首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Roflumilast is an oral, once-daily phosphodiesterase 4 (PDE4) inhibitor with anti-inflammatory activity. We compared the anti-inflammatory effects of roflumilast with those of PDE4 inhibitors rolipram, piclamilast, and cilomilast in ovalbumin (OVA)-sensitized and challenged Brown-Norway rats. Animals were treated orally 1h before OVA challenge with roflumilast (0.3, 1.0, and 3.0mg/kg), rolipram (0.8, 2.8, and 8.3mg/kg), piclamilast (10.0, 20.0, and 30.0mg/kg), or cilomilast (10.3, 34.3, and 103.0mg/kg). Airway hyperresponsiveness (AHR) against adenosine was investigated by measuring airway resistance 200min after OVA challenge. Subsequently, neutrophil influx and tumor necrosis factor-alpha (TNF-alpha) release in the lungs were determined by bronchoalveolar lavage. Direct bronchodilation at the time point of AHR assessment by PDE4 inhibitors was examined in serotonin-challenged animals. Evaluation of neutropenic animals or treatment with anti-TNF-alpha antibody revealed that AHR was independent of neutrophil accumulation or TNF-alpha release. Roflumilast (50% inhibitory dose [ID(50)]=1.5mg/kg) inhibited AHR 3-, 16-, and 27-fold more potently than rolipram, piclamilast, and cilomilast, respectively. Likewise, roflumilast was a more potent inhibitor of neutrophil influx (ID(50)=0.9mg/kg) than rolipram (ID(50)=6.9mg/kg), piclamilast (ID(50)=28.1mg/kg), or cilomilast (ID(50)=37.7mg/kg). Roflumilast, rolipram, and piclamilast-but not cilomilast-suppressed OVA-induced TNF-alpha release in a dose-dependent manner. Roflumilast (ID(50)=0.9mg/kg) exhibited 9- and 23-fold more potent inhibition of TNF-alpha release than rolipram and piclamilast, respectively. Roflumilast did not inhibit serotonin-induced bronchoconstriction 4.5h after administration, suggesting that inhibition of AHR by roflumilast results from anti-inflammatory, not bronchodilatory, effects. This study suggests that roflumilast has anti-inflammatory action and provides rationale for the investigation of roflumilast in asthmatic patients.  相似文献   

2.
Chronic obstructive pulmonary disease (COPD) is a common, progressive respiratory disease that causes great morbidity and mortality despite treatment. Tumor necrosis factor alpha (TNF-alpha) plays a central role as a pro-inflammatory cytokine in COPD. TNF-alpha release is markedly inhibited by phosphodiesterase type 4 (PDE4) inhibitors that have proven efficacious in COPD clinical trials. The aim of this study was to compare the in vitro activities of the novel selective PDE4 inhibitors CI-1044 compared to well-known PDE4 inhibitors, rolipram and cilomilast, and to the glucocorticoid dexamethasone at reducing lipopolysaccharide (LPS)-induced TNF-alpha release in whole blood from COPD patients and healthy subjects. In the whole blood from COPD patients pre-incubation with PDE4 inhibitors or dexamethasone resulted in a dose-dependent inhibition of LPS-induced TNF-alpha release with IC(50) values of 1.3+/-0.7, 2.8+/-0.9 microM, higher to 10 microM and lesser than 0.03 microM for CI-1044, rolipram, cilomilast and dexamethasone, respectively. We observed a similar inhibition in the whole blood from healthy volunteers with, however, higher IC(50) values. These results indicate that CI-1044 inhibits in vitro LPS-induced TNF-alpha release in whole blood from COPD patients better than rolipram and cilomilast and suggested that it could be a useful anti-inflammatory therapy in COPD.  相似文献   

