首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Associating natural rewards with predictive environmental cues is crucial for survival. Dopamine (DA) neurons of the ventral tegmental area (VTA) are thought to play a crucial role in this process by encoding reward prediction errors (RPEs) that have been hypothesized to play a role in associative learning. However, it is unclear whether this signal is still necessary after animals have acquired a cue-reward association. In order to investigate this, we trained mice to learn a Pavlovian cue-reward association. After learning, mice show robust anticipatory and consummatory licking behavior. As expected, calcium activity of VTA DA neurons goes up for cue presentation as well as reward delivery. Optogenetic inhibition during the moment of reward delivery disrupts learned behavior, even in the continued presence of reward. This effect is more pronounced over trials and persists on the next training day. Moreover, outside of the task licking behavior and locomotion are unaffected. Similarly to inhibitions during the reward period, we find that inhibiting cue-induced dopamine (DA) signals robustly decreases learned licking behavior, indicating that cue-related DA signals are a potent driver for learned behavior. Overall, we show that inhibition of either of these DA signals directly impairs the expression of learned associative behavior. Thus, continued DA signaling in a learned state is necessary for consolidating Pavlovian associations.SIGNIFICANCE STATEMENT Dopamine (DA) neurons of the ventral tegmental area (VTA) have long been suggested to be necessary for animals to associate environmental cues with rewards that they predict. Here, we use time-locked optogenetic inhibition of these neurons to show that the activity of these neurons is directly necessary for performance on a Pavlovian conditioning task, without affecting locomotor per se These findings provide further support for the direct importance of second-by-second DA neuron activity in associative learning.  相似文献   

2.
3.
Dopaminergic neurons of the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) exhibit spontaneous firing activity. The dopaminergic neurons in these regions have been shown to exhibit differential sensitivity to neuronal loss and psychostimulants targeting dopamine transporter. However, it remains unclear whether these regional differences scale beyond individual neuronal activity to regional neuronal networks. Here, we used live-cell calcium imaging to show that network connectivity greatly differs between SNC and VTA regions with higher incidence of hub-like neurons in the VTA. Specifically, the frequency of hub-like neurons was significantly lower in SNC than in the adjacent VTA, consistent with the interpretation of a lower network resilience to SNC neuronal loss. We tested this hypothesis, in DAT-cre/loxP-GCaMP6f mice of either sex, when activity of an individual dopaminergic neuron is suppressed, through whole-cell patch clamp electrophysiology, in either SNC or VTA networks. Neuronal loss in the SNC increased network clustering, whereas the larger number of hub-neurons in the VTA overcompensated by decreasing network clustering in the VTA. We further show that network properties are regulatable via a dopamine transporter but not a D2 receptor dependent mechanism. Our results demonstrate novel regulatory mechanisms of functional network topology in dopaminergic brain regions.SIGNIFICANCE STATEMENT In this work, we begin to untangle the differences in complex network properties between the substantia nigra pars compacta (SNC) and VTA, that may underlie differential sensitivity between regions. The methods and analysis employed provide a springboard for investigations of network topology in multiple deep brain structures and disorders.  相似文献   

4.
5.
The dopamine containing mesencephalo-cortical pathway was studied in the rat by means of a combined retrograde fluorescent tracing and catecholamine histofluorescence technique. After large injections of the fluorescent retrograde tracer, Evans blue, into the frontal cortex, many neural somata of the ventral midbrain tegmentum were retrogradely labeled; most of the retrogradely labeled neurons also showed catecholamine fluorescence. However, some labeled cells (10–15%) did not show any catecholamine fluorescence. The present findings confirm the existence of a non-dopaminergic (DA) mesencephalo-cortical pathway and describe the topographical interrelationships between its DA and the non-DA cell bodies of origin.  相似文献   

6.
The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus that sends cholinergic, glutamatergic, and gamma‐aminobutyric acid (GABA)‐ergic projections to the ventral tegmental area (VTA), a key brain region associated with reward information processing and reinforcement learning, and thus, with addiction induced by drugs of abuse, including cocaine. Recent studies have revealed that the LDT, in addition to the VTA, plays important roles in the development and expression of cocaine‐induced addiction and stress‐induced enhancement of addictive behaviors. Additionally, neuroplasticity induced in LDT cholinergic neurons by repeated cocaine administration critically contributes to these behaviors. Elucidation of the underlying mechanisms of cocaine‐induced neuroplasticity in the LDT that influences reward circuit activity may lead to the development of therapeutic strategies to treat cocaine addiction and stress‐induced reinstatement of cocaine use. This review summarizes recent progress in the study of the LDT, specifically neuroplasticity in LDT cholinergic neurons induced by cocaine and its functional roles in the development and modulation of addictive behaviors associated with cocaine.  相似文献   

