首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated activities of superoxide dismutase (SOD) were detected in histidine-requiring strains of Salmonella typhimurium after the bacteria were preincubated for 1 h at 37 degrees C with S-9 mix and paraquat (methylviologen, PQ2+) at 10(-4) M. A fivefold increase in SOD level was found for strains TA 98 and TA 100. These elevated levels of SOD activity were correlated with a significant reduction of the mutagenicity of metabolically activated benzo(a)pyrene (B(a)P) in these tester bacteria when evaluated in a preincubation assay system. A 69.0-92.5% and 23.5-66.9% reduction was noticed when 0.5-4.0 micrograms per plate of B(a)P was used in TA 98 and TA 100, respectively. However, exogenous superoxide dismutase at 10-100 micrograms ml-1 added to top agar had no significant effect on the number of revertants produced by activated B(a)P. These data indicate a major role of intracellular superoxide anion in promoting mutagenicity of B(a)P.  相似文献   

2.
It was previously reported that magnolol strongly inhibited the mutagenicity induced by the indirect mutagens [benzo(a)pyrene (B(a)P), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-aminodipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2), 2-aminoanthracene (2AA), and 7,12-dimethylbenz[a]anthracene (DMBA)] in Salmonella typhimurium TA98 and TA100 in the Ames test, and that the mechanism of this anti-mutagenic effect may involve the inhibition of the metabolic activation of indirect mutagen enzymes. In this study, the in vivo anti-clastogenic effect of magnolol against clastogenicity induced by B(a)P was evaluated using the micronucleus test in mice. Animals were treated with an oral administration of magnolol (1, 10, and 100 mg/kg) at -24, 0, 24, 48, 72, and 96 h before a single intraperitoneal injection of B(a)P. Peripheral blood specimens were prepared 48 h after administration of B(a)P, and analyzed by the acridine orange (AO) technique. The results indicated that magnolol inhibited clastogenicity induced by B(a)P at various administration times. In order to elucidate the mechanism behind this effect, we measured the activity of the detoxifying enzymes [UDP-glucuronosyltransferase (UGT) and glutathione-S-transferase (GST)] and antioxidative enzymes [superoxide dismutase (SOD) and catalase] in the liver when treated with an oral administration of magnolol at various administration times. Its effect on clastogenicity created by exposure to oxidative DNA damage-inducing X-ray irradiation was also evaluated using the micronucleus test in mice. Results showed that magnolol increased the activity of both UGT and SOD enzymes, and also inhibited the clastogenicity induced by X-ray irradiation. Magnolol had an anti-clastogenic effect on B(a)P in the micronucleus test as well as an anti-mutagenic effect on indirect mutagens in the Ames test. The anti-clastogenic effect of magnolol was also suggested by the increases in UGT and SOD enzyme activity, and by the attenuation of oxidative damage induced by X-ray irradiation.  相似文献   

3.
A combination of purine and xanthine oxidase (XOD) dose-dependently elicited sustained contraction of porcine coronary arterial rings and resulted in increased concentrations of superoxide anions and hydrogen peroxide. These contractile responses appeared, with a delay, after the application of purine and XOD, used as a reactive oxygen species (ROS)-generating system. Coronary arteries precontracted with prostaglandin F(2alpha) failed to relax in response to substance P after exposing the arterial preparation to this ROS-generating system. The contractile response of the coronary artery to the ROS-generating system was almost completely inhibited by catalase (130 U/ml), and was partially inhibited by superoxide dismutase (60 U/ml), or mannitol (30 mM). A voltage-dependent L-type Ca(2+) channel antagonist, nicardipine, had no effect on contraction. Dysfunction of endothelial cells was completely prevented by catalase, but not by superoxide dismutase or mannitol. These results suggest that superoxide anions, hydrogen peroxide and hydroxyl radicals might be involved in eliciting sustained, delayed-onset coronary artery contraction, which is not related to L-type Ca(2+) channels. They also suggest that hydrogen peroxide might play a major role in endothelial dysfunction of the porcine coronary artery.  相似文献   

4.
The mutagenic activity of two antihypertensive drugs, hydralazine and dihydralazine was investigated in oxyR-proficient (TA104) and -deficient (TA4125) Salmonella typhimurium strains showing different ability to induce proteins involved in protection of the cells against oxidative damage. The results of the Ames test demonstrated that dihydralazine, in contrast to hydralazine, was mutagenic for oxyR strain at concentrations that were nonmutagenic for oxyR+ strain. The scavenger of superoxide anion, superoxide dismutase decreased in both strains the number of revertants induced by dihydralazine but not by hydralazine. The results may suggest that active oxygen species generated by dihydralazine contribute to its mutagenicity.  相似文献   