3.
In vitro studies in rat mastocytes and human monocytes suggested that reproterol (a selective beta(2)-adrenoceptor agonist with a theophylline moiety) exerts anti-inflammatory actions through inhibition of cyclic AMP (cAMP) PDE activity. Thus, reproterol was tested for its ability to inhibit cAMP PDE in cultured mouse mastocytoma P-815 cells. cAMP PDE activity was measured in intact cells by spectrofluorometry using the fluorescent substrate 2'-O-anthraniloyl cAMP. Reproterol was more potent than theophylline to inhibit cAMP PDE (pIC(50)=4.28+/-0.25 vs. 3.16+/-0.05). This contrasted with disrupted cells, where the PDE inhibitory potency of reproterol was low (pIC(50)=2.85+/-0.03) and similar to that of theophylline (pIC(50)=2.66+/-0.19). No cAMP PDE inhibition was found with other beta(2)-agonists tested (fenoterol, salbutamol, salmeterol and formoterol). Finally, the selective PDE inhibitors calmidazolium (100 nM), milrinone (5 microM) and rolipram (50 microM) inhibited cAMP PDE activity by approximately 20, 30 and 25% respectively. In conclusion, reproterol potently and non-specifically inhibited intracellular cAMP phosphodiesterases in intact mastocytoma cells. This can explain the previously reported beta(2)-adrenoceptor-independent anti-inflammatory actions of reproterol in vitro. Further studies are required to define the anti-inflammatory potential of reproterol in asthma.  相似文献   

4.
Lipworth BJ 《Lancet》2005,365(9454):167-175
Inhibitors of phosphodiesterase type 4 (PDE4) act by increasing intracellular concentrations of cyclic AMP, which has a broad range of anti-inflammatory effects on various key effector cells involved in asthma and chronic obstructive pulmonary disease (COPD). The therapeutic ratio for PDE4 inhibitors is thought to be determined by selectivity on receptor subtypes for relative effects on PDE4B (anti-inflammatory) and PDE4D (emesis). The two main orally active PDE4 inhibitors in the late phase III of clinical development are cilomilast and roflumilast; the latter (and its active metabolite N-oxide) is more selective and potent with a superior therapeutic ratio. Studies on cilomilast in COPD based on bronchial biopsy material have shown a broad range of anti-inflammatory activity, and the available evidence on clinical outcomes for up to 6 months with cilomilast 15 mg twice daily and roflumilast 500 mug once daily have shown variable but significant effects on exacerbations and quality of life, with small improvements in measures of pulmonary function. Roflumilast has a better safety and tolerability profile than cilomilast, with the main adverse effects being nausea, diarrhoea, and abdominal pain. Roflumilast also has activity in asthma as assessed by its attenuation of allergen and exercise challenges, and it shows clinical efficacy equivalent to that of beclomethasone dipropionate 400 mug daily. The emerging results of clinical trials on PDE4 inhibitors in asthma and COPD should be interpreted with cautious optimism since much of the evidence has been published only in abstract form to date. The next few years should resolve important issues about the potential role of these drugs as oral non-steroidal anti-inflammatory therapy for asthma and COPD and their place in management guidelines. Ultimately, clinicians will want to know whether PDE4 inhibitors are anything more than expensive "designer" theophylline, the archetypal non-selective phosphodiesterase inhibitor.  相似文献   

5.
PDE4 inhibitors in COPD--a more selective approach to treatment   总被引:5,自引:0,他引:5  
Chronic obstructive pulmonary disease (COPD) is a serious and mounting global public health problem. Although its pathogenesis is incompletely understood, chronic inflammation plays an important part and so new therapies with a novel anti-inflammatory mechanism of action may be of benefit in the treatment of COPD. Cilomilast and roflumilast are potent and selective phosphodiesterase (PDE)4 inhibitors, with an improved therapeutic index compared with the weak, non-selective PDE inhibitor, theophylline. Unlike theophylline, which is limited by poor efficacy and an unfavourable safety and tolerability profile, the selective PDE4 inhibitors are generally well tolerated, with demonstrated efficacy in improving lung function, decreasing the rate of exacerbations and improving quality of life, with proven anti-inflammatory effects in patients with COPD. Theophylline is a difficult drug to use clinically, requiring careful titration and routine plasma monitoring due to the risk of toxic side effects, such as cardiovascular and central nervous system adverse events, with dose adjustments required in many patients, including smokers, the elderly and some patients on concomitant medications. In contrast, the selective PDE4 inhibitors are convenient medications for both patient and physician alike. Hence these agents represent a therapeutic advance in the treatment of COPD, due to their novel mechanism of action and potent anti-inflammatory effects, coupled with a good safety and tolerability profile.  相似文献   