7.
Dopaminergic (DA) neurons of the midbrain are involved in controlling orienting and approach of animals toward relevant external stimuli. The firing of DA neurons is regulated by many brain structures; however, the sensory input is provided predominantly by the ipsilateral superior colliculus (SC). It is suggested that SC also innervates the contralateral rostromedial tegmental nucleus (RMTg)—the main inhibitory input to DA neurons. Therefore, this study aimed to describe the physiology and anatomy of the SC–RMTg pathway. To investigate the anatomic connections within the circuit of interest, anterograde, retrograde, and transsynaptic tract-tracing studies were performed on male Sprague Dawley rats. We have observed that RMTg is monosynaptically innervated predominantly by the lateral parts of the intermediate layer of the contralateral SC. To study the physiology of this neuronal pathway, we conducted in vivo electrophysiological experiments combined with optogenetics; the activity of RMTg neurons was recorded using silicon probes, while either contralateral or ipsilateral SC was optogenetically stimulated. Obtained results revealed that activation of the contralateral SC excites the majority of RMTg neurons, while stimulation of the ipsilateral SC evokes similar proportions of excitatory or inhibitory responses. Consequently, single-unit recordings showed that the activation of RMTg neurons innervated by the contralateral SC, or stimulation of contralateral SC-originating axon terminals within the RMTg, inhibits midbrain DA neurons. Together, the anatomy and physiology of the discovered brain circuit suggest its involvement in the orienting and motivation-driven locomotion of animals based on the direction of external sensory stimuli.SIGNIFICANCE STATEMENT Dopaminergic neurons are the target of predominantly ipsilateral, excitatory innervation originating from the superior colliculus. However, we demonstrate in our study that SC inhibits the activity of dopaminergic neurons on the contralateral side of the brain via the rostromedial tegmental nucleus. In this way, sensory information received by the animal from one hemifield could induce opposite effects on both sides of the dopaminergic system. It was shown that the side to which an animal directs its behavior is a manifestation of asymmetry in dopamine release between left and right striatum. Animals tend to move oppositely to the hemisphere with higher striatal dopamine concentration. This explains how the above-described circuit might guide the behavior of animals according to the direction of incoming sensory stimuli.  相似文献   

8.
Corticosteroids (CORT) have been widely used in anti-inflammatory medication. Chronic CORT treatment can cause mesocorticolimbic system dysfunctions, which are known to play a key role for the development of psychiatric disorders. The VTA is a critical site in the mesocorticolimbic pathway and is responsible for motivation and reward-seeking behaviors. However, the mechanism by which chronic CORT alters VTA dopamine neuronal activity is largely unknown. We treated periadolescent male mice with vehicle, 1 d, or 7 d CORT in the drinking water, examined behavioral impacts with light/dark box, elevated plus maze, operant chamber, and open field tests, measured the effects of CORT on VTA dopamine neuronal activity using patch-clamp electrophysiology and dopamine concentration using fast-scan cyclic voltammetry, and tested the effects of dopamine D2 receptor (D2R) blockade by intra-VTA infusion of a D2R antagonist. CORT treatment induced anxiety-like behavior as well as decreased food-seeking behaviors. We show that chronic CORT treatment decreased excitability and excitatory synaptic transmission onto VTA dopamine neurons. Furthermore, chronic CORT increased somatodendritic dopamine concentration. The D2R antagonist sulpiride restored decreased excitatory transmission and excitability of VTA dopamine neurons. Furthermore, sulpiride decreased anxiety-like behavior and rescued food-seeking behavior in mice with chronic CORT exposure. Together, 7 d CORT treatment induces anxiety-like behavior and impairs food-seeking in a mildly aversive environment. D2R signaling in the VTA might be a potential target to ameliorate chronic CORT-induced anxiety and reward-seeking deficits.SIGNIFICANCE STATEMENT With widespread anti-inflammatory effects throughout the body, corticosteroids (CORT) have been used in a variety of therapeutic conditions. However, long-term CORT treatment causes cognitive impairments and neuropsychiatric disorders. The impact of chronic CORT on the mesolimbic system has not been elucidated. Here, we demonstrate that 7 d CORT treatment increases anxiety-like behavior and attenuates food-seeking behavior in a mildly aversive environment. By elevating local dopamine concentration in the VTA, a region important for driving motivated behavior, CORT treatment suppresses excitability and synaptic transmission onto VTA dopamine neurons. Intriguingly, blockade of D2 receptor signaling in the VTA restores neuronal excitability and food-seeking and alleviates anxiety-like behaviors. Our findings provide a potential therapeutic target for CORT-induced reward deficits.  相似文献   