5.
The effect of Co(II) ion on the reaction of hydrogen peroxide with DNA was investigated by a DNA sequencing technique using 32P-5'-end-labeled DNA fragments obtained from human c-Ha-ras-1 protooncogene. Co(II) induced strong DNA cleavage in the presence of hydrogen peroxide even without alkali treatment. Guanine residues were the most alkali-labile site, and the extent of cleavages at the positions of thymine and cytosine was dependent on the sequence. Adenine residues were relatively resistive. Diethylenetriaminepentaacetic acid, present in excess over Co(II), inhibited DNA cleavage. Singlet oxygen scavengers (dimethylfuran, sodium azide, 1,4-diazabicyclo[2.2.2]octane, dGMP), sulfur compounds (methional, methionine), and superoxide dismutase inhibited DNA cleavage completely. Hydroxyl radical scavengers were not so effective as singlet oxygen scavengers. ESR studies using 2,2,6,6-tetramethyl-4-piperidone as a singlet oxygen trap suggest that Co(II) reacts with hydrogen peroxide to produce singlet oxygen or its equivalent. ESR studies using 5,5-dimethylpyrroline N-oxide (DMPO) showed that the hydroxyl radical adduct of DMPO was also formed. The results suggest that Co(II) ion binds to DNA and subsequently reacts with hydrogen peroxide to produce singlet oxygen and hydroxyl radicals and that singlet oxygen plays a more important role in the DNA damage than hydroxyl free radicals.  相似文献   

6.
Paraquat-stimulated NADPH-dependent lipid peroxidation in mouse brain and pulmonary microsomes was inhibited by superoxide dismutase and singlet oxygen quenchers, but not by catalase or hydroxyl radical scavengers. MnCl2, which might form a salt with unsaturated lipid, inhibited the lipid peroxidation in brain microsomes, but not that in pulmonary microsomes. These findings suggest that activated oxygen species, especially superoxide and singlet oxygen, may play a major role in the stimulation of microsomal lipid peroxidation by paraquat in both brain and lung, and that the nature of the lipids exposed to peroxidative attack may be different in microsomes of the two organs.  相似文献   

7.
The participation of reactive oxygen species (ROS) in virus inactivation by 1,9-dimethylmethylene blue (DMMB) phototreatment in stroma-free hemoglobin (SFH) was investigated with the use of scavengers, quenchers and enhancer. Virus (R17 bacteriophage) photoinactivation by either activated monomer or dimer DMMB was suppressed by sodium azide (singlet oxygen quencher) and promoted by the substitution of H2O for deuterium oxide (D2O), which is known to prolong the lifespan of singlet oxygen. There was no or little effect of mannitol (hydroxyl radical scavenger) and superoxide dismutase (superoxide scavenger) on the photoinactivation. Similar experiments were conducted to investigate the mechanism of methemoglobin (Met-Hb) formation by the activated monomer of DMMB. There was little effect of the singlet oxygen quencher, histidine, or the enhancer, D2O, on Met-Hb formation. However, rutin, which inhibits not only singlet oxygen but also other ROS, and mannitol supressed the formation of Met-Hb by activated monomer. The addition of superoxide dismutase (SOD) did not inhibit the formation. In contrast to the activity of the DMMB monomer, that of the dimer was inhibited by histidine and enhanced by D2O. The addition of neither mannitol nor SOD affected Met-Hb formation by activated dimer. These results collectively suggest that virus photoinactivation by the activated monomer and dimer of DMMB as well as Met-Hb formation by the activated dimer proceed via a singlet oxygen mediated pathway. In contrast, singlet oxygen may play a less important role in Met-Hb formation by the activated monomer.  相似文献   

8.
Some 2-substituted-1 H-phenanthro [9,10-d] imidazole compounds synthesized as a predrugs were tested in mutagenicity assays in Salmonella strains TA97, TA98, and TA100 using a plate incorporation assay both with and without S9 mix. The 10 substances were mutagenic in TA97 and five of them were mutagenic only with metabolic activation, whereas one of them did not require the addition of S9. The eight substances were mutagenic in TA98 only with S9. For TA100, seven substances showed positive results both with and without S9, however another four required S9, whereas only one of them did not required metabolic activation. In summary, all of 13 substances derived from phenanthro [9,10-d] imidazole were found to be mutagenic for at least one or two of the three strains and their mutagenicity are discussed.  相似文献   