6.
磷酸二酯酶(PDE)存在于许多炎症细胞及结构细胞中,目前已发现11种.PDE抑制剂主要抑制体内环磷酸腺苷(cAMP)及环磷酸鸟苷(cGMP)水解,使细胞内cAMP及cGMP浓度增加,引起一系列生理功能,如平滑肌舒张、减轻细胞炎症及免疫反应等.PDE4特异性水解cAMP,选择性PDE4抑制剂具有广泛抗炎作用,如抑制细胞趋化,抑制中性粒细胞、嗜酸粒细胞、巨噬细胞及T细胞细胞因子及化学趋化物质释放.第二代PDE4抑制剂Cilomilast和Roflumilast已进入临床实验阶段,并已证实对支气管哮喘(简称哮喘)及慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)有效.由于胃肠道副作用,这类药物临床应用受到一定限制.PDE5可特异性水解cGMP,对缺氧性肺动脉高压和血管重塑有效.PDE3和PDE7特异性水解cAMP,PDE7参与T细胞激活.目前其他PDE抑制剂与PDE4抑制剂混合制剂正在研发中.PDE4-PDE7双重抑制剂可能对哮喘及COPD更有效.PDE3-PDE4双重抑制剂具有更强的支气管舒张作用及气道保护作用.  相似文献   

7.
In asthma and chronic obstructive pulmonary disease (COPD), the number of eosinophils and neutrophils in the lung is increased. One described mechanism leading to the impaired clearance of these cells from the lung is the delay in their programmed cell death (apoptosis). Selective inhibitors of phosphodiesterases (PDEs) are under development for the treatment of lung diseases because of their anti-inflammatory and bronchodilator activity. The aim of the present study was to establish whether inhibitors of PDE3, PDE4 and PDE5 modulate human eosinophil or neutrophil apoptosis or beta 2-adrenoceptor agonist- or cytokine-afforded survival. We also evaluated whether a PDE4 inhibitor could modulate the effect of a corticosteroid on eosinophil and neutrophil apoptosis. Apoptosis was measured by using the relative DNA fragmentation assay and Annexin-V binding. Inhibitors of PDE4 (rolipram; 0.1-10 microM) and PDE3 (cilostazol; 0.1-10 microM) delayed spontaneous eosinophil apoptosis maximally by 25% and 15%, respectively. A combination of a PDE4 or PDE3 inhibitor (10 microM) with salbutamol (100 nM) further delayed eosinophil apoptosis maximally by 42-49%. In neutrophils, rolipram (10 microM) also decreased apoptosis with a maximal inhibition of 13%. The combination of rolipram (10 microM) and salbutamol (100 nM) produced a 27% inhibition of neutrophil apoptosis. Inhibitor of cGMP-specific PDE5 (zaprinast; 0.1-10 microM) did not affect eosinophil apoptosis and only slightly increased spontaneous neutrophil apoptosis. The effect of budesonide on apoptosis was not significantly modulated by a PDE4 inhibitor in eosinophils or neutrophils. The present results show that selective inhibitors of cAMP-hydrolyzing PDEs (PDE3 and PDE4) delay eosinophil apoptosis and, thus, increase their survival in vitro. Furthermore, beta 2-adrenoceptor agonists enhance the anti-apoptotic effects of PDE3 and PDE4 inhibitors, suggesting that such drug combinations may prolong eosinophil and neutrophil longevity in the lung.  相似文献   

8.
Subclasses of cyclic AMP phosphodiesterase in cardiac muscle   总被引:4,自引:0,他引:4  
Canine and guinea-pig left ventricular muscle contains multiple molecular forms of phosphodiesterase (PDE) which vary according to substrate specificity, stimulation by calmodulin and response to various selective and nonselective phosphodiesterase inhibitors. Both species possess a cyclic AMP-specific form of phosphodiesterase (PDE III). In the dog, both soluble and particulate forms of PDE III are present. The particulate form of PDE III is potently inhibited by cyclic GMP and the selective PDE III inhibitors imazodan (CI-914) and cilostamide, but is only weakly inhibited by the selective PDE III inhibitors Ro 20-1724 and rolipram. In contrast, the soluble form of PDE III in canine left ventricle is only weakly inhibited by cyclic GMP, imazodan and cilostamide, but is potently inhibited by Ro 20-1724 and rolipram. Guinea-pig left ventricle contains only one subclass of PDE III, which is potently inhibited by cyclic GMP, imazodan and cilostamide, but not by Ro 20-1724 or rolipram. However, whereas the imazodan-sensitive subclass of PDE III is a particulate enzyme in the canine left ventricle, in the guinea-pig this subclass of PDE III is a soluble enzyme. Both soluble and particulate PDE III's are (i) insensitive to calmodulin; (ii) possess comparable Km and Vmax values for hydrolysis of cyclic AMP; (iii) are equally inhibited by the nonselective PDE inhibitor theophylline, and (iv) are eluted from DEAE-cellulose anion-exchange resin by comparable concentrations of sodium acetate. The demonstration of distinct subclasses of the cyclic AMP-specific phosphodiesterase (PDE III) in canine left ventricular muscle associated with different domains of the cell suggests compartmentation of cyclic AMP. In addition, the observation that the imazodan-sensitive form of PDE III is a particulate enzyme in canine left ventricle and a soluble enzyme in guinea-pig left ventricle may explain the species differences which exist regarding the positive inotropic response to imazodan in these two species.  相似文献   

