BL/6小鼠,受体均为C57BL/6小鼠,未予治疗.治疗组:移植当天给予受体鼠(C57BL/6)尾静脉注射5×106 ICOS-Fc靶定的供体(BALB/C)脾B淋巴细胞,d0~6连续给予受体鼠尾静脉注射ICOS-Fc 200 μg/d.术后统计各组移植物的存活时间,通过流式细胞术检测受体鼠外周血中CD4+CD25+Treg的亚群比例,利用逆转录-聚合酶链反应(RT-PCR)检测移植物中FOXP3的mRNA表达,在混合淋巴细胞反应中检测CD4+CD25+Treg对CD4+CD25-效应T细胞(Teff)的增殖抑制效率.结果 与异基因组比较,治疗组心脏移植物存活时间明显延长[(84.38±29.14)d比(7.00±0.76)d,P<0.01].各组中,治疗组受体外周血中CD4+CD25+Treg亚群比例显著上调[(15.60±5.69)%,P<0.01].与其他两组比较,治疗组心脏移植物中FOXP3 mRNA表达显著上调.以正常鼠为对照,耐受鼠脾脏中获取的CD4+CD25+Treg能够更高效地抑制CD4+CD25-Teff在混合淋巴细胞培养中的增殖效应.结论 通过阻断ICOS/B7h信号的DST可以诱导异基因小鼠心脏移植耐受,CD4+CD25+Treg在耐受的形成与维持中均起着重要作用.  相似文献   

17.
BACKGROUND: Although CD154 costimulation blockade prolongs allograft survival in multiple transplantation models, the underlying immunological mechanisms remain to be elucidated. METHODS AND RESULTS: We used a murine orthotopic kidney allograft (KTx) model to analyze the impact of CD154 blockade on trafficking and function of alloreactive T effector versus T regulatory cells. A single dose of MR1 Ab treatment at the time of KTx significantly improved the survival of Balb/c KTx in na?ve C57BL/6 recipients (mean survival time >100 days vs. 52 days in controls; P<0.005), and improved graft histology, as evidenced by decreased lymphocyte infiltration and preservation of tissue architecture (days 6-8). In the early posttransplant phase, fluorescence-activated cell sorting analysis revealed preferential depression of T effector (CD8+CD25+) and relative enrichment of T-regulatory (CD4+ CD25+ CD152+) cells selectively in KTx. This pattern was further supported by intragraft gene expression analysis, which showed increased FoxP3/Tbet ratio and simultaneously decreased granzyme B/IFN-gamma levels in Ab-treated recipients. Additionally, MR1 Ab selectively up-regulated intragraft CCL17, but suppressed CXCL9/CCL5, in parallel with increased CCR4/CCR8 but unaltered CXCR3 expression. CONCLUSION: These results provide evidence, at both cellular and molecular levels, that CD154 blockade in murine KTx recipients differentially targeted T-effector and T-regulatory cell subsets by regulating intragraft induction of chemokines targeting distinct T-cell subsets.  相似文献   