9.
Aqueous extracts of Cassia occidentalis Linn. (Leguminoceae) and Emblica officinalis Gaertn. (Euphorbiaceae) were screened for effectiveness in inhibiting mutagenicity of aflatoxin B1 (AFB1) and benzo[a]pyrene (B[a]P) in the Ames test. Antimutagenicity was evaluated using Salmonella typhimurium strains TA 98 and TA 100. In the assay, metabolic activation of AFB1 (0.5 microg/plate) and B[a]P (1 microg/plate) was mediated by rat liver S9 preparation. Although both plants inhibited mutagenicity, E. officinalis had more inhibitory effect than C. occidentalis. Their action is possibly mediated through interactions with microsomal activating enzymes. Their inhibitory action on chromosomal aberrations together with present results suggest that these plants have potent antimutagenic and anticarcinogenic activities against mutagens requiring metabolic activation.  相似文献   

10.
This study evaluates the toxic, mutagenic and antimutagenic effects of emerging edible plants that are consumed as new leafy vegetables in Taiwan. Among eight plant extracts, only the extracts of Sol (Solanum nigrum L.) showed cytotoxicity to Salmonella typhimurium TA100 in the absence of S9 mix. The toxicity of extracts from different parts of the Sol plant, such as leaf and stem, immature fruit and mature fruit, towards S. typhimurium TA100 and human lymphocytes was also assayed. The immature fruit extracts of Sol exhibited strong cytotoxicity with dose dependence and induced significant DNA damage in human lymphocytes based on the comet assay. However, no mutagenicity was found in eight plant extracts to TA98 or TA100 either with or without the S9 mixture. Sol and Sec [Sechium edule (Jacq.) Swartz] extracts showed the strongest inhibitory effect towards the mutagenicity of 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) in S. typhimurium TA98 and TA100; the ID(50) was less then 1 mg/plate. Cra [Crassocephalum creidioides (Benth.) S. Moore] extracts also expressed moderate antimutagenic activities towards IQ and benzo[a]pyrene (B[a]P) either in TA98 or in TA100; the ID(50) was 1.63-2.41 mg/plate. The extracts from Bas (Basella alba L.), Bou (Boussingaultia gracilis Miers var. pseudobaselloides Bailey), Cen (Centella asiatica L. Urban), Cor (Corchorus olitorius L.) and Por (Portulaca oleracea L.) showed weak to moderate inhibition of mutagenicity of IQ. However, the potential antimutagenicity of these plant extracts towards B[a]P was weaker than that towards IQ. For a direct mutagen, 4-nitroquinoline-N-oxide (NQNO), only the Sol extracts showed strong inhibitory effects in the TA100 system. The antimutagenic activity of water extracts of Sec was partly reduced by heating at 100 degrees C for 20 min. The heat-stable antimutagens in Sec extracts could be produced in the plant extract preparation process. Fractions with molecular weights above 30,000 showed the strongest antimutagenicity and peroxidase activity in all the fractions of the Sec extracts.  相似文献   

11.
Mutagenicities of 3-nitrodibenzofuran and 3-aminodibenzofuran were examined using Salmonella typhimurium TA98 and TA100. Strong mutagenicity was found in both compounds. The mutagenic potency of 3-nitrodibenzofuran was approximately 3.5-fold stronger in TA98 and twice stronger in TA100 than that of benzo[a]pyrene. Mutagenicity of 3-aminodibenzofuran was observed under metabolic activation and was 10 times stronger in TA98 and about 5 times stronger in TA100 than that of benzo[a]pyrene.  相似文献   

12.
Abstract

Some 2-substituted-1H-phenanthro [9,10-d] imidazole compounds synthesized as a predrugs were tested in mutagenicity assays in Salmonella strains TA97, TA98, and TA100 using a plate incorporation assay both with and without S9 mix. The 10 substances were mutagenic in TA97 and five of them were mutagenic only with metabolic activation, whereas one of them did not require the addition of S9. The eight substances were mutagenic in TA98 only with S9. For TA100, seven substances showed positive results both with and without S9, however another four required S9, whereas only one of them did not required metabolic activation. In summary, all of 13 substances derived from phenanthro [9,10-d] imidazole were found to be mutagenic for at least one or two of the three strains and their mutagenicity are discussed.  相似文献   