9.
During differentiation of human monocytes (CD14(+)/CD1a(-)) to CD14(-)/CD1a(+)dendritic cells (DC), a drastic decrease in PDE4 activity was observed, while activities of PDE1 and PDE3 substantially increased. DC released tumour necrosis factor-alpha (TNF) in response to lipopolysaccharide (LPS) challenge, which was abolished both by dexamethasone and the cyclic AMP-elevating drugs db-cAMP and PGE(2). In addition, rolipram, at PDE4-selective concentrations, blocked TNF release by 37 +/- 5% (P<0.05 vs. control). The PDE3 inhibitor motapizone only marginally influenced TNF synthesis, but a synergistic inhibitory effect was noted in combination with rolipram. Qualitatively, similar inhibitory effects were observed in DC-stimulated T cell responses. Motapizone, lacking efficacy when used alone, increased the effect of rolipram in blocking CD4(+)T lymphocyte proliferation in response to antigen (Ag) (tetanus toxoid, TT; keyhole limpet hemocyanin, KLH) presented by DC and in allogeneic mixed leukocyte reactions (MLR). However, in these coculture systems the T cells rather than the DC seem to be the major target cells of PDE-inhibitor action. In summary, PDE inhibitors can affect DC function directly as demonstrated by blocking TNF release and their efficacy reflects the changes in the PDE activity profile during differentiation from their monocyte precursors. These results together with the known efficacy of PDE3/4 inhibitors in T cells support the concept of combined PDE3/4 inhibitors for asthma therapy.  相似文献   

10.
The aim of this study was to investigate whether cyclic adenosine 3'5-monophosphate (cAMP) phosphodiesterase (PDE) activity is altered in monocytes from mild asthmatic subjects. Total cAMP PDE activity (pmol/min per mg protein) was significantly greater in homogenates prepared from monocytes from asthmatic subjects (68.3 +/- 7.0, n=9) compared to healthy individuals (46.3 +/- 3.3, n=14, P<0.05). The PDE inhibitors siguazodan (PDE3-selective), rolipram (PDE4-selective) and theophylline (non-selective) produced a concentration-dependent inhibition of cAMP PDE activity in homogenates from monocytes from normal and asthmatic subjects. However, siguazodan produced significantly greater (P<0.05), and rolipram significantly less (P<0.05), inhibition of total cAMP PDE activity in monocytes from asthmatics (n=4) than from healthy individuals (n=5). cAMP PDE activity was inhibited with equal potency by theophylline in monocytes from healthy and asthmatic subjects. We also investigated the functional consequences of the changes in PDE activity in mononuclear cells obtained from asthmatic subjects. There was no significant difference in the ability of PDE4 inhibitors to attenuate TNF alpha release from monocytes obtained from asthmatic compared with healthy subjects (P>0.05). Despite a significant increase in the biochemical activity of PDE3 in monocytes from asthmatic subjects, the PDE3 inhibitor siguazodan, failed to significantly reduce TNF alpha release from human monocytes. Thus, total cAMP PDE activity is increased in monocytes taken from mild asymptomatic asthmatics compared to healthy subjects and is reflected by an increase in the proportion of PDE3 and a decrease in the proportion of PDE4. This augmented enzyme activity was not associated with an alteration in the ability of PDE4 inhibitors to attenuate mononuclear cell function from asthmatics compared to healthy individuals.  相似文献   