9.
Single unit activity of dopamine and non-dopamine neurons in the substantia nigra and ventral tegmental area was recorded across stages of sleep and waking in the rat. These stages consisted of slow wave sleep (SWS), rapid eye movement (REM) sleep, awake-quiet (AQ) and awake-moving (AM). The dopamine neurons showed no change in mean firing rate across the stages of sleep or waking. During REM sleep, however, the dopamine cells fired with a more variable interspike interval than during SWS. In contrast, non-dopamine neurons in the substantia nigra and ventral tegmental area showed large increases in firing rate in REM compared to SWS, and in AM compared to AQ, without showing changes in interspike interval variability. In conclusion, whereas other monoaminergic neurons and various cortical and subcortical neurons exhibit marked changes in firing rate across the stages of sleep and waking, the dopamine neurons are unique in their lack of change in firing rate across stages.  相似文献   

10.
Single unit activity of dopamine and non-dopamine neurons in the substantia nigra and ventral tegmental area was recorded across stages of sleep and waking in the rat. These stages consisted of slow wave sleep (SWS), rapid eye movement (REM) sleep, awake-quiet (AQ) and awake-moving (AM). The dopamine neurons showed no change in mean firing rate across the stages of sleep or waking. During REM sleep, however, the dopamine cells fired with a more variable interspike interval than during SWS. In contrast, non-dopamine neurons in the substantia nigra and ventral tegmental area showed large increases in firing rate in REM compared to SWS, and in AM compared to AQ, without showing changes in interspike interval variability. In conclusion, whereas other monoaminergic neurons and various cortical and subcortical neurons exhibit marked changes in firing rate across the stages of sleep and waking, the dopamine neurons are unique in their lack of change in firing rate across stages.  相似文献   

11.
12.
13.
Pharmacogerietically selected Wistar rat lines were used to investigate the implication of either high or low responsiveness of the dopamine system for the activity of the hypothalamus-pituitary-adrenal (HPA) axis. As selection criterion the gnawing response induced by the dopamine agonist apomorphine was used. This criterion allows to distinguish apomorphine susceptible (apo-sus) rats which show a vigorous gnawing response from apomorphine unsusceptible (apo-unsus) rats. The present study, using male animals of the 9-1 2th generation of the two rat lines, revealed the following characteristics of the stress response system: (i) in apo-sus rats under basal conditions corticotrophin-releasing hormone (CRH) mRNA level in the paraventricular nucleus (PVN) and plasma adrenocorticotropin (ACTH) concentration were significantly higher; total corticosterone (B) plasma level was similar but free B level was lower; (ii) exposure to a novel environment resulted in a higher and prolonged plasma ACTH and total B response in the apo-sus rats. Moreover, the elevated free B level was also prolonged; (iii) apo-sus rats had increased CRH-induced pituitary ACTH release and B secretion was also increased, but not as prolonged as during novelty. (iv) In dexamethasone-pretreated rats an intravenous ACTH1–24 injection resulted in a similar plasma B response in rats of both lines; (v) In vitro, ACTH1–24 produced a significantly higher B secretion by adrenocortical cells of apo-sus rats reflecting the higher in vivo ACTH priming of the adrenal glands in these animals. (vi) apo-sus rats had higher body and thymic weight. In conclusion, rats genetically selected for increased susceptibility of the dopamine system to apomorphine display subtle adrenocortical hyporesponsiveness and show resistance to corticosteroid hormone feedback action.  相似文献   