13.
The mutagenic potential of binary mixtures of nitro-polychlorinated dibenzo-p-dioxins and other environmentally related compounds was determined using Salmonella typhimurium strain TA98 in the standard plate incorporation assay. Samples tested included binary mixtures of 4-nitro-4'-chlorobiphenyl with 6-nitro-4,2',3',4',5'-pentachlorobiphenyl, 4-nitrobenzo-p-dioxin with 4-nitro-2,3,8-trichlorodibenzo-p-dioxin, and benzo[a]pyrene with either nitropentachlorobiphenyl or nitrotrichlorodibenzo-p-dioxin. Inhibition was the primary interaction observed for the mixtures of polyhalogenated dioxins or biphenyls with the direct-acting mutagens nitrodibenzo-p-dioxin or nitrochlorobiphenyl. At the highest dose tested, nitrotrichlorodibenzo-p-dioxin inhibited the bacterial mutagenicity of nitrodibenzo-p-dioxin by almost 50%, while pentachlorobiphenyl inhibited the mutagenicity of nitrobiphenyl by 34%. Conversely, synergism was the primary interaction observed for mixtures of halogenated aromatics with the promutagen benzo[a]pyrene. The addition of nitrotrichlorodioxin to benzo[a]pyrene enhanced the mutagenicity of the latter compound by as much as 70%, while the mutagenic potential of a mixture of benzo[a]pyrene and nitropentachlorobiphenyl was approximately 50% greater than the mutagenicity of benzo[a]pyrene alone. In summary, mixtures of nonmutagenic nitropolyhalogenated biphenyls or dibenzo-p-dioxins appear to inhibit the mutagenicity of direct-acting mutagens, while these same compounds seem to enhance the mutagenic potential of the promutagen benzo[a]pyrene.  相似文献   

14.
In the present study, the role of reactive oxygen species and the contribution of antioxidant defence in the time course of changes in acetylcholine-stimulated endothelium-dependent and sodium nitroprusside-stimulated endothelium-independent relaxation were investigated in aortic rings isolated from 6-month streptozotocin-diabetic and age-matched control rats. Although there were no significant differences in the degree of the peak relaxations produced by a single administration of acetylcholine (1 microM) or sodium nitroprusside (0.01 microM) between control and diabetic rings, the endothelium-dependent and -independent relaxant responses were more transient and the time required to reach a peak relaxation after addition of acetylcholine was shorter in diabetic vessels. Pretreatment of diabetic vessels with superoxide dismutase (100 U/ml) normalized the recovery phases of endothelium-dependent and -independent relaxations, but had no effect on the peak responses to acetylcholine and sodium nitroprusside. In the presence of diethyldithiocarbamate (5 mM), an inhibitor of superoxide dismutase, the transient nature of the relaxant response to acetylcholine or sodium nitroprusside was more marked and the peak relaxations were inhibited; these effects of diethyldithiocarbamate were more pronounced in diabetic than in control rings. Catalase, 160 U/ml, decreased the peak relaxant response to acetylcholine and accelerated fading of the relaxation in diabetic aorta. Similar results were obtained for control aorta with a higher concentration of catalase (550 U/ml). Pretreatment with 3-amino-1,2,4 triazole (5 mM), a catalase inhibitor, inhibited the peak relaxant response to acetylcholine in diabetic rings. The combination of superoxide dismutase (100 U/ml) plus 3-amino-1,2,4 triazole (5 mM) produced an increase of the transient nature of endothelium-dependent relaxation of diabetic rings greater than that with 3-amino-1,2,4 triazole alone. Neither catalase nor 3-amino-1,2,4 triazole affected the characteristics of sodium nitroprusside-induced relaxation. Desferrioxamine, an inhibitor of hydroxyl radical (.OH) production, or mannitol, a.OH scavenger, had no effect on the characteristics of either acetylcholine- or sodium nitroprusside-induced relaxation in control and diabetic rings. Biochemical measurements revealed an inhibited superoxide dismutase activity in diabetic aorta together with activated catalase. Our findings suggest that, during the chronic phase of streptozotocin-diabetes, excess superoxide (O(2)(. -)) is responsible for the enhanced transient nature of endothelium-dependent and -independent relaxation of aorta via a reduction in bioavailable concentrations of nitric oxide (NO). However, the involvement of hydrogen peroxide (H(2)O(2)) in the establishment of acetylcholine-stimulated relaxation may be increased, which is likely to account for the maintenance of the relaxant effect of acetylcholine in chronically diabetic vessels.  相似文献   