11.
Rodríguez-Roisin R 《COPD》2005,2(2):253-262
The pathophysiology of chronic obstructive pulmonary disease (COPD) is complex and can be attributed to multiple components: mucociliary dysfunction, airway inflammation and structural changes, all contributing to the development of airflow limitation, as well as an important systemic component. Current pharmacotherapies vary in their ability to address the underlying multi-component nature of COPD. Long-acting anticholinergics and long-acting beta2-agonists (LABAs) can both provide effective and convenient bronchodilation in moderate COPD (Stage II-GOLD) and are recommended as regular therapy in global treatment guidelines. However, there is evidence to suggest that LABAs can mediate additional benefits independent of their bronchodilatory effects and may help address the multi-component nature of COPD. Effects on mucociliary dysfunction and reduced bacterial-induced damage have been experimentally proven with LABAs, and anti-inflammatory activity and structural effects have also been suggested. The use of inhaled corticosteroids (ICSs) is now recommended for the treatment of COPD patients with frequent exacerbations. In addition, ICSs provide a range of anti-inflammatory effects in COPD and thus have effects that are complementary to those of LABAs. Recent data indicate that LABA/ICS combinations produce wide-ranging clinical benefits that are greater than with either agent alone. Other new strategies include selective phosphodiesterase 4 (PDE4) inhibitors, which in addition to anti-inflammatory activity, have been shown to provide bronchodilation in COPD. In summary, the potential to address the multicomponent nature of COPD with strategies such as LABA/ICS combination therapy, and the development of new treatments directed at novel targets means that the future for sufferers of COPD can be more optimistic.  相似文献   

12.
Multiple isozymes of cyclic nucleotide phosphodiesterase (PDE) exist in mammalian cells. At least 5 major types of PDE isozymes have been identified; they differ by substrate affinity, maximal activity, intracellular regulation or mechanism of pharmacologic inhibition. A low Michaelis constant (Km) cyclic adenosine monophosphate (cAMP) PDE, whose activity is inhibited by submicromolar concentrations of cyclic guanosine monophosphate and stimulated by cAMP-mediated phosphorylation, is present in both cardiac muscle and vascular smooth muscle. This PDE isozyme (referred to as peak IIIc PDE) is sensitive to selective inhibition by amrinone, milrinone, imazodan, CI-930, piroximone, and numerous other PDE inhibitors. The subcellular distribution of cardiac PDE IIIc varies according to species; it is found in the soluble fraction of guinea pig myocardium, in the particulate fraction of canine myocardium, and in both fractions of primate (simian and human) myocardium. Another PDE isozyme, which is sensitive to inhibition by rolipram and is less sensitive to inhibition by PDE IIIc inhibitors, is found in cardiac muscle of some species (i.e., soluble fractions of rat and canine myocardium) and is apparently not related to direct regulation of positive inotropy. Both positive inotropy and vasorelaxation by milrinone and other PDE IIIc inhibitors can be linked to inhibition of PDE IIIc and activation of the cAMP system. These significant relations are similar to those obtained for other cAMP-related positive inotrope/vasodilators (such as beta-adrenoreceptor agonists). Moreover, an increased rate of ventricular relaxation (lusitropy), which is apparent with PDE IIIc inhibitors, may also be attributable to activation of the cAMP system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Heaves is an allergic airway disease in horses characterised by reversible airway obstruction, bronchial hyperresponsiveness and airway inflammation associated with a Th(2) response. Cyclic nucleotide-dependent signalling pathways can regulate lymphocyte function. In this study, we examined lymphocyte PDE activity comparing horses with heaves to healthy control animals. Total PDE activity and the effects of isoenzyme selective inhibitors were measured before, 5 and 24 h after the start of a 7 h allergen challenge. Allergen challenge had no effect on either total cAMP PDE activity or its inhibition by the PDE4 selective inhibitor, rolipram, and the non-selective PDE inhibitor, theophylline. In contrast, the PDE3 selective inhibitor, quazinone, caused significantly greater inhibition of cAMP PDE activity before challenge in the heaves susceptible group. Additionally, total cGMP PDE activity was significantly lower 24 h after the start of challenge in the heaves affected group (11+/-2 and 21+/-3 pmol/min/mg for heaves and control animals, respectively) and the PDE5 selective inhibitor, zaprinast, caused significantly less inhibition in the heaves group at this time point. The functional significance of these findings was explored by examining the effect of PDE3, PDE4 and PDE5 selective inhibitors on mitogen-induced mononuclear cell proliferation before and 24 h after the start of allergen challenge. Proliferation decreased after challenge in the heaves group (stimulation index=328+/-110 and 200+/-72 before and after challenge, respectively) whilst remaining constant in the control group (stimulation index=161+/-13 and 183+/-45 before and after challenge, respectively). However, all three PDE inhibitors caused a similar amount of inhibition at each time point and the effect of a combination of a PDE3 and a PDE5 inhibitor was simply additive in both groups. These results suggest differences in the control of lymphocyte PDE activity in horses with heaves.  相似文献   