18.
BACKGROUND: Investigations of the role of CD4 T lymphocytes in allograft rejection and tolerance have relied on the use of mouse models with a deficiency in CD4 cells. However, in mice treated with depleting monoclonal antibody (mAb) and in MHC class II knockout (KO) mice, there are residual populations of CD4 cells. CD4 KO mice had increased CD4- CD8-TCRalphabeta+ helper T cells, and both strains of KO mice could reject skin allografts at the normal rate. In this study, transgenic mice with no peripheral CD4 cells were the recipients of skin and heart allografts. Results were compared with allograft survival in CD4 and MHC class II KO mice. METHODS: GK5 (C57BL/6 bml mice transgenic for a chimeric anti-CD4 antibody) had no peripheral CD4 cells. These mice, and CD4 and class II KO mice, received BALB/c or CBA skin or cardiac allografts. Some GK5 mice were treated with anti-CD8 mAb to investigate the role of CD8 cells in rejection. CD4 and CD8 cells were assessed by FACS and immunohistochemistry. RESULTS: BALB/c skin on GK5 mice had a mean survival time +/- SD of 24+/-6 days, compared with 9+/-2 days in wild-type mice. Anti-CD8 mAb prolonged this to 66+/-7 days. BALB/c skin survived 10+/-2 days on class II KO and 14+/-2 days on CD4 KO, both significantly less than the survival seen on GK5 recipients (P<0.001). BALB/c hearts survived >100 days in GK5 recipients and in wild-type recipients treated with anti-CD4 mAb at the time of grafting, in contrast to a mean survival time of 10+/-2 days in untreated wild-type mice. Immunohistochemistry revealed that long-term surviving heart allografts from the GK5 recipients had CD8 but no CD4 cellular infiltrate. These hearts showed evidence of transplant vasculopathy. CONCLUSIONS: The GK5 mice, with a complete absence of peripheral CD4 cells, provide the cleanest available model for investigating the role of CD4 lymphocytes in allograft rejection. Prolonged skin allograft survival in these mice compared with CD4 and MHC class II KO recipients was clearly the result of improved CD4 depletion. Nevertheless, skin allograft rejection, heart allograft infiltration, and vascular disease, mediated by CD8 cells, developed in the absence of peripheral CD4 T cells.  相似文献   

19.
OBJECTIVES: Bronchiolitis obliterans (BO) is the main cause of late mortality among long-term survivors of lung transplantation. Chemokine-chemokine receptor (CCR) interaction and subsequent recruitment of infiltrating cells to the graft are early events in the development of chronic rejection of transplanted lungs. The present study investigated whether blockade of chemokine receptors CCR1 and CCR5 with Met-regulated-on-activation, normal T cells expressed and secreted (RANTES), an amino-terminal modified derivative of RANTES/CCL5, affects the development of BO in murine model and we sought to determine the expression of RANTES/CCL5 and their relationship with extracellular signal-regulated kinase (ERK). Materials and Methods: BALB/c mouse tracheas were heterotopically transplanted into C57Black6 recipients and treated for 21 days with either Met-RANTES at 20 microg/day or vehicle. Animals were killed at 21 days after transplantation for histologic examination of ERK expression. RESULTS: RANTES/CCL5 was highly expressed in allografts compare to isografts. Met-RANTES treatment ameliorated fibrous airway obliteration in a mouse model of BO and decreased ERK expression. CONCLUSION: Blockade of chemokine receptors by Met-RANTES ameliorated airway obliteration and decreased ERK expression. These findings suggest that chemokine receptors CCR1 and CCR5 play significant roles in the development of chronic rejection and ERK may be a new molecular target for chronic rejection.  相似文献   

20.
Previously, we reported that allogeneic skin grafts were rapidly rejected by CD28 and CD40 ligand double deficient mice mediated by CD8+ T cells. These results indicated that some elements in addition to CD28- and CD40-mediated costimulation provide stimulatory signals for the activation of donor-specific CD8+ T cells. In this report, we investigated the role of inflammation associated with transplantation on costimulation-independent priming of CD8+ T cell during graft rejection. B6 RAG1 KO mice were transplanted with BALB/c-skin and adoptively transferred with syngeneic CD8+ T cells the same day or 50 days after transplantation. When blockade of CD28- and CD40-mediated costimulation failed to prevent acute rejection of freshly transplanted skin grafts, it efficiently delayed rejection of well-healed skin grafts. These results showed that factors associated with transplantation have essential roles in inducing costimulation blockade-resistant allograft rejection. Costimulation blockade failed to prevent acute graft-infiltration of NK cells and increasing expression of intragraft IL-12 and IL-15. These factors may trigger the graft-infiltration and priming of CD8+ T cells to induce costimulation blockade-resistant allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号