15.
The flame retardant tris(2,3-dibromopropyl)phosphate (Tris-BP) is converted to products which are mutagenic for Salmonella typhimurium TA 100 in the presence of rat liver microsomes, NADPH and oxygen. Other bromopropyl-compounds were also mutagenic; 2,3-dibromopropene and 2,3-dibromopropionic acid were directly mutagenic, whereas 2,3-dibromopropanol and tris(2-bromopropyl)phosphate were weakly mutagenic after addition of liver microsomes and cofactors. Typical in vivo and in vitro inhibitors of cytochrome P-450 inhibited Tris-BP mutagenicity. The effects of inducers of cytochrome P-450 on Tris-BP mutagenicity was dependent on the concentration of mutagen and microsomal protein in the assay, indicating complexity in the kinetics involved when dealing with possible multiple pathways that lead to mutagenicity. Addition of glutathione strongly inhibited Tris-BP mutagenicity. It is suggested that Tris-BP is oxidized to a reactive electrophile, possibly the 2-keto derivative, which could react with nucleophilic groups in DNA and thus lead to mutagenic events.  相似文献   

16.
Metabolically formed dihydrodiol epoxides in the bay-region of polycyclic aromatic hydrocarbons are thought to be responsible for the genotoxic properties of these environmental pollutants. The hexacyclic aromatic hydrocarbon dibenzo[def,mno]chrysene (anthanthrene), although lacking this structural feature, was found to exhibit considerable bacterial mutagenicity in histidine-dependent strains TA97, TA98, TA100, and TA104 of S. typhimurium in the range of 18-40 his(+)-revertant colonies/nmol after metabolic activation with the hepatic postmitochondrial fraction of Sprague-Dawley rats treated with Aroclor 1254. This mutagenic effect amounted to 44-84% of the values determined with benzo[a]pyrene under the same conditions. The specific mutagenicity of anthanthrene in strain TA100 obtained with the cell fraction of untreated animals was 6 his(+)-revertant colonies/nmol and increased 2.7-fold after treatment with phenobarbital and 4.5-fold after treatment with 3-methylcholanthrene. To elucidate the metabolic pathways leading to genotoxic metabolites, the microsomal biotransformation of anthanthrene was investigated. A combination of chromatographic, spectroscopic, and biochemical methods allowed the identification of the trans-4,5-dihydrodiol, 4,5-oxide, 4,5-, 1,6-, 3,6-, and 6,12-quinones, and 1- and 3-phenols. Furthermore, two diphenols derived from the 3-phenol, possibly the 3,6 and 3,9 positional isomers, as well as two phenol dihydrodiols were isolated. Three pathways of microsomal biotransformation of anthanthrene could be distinguished: The K-region metabolites are formed via pathway I dominated by monooxygenases of the P450 1B subfamily. On pathway II the polynuclear quinones of anthanthrene are formed. Pathway III is preferentially catalyzed by monooxygenases of the P450 1A subfamily and leads to the mono- and diphenols of anthanthrene. The K-region oxide and the 3-phenol are the only metabolites of anthanthrene with strong intrinsic mutagenicity, qualifying them as ultimate mutagens or their precursors. From the intrinsic mutagenicity of these two metabolites and their metabolic formation, the maximal mutagenic effect was calculated. This demonstrates the dominating role of pathway III in the mutagenicity of anthanthrene under conditions where it exhibits the strongest bacterial mutagenicity.  相似文献   

17.
The Salmonella typhimurium/microsome assay is a widely used bacterial genotoxicity assay to test potential carcinogens. The aim of this work was to evaluate the mutagenic and antimutagenic activities with and without the addition of an extrinsic metabolic activation system of essential oils obtained from an aerial part of Pituranthos chloranthus harvested from different stations in Tunisia. The oils showed no mutagenicity when tested with S. typhimurium strains TA98, TA100, and TA1535. On the other hand, we showed that these essential oils reduced significantly Benzo [a] pyrene (B[a] P) and sodium-azide–induced mutagenicity. The scavenging capacity of these essential oils was also estimated by evaluating the inhibition of DPPH radical. Essential oils harvested at Medenine and Gabes in November were more effective in scavenging activity. The essential oils were tested for their antimicrobial properties against five different bacteria, and were found to be weakly active, with MIC and MBC values in the range 0.6–4 and 2.2–5?mg/mL, respectively.  相似文献   