14.
15.
PURPOSE OF REVIEW: Chronic obstructive pulmonary disease (COPD) is a disease state characterized by airflow limitation that is usually progressive. In addition, an abnormal inflammatory response of the lungs to noxious particles or gases can be seen throughout the airways, parenchyma, and pulmonary vasculature. So far, anti-inflammatory medications (eg, inhaled corticosteroids) have failed to show a major effect on the decline of lung function in COPD patients. Novel anti-inflammatory therapies such as selective phosphodiesterase 4 (PDE4) inhibitors are in clinical development. Their potential role in the management of COPD is described in this review. RECENT FINDINGS: Some of the selective PDE4 inhibitors have demonstrated in vitro and in vivo anti-inflammatory activity on cells commonly linked to airway inflammation in COPD, such as neutrophils. While these agents seem to offer only a modest improvement in lung function compared with other bronchodilators, their anti-inflammatory effects appear to provide some substantial benefits in reducing exacerbations and improving health-related quality of life. SUMMARY: Based on the available data, the second generation of selective PDE4 inhibitors will likely provide additional therapeutic options for the management of COPD. These agents may become an important tool in the treatment of this disease, since they target three important components of COPD: airway obstruction, inflammation, and structural changes.  相似文献   

16.
The effects of Gingko biloba extract EGb 761 on 5 isolated, vascular, cyclic nucleotide phosphodiesterase (PDE) isoforms were evaluated. EGb 761 preferentially inhibited PDE4 (IC(50)=25.1 mg/L), the isoform that is mainly present in endothelial cells, in a competitive manner (K:(i)=12.5 mg/L). Because changes in cyclic nucleotide levels may affect intracellular calcium ([Ca(2+)](i)) levels in endothelial cells, we examined the effects of EGb 761 on both resting [Ca(2+)](i) levels and agonist-induced rises in [Ca(2+)](i) in single human umbilical vein endothelial cells (HUVECs) in culture. The effects of EGb 761 were compared with those of rolipram, a selective PDE4 inhibitor that increases cellular cAMP levels, and the cAMP analogue dibutyryl cAMP (db-cAMP). EGb 761 (20 and 100 mg/L), rolipram (50 micromol/L), and db-cAMP (100 micromol/L) significantly inhibited histamine-, ATP-, and thrombin-induced [Ca(2+)](i) increases in HUVECs without modifying resting [Ca(2+)](i) levels. Similar results were obtained by using a Ca(2+)-free bath solution. EGb 761 (100 mg/L), but not rolipram (50 micromol/L) or db-cAMP (100 micromol/L), also inhibited Ca(2+) influx into cells having thapsigargin-depleted internal Ca(2+) stores and bathed in a Ca(2+)-free external solution. Our results are consistent with an inhibition of PDE activity that causes a reduction of agonist-induced increases in [Ca(2+)](i) in HUVECs, mainly by inhibition of Ca(2+) mobilization from internal stores. It thus may be that the cardiovascular effects of EGb 761 involve inhibition of PDE4 activity and subsequent modification of Ca(2+) signaling in endothelial cells.  相似文献   

17.
G. Dent  H. Magnussen  K. F. Rabe 《Lung》1994,172(3):129-146
Although theophylline has been used in the treatment of lung diseases, particularly bronchial asthma, since the nineteenth century, the mechanisms underlying its effectiveness remained poorly understood until quite recently. The identification of cyclic nucleotide phosphodiesterase (PDE)— the enzyme responsible for breaking down cyclic AMP and cyclic GMP within cells—as a target for methylxanthines such as theophylline led to a research effort that has resulted in the characterization of multiple forms of the PDE enzyme and the development of selective inhibitors for some of these forms. Using these drugs, it has been possible to identify the PDE isoenzymes in a number of tissues and cells and to demonstrate the functional effects of the inhibition of different PDEs upon these tissues. Studies on the smooth muscle of human airways and pulmonary arteries have identified isoenzyme-selective PDE inhibitors that are effective broncho- and vasorelaxants in vitro, and it is hoped that these agents may be effective in relieving airway obstruction and pulmonary hypertension in patients. In addition, selective inhibitors of certain PDE isoenzymes suppress the pro-inflammatory functions of a range of immune cells, including the lung mast cell and the alveolar macrophage. Selective inhibitors of PDE isoenzymes are beginning to undergo clinical trials for the treatment of asthma. The advancing understanding of the PDE distribution in the lung and the ever more precise characterization of distinct enzyme proteins should allow the development of site-selective drugs for the treatment of lung diseases, while minimizing the systemic side effects associated with nonselective PDE inhibitors such as theophylline. Offprint requests to: K. F. Rabe  相似文献   

18.
Inhibition of type IV phosphodiesterase (PDE4) activity is beneficial in various inflammations. However, the effect of phosphodiesterase inhibitors on the development of stress-induced gastric mucosal lesions has not been reported. In the present study, we examined the effect of a specific PDE4 inhibitor (rolipram) on stress-induced gastric mucosal lesions. Rats were exposed to water-immersion stress with or without pretreatment with rolipram. Ulcer index and myeloperoxidase activity of the gastric mucosa were evaluated. Gastric mucosal lesions and mucosal myeloperoxidase activity were suppressed by treatment with rolipram without acid suppression. The effect of intraperitoneal administration of 2.5 mg/kg rolipram on suppression of mucosal lesions was almost equal to that of treatment with 200 mg/kg cimetidine. We demonstrated that a specific PDE4 inhibitor has a potent anti-ulcer effect presumably mediated by an increment in intracellular cAMP in inflammatory cells, in which this enzyme is abundantly and specifically expressed.  相似文献   

19.
Phosphodiesterase‐4 (PDE4) hydrolyses cyclic adenosine monophosphate (cAMP), a crucial secondary messenger for cellular adaptation to diverse external stimuli. The activity of PDE4 is tightly controlled by post‐translational regulation, structure‐based auto‐regulation and locus specific ‘compartmentalization’ of PDE4 with its interactive proteins (signalsomes). Through these mechanisms, PDE4 regulates cAMP levels and shapes the cAMP signalling, directing signals from the diverse external stimuli to distinct microenvironments exquisitely. Derangement of the PDE4‐cAMP signalling represents a pathophysiologically relevant pathway in metabolic disorders as demonstrated through a critical role in the processes including inflammation, disordered glucose and lipid metabolism, hepatic steatosis, abnormal lipolysis, suppressed thermogenic function and deranged neuroendocrine functions. A limited number of PDE4 inhibitors are currently undergoing clinical evaluation for treating disorders such as type 2 diabetes and non‐alcoholic steatohepatitis. The discovery of novel PDE4 allosteric inhibitors and signalsome‐based strategies targeting individual PDE4 variants may allow PDE4 isoform selective inhibition, which may offer safer strategies for chronic treatment of metabolic disorders. © 2016 World Obesity  相似文献   

20.
《COPD》2013,10(2):253-262
The pathophysiology of chronic obstructive pulmonary disease (COPD) is complex and can be attributed to multiple components: mucociliary dysfunction, airway inflammation and structural changes, all contributing to the development of airflow limitation, as well as an important systemic component. Current pharmacotherapies vary in their ability to address the underlying multi-component nature of COPD. Long-acting anticholinergics and long-acting β2-agonists (LABAs) can both provide effective and convenient bronchodilation in moderate COPD (Stage II–GOLD) and are recommended as regular therapy in global treatment guidelines. However, there is evidence to suggest that LABAs can mediate additional benefits independent of their bronchodilatory effects and may help address the multi-component nature of COPD. Effects on mucociliary dysfunction and reduced bacterial-induced damage have been experimentally proven with LABAs, and anti-inflammatory activity and structural effects have also been suggested. The use of inhaled corticosteroids (ICSs) is now recommended for the treatment of COPD patients with frequent exacerbations. In addition, ICSs provide a range of anti-inflammatory effects in COPD and thus have effects that are complementary to those of LABAs. Recent data indicate that LABA/ICS combinations produce wide-ranging clinical benefits that are greater than with either agent alone. Other new strategies include selective phosphodiesterase 4 (PDE4) inhibitors, which in addition to anti-inflammatory activity, have been shown to provide bronchodilation in COPD. In summary, the potential to address the multicomponent nature of COPD with strategies such as LABA/ICS combination therapy, and the development of new treatments directed at novel targets means that the future for sufferers of COPD can be more optimistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号