14.
Caffeine, the most commonly consumed psychoactive drug in the world, is readily available in dietary sources, including soft drinks, chocolate, tea and coffee. However, little is known about the neural substrates that underlie caffeine's rewarding and aversive properties and what ultimately leads us to seek or avoid caffeine consumption. Using male Wistar rats in a place conditioning procedure, we show that systemic caffeine at a low intraperitoneal dose of 2 mg/kg (or 100 µM injected directly into the rostral, but not caudal, portion of the ventral tegmental area) produced conditioned place preferences. By contrast, high doses of systemic caffeine at 10 and 30 mg/kg produced conditioned place aversions. These aversions were not recapitulated by a caffeine analog restricted to the periphery. Both caffeine reward and aversion were blocked by systemic D1‐like receptor antagonism using SCH23390, while systemic D2‐like receptor antagonism with eticlopride had smaller effects on caffeine motivation. Most important, we demonstrated that pharmacological blockade of dopamine receptors using α‐flupenthixol injected into the nucleus accumbens shell, but not core, blocked caffeine‐conditioned place preferences. Conversely, α‐flupenthixol injected into the nucleus accumbens core, but not shell, blocked caffeine‐conditioned place aversions. Thus, our findings reveal two dopamine‐dependent and functionally dissociable mechanisms for processing caffeine motivation, which are segregated between nucleus accumbens subregions. These data provide novel evidence for the roles of the nucleus accumbens subregions in mediating approach and avoidance behaviours for caffeine.  相似文献   

15.
Ghrelin receptor, also known as growth hormone secretagogue receptor (GHS-R1a), is coexpressed with its truncated isoform GHS-R1b, which does not bind ghrelin or signal, but oligomerizes with GHS-R1a, exerting a complex modulatory role that depends on its relative expression. D1 dopamine receptor (D1R) and D5R constitute the two D1-like receptor subtypes. Previous studies showed that GHS-R1b also facilitates oligomerization of GHS-R1a with D1R, conferring GHS-R1a distinctive pharmacological properties. Those include a switch in the preferred coupling of GHS-R1a from Gq to Gs and the ability of D1R/D5R agonists and antagonists to counteract GHS-R1a signaling. Activation of ghrelin receptors localized in the ventral tegmental area (VTA) seems to play a significant role in the contribution of ghrelin to motivated behavior. In view of the evidence indicating that dopaminergic cells of the VTA express ghrelin receptors and D5R, but not D1R, we investigated the possible existence of functional GHS-R1a:GHS-R1b:D5R oligomeric complexes in the VTA. GHS-R1a:GHS-R1b:D5R oligomers were first demonstrated in mammalian transfected cells, and their pharmacological properties were found to be different from those of GHS-R1a:GHS-R1b:D1R oligomers, including weak Gs coupling and the ability of D1R/D5R antagonists, but not agonists, to counteract the effects of ghrelin. However, analyzing the effect of ghrelin in the rodent VTA on MAPK activation with ex vivo experiments, on somatodendritic dopamine release with in vivo microdialysis and on the activation of dopaminergic cells with patch-clamp electrophysiology, provided evidence for a predominant role of GHS-R1a:GHS-R1b:D1R oligomers in the rodent VTA as main mediators of the dopaminergic effects of ghrelin.SIGNIFICANCE STATEMENT The activation of ghrelin receptors localized in the ventral tegmental area (VTA) plays a significant role in the contribution of ghrelin to motivated behavior. We present evidence that indicates these receptors form part of oligomeric complexes that include the functional ghrelin receptor GHS-R1a, its truncated nonsignaling isoform GHS-R1b, and the dopamine D1 receptor (D1R). The binding of ghrelin to these complexes promotes activation of the dopaminergic neurons of the VTA by activation of adenylyl cyclase–protein kinase A signaling, which can be counteracted by both GHS-R1a and D1R antagonists. Our study provides evidence for a predominant role of GHS-R1a:GHS-R1b:D1R oligomers in rodent VTA as main mediators of the dopaminergic effects of ghrelin.  相似文献   

16.
ObjectiveBrain-derived neurotrophic factor (BDNF) and its specific receptor, tropomyosin-related kinase (TrkB), play important roles in treating depression. In this experiment, we examined whether 7,8-dihydroxyflavone, a novel potent TrkB agonist, could reverse the behavioral and biochemical abnormalities induced by the chronic mild stress