18.
Abstract The flame retardant tris(2,3-dibromopropyl)phosphate (Tris-BP) is converted to products which are mutagenic for Salmonella typhimurium TA 100 in the presence of rat liver microsomes, NADPH and oxygen. Other bromopropyl-compounds were also mutagenic; 2,3-dibromopropene and 2,3-dibromopropionic acid were directly mutagenic, whereas 2,3-dibromopropanol and tris(2-bromopropyl)phosphate were weakly mutagenic after addition of liver microsomes and cofactors. Typical in vivo and in vitro inhibitors of cytochrome P-450 inhibited Tris-BP mutagenicity. The effects of inducers of cytochrome P-450 on Tris-BP mutagenicity was dependent on the concentration of mutagen and microsomal protein in the assay, indicating complexity in the kinetics involved when dealing with possible multiple pathways that lead to mutagenicity. Addition of glutathione strongly inhibited Tris-BP mutagenicity. It is suggested that Tris-BP is oxidized to a reactive electrophile, possibly the 2-keto derivative, which could react with nucleophilic groups in DNA and thus lead to mutagenic events.  相似文献   

19.
Dibenzo[a,l]pyrene (DB[a,l]P) is one of the most potent carcinogens ever tested in mouse skin and rat mammary gland. DB[a,l]P is present in cigarette smoke and, presumably, in other environmental pollutants. Metabolism and mutagenicity studies of this compound compared to the weak carcinogen dibenzo[a,e]pyrene (DB[a,e]P) can provide preliminary evidence on its mechanism of carcinogenesis. The mutagenicity of DB[a,l]P, DB[a,e]P, and benzo[a]pyrene (BP) was compared in the Ames assay with Aroclor-induced rat liver S-9. BP was the strongest mutagen. In strain TA100, DB[a,l]P and DB[a,e]P were marginally mutagenic. In strain TA98 both compounds were mutagenic, and DB[a,l]P induced more than twice as many revertants as DB[a,e]P. The mutagenicity of DB[a,l]P does not correlate with its carcinogenicity, since DB[a,l]P is a much stronger carcinogen, but a much weaker mutagen, than BP. The NADPH-supported metabolism of DB[a,e]P and DB[a,l]P was conducted with uninduced and 3-methylcholanthrene-induced rat liver microsomes. Metabolites were analyzed by reverse-phase HPLC and identified by NMR, UV, and mass spectrometry. Uninduced microsomes produced only traces of metabolites with either compound. The major metabolites of DB[a,l]P with induced microsomes were DB[a,l]P 8,9-dihydrodiol, DB[a,l]P 11,12-dihydrodiol, 7-hydroxyDB[a,l]P, and a DB[a,l]P dione. The metabolites of DB[a,e]P with induced microsomes were DB[a,e]P 3,4-dihydrodiol, 3-hydroxyDB[a,e]P, 7-hydroxyDB[a,e]P, and 9-hydroxyDB[a,e]P. Some of these metabolites are very useful in assessing possible pathways of activation in the initiation of cancer.  相似文献   

20.
Byrsonima crassa is a plant pertaining to the Brazilian central savannah-like belt of vegetation and popularly used for the treatment of gastric dysfunctions and diarrhoea. The methanol extract contains catechin, tannins, terpenes and flavonoids; both mutagenic potential and antioxidant properties have been ascribed to flavonoids. The mutagenicity of some flavonoids is believed to be associated with the formation of reactive oxygen species and seems to depend on the number and position of hydroxyl groups. In the present study the mutagenic activity of the methanol, chloroform and 80% aqueous methanol extracts, as well as acetate and aqueous sub-fractions, of this medicinal plant were evaluated by Salmonella typhimurium assay, using strains TA100, TA98, TA102 and TA97a, and in mouse reticulocytes. The results showed mutagenic activity of the methanolic extract in the TA98 strain without S9, but no mutagenicity to mouse cells in any of the extracts. The acetate fraction showed strong signs of mutagenicity without S9, suggesting that in this enriched fraction were concentrated the compounds that induced mutagenic activity. The aqueous fraction showed no mutagenic activity. The TLC and HSCCC analyses of the acetate fraction with some standard compounds permitted the isolation of the quercetin-3-O-beta-D-galactopyranoside, quercetin-3-O-alpha-L-arabinopyranoside, amentoflavone, methyl gallate and (+)-catechin, of which only the amentoflavone exhibited positive mutagenicity to TA98 (+S9, -S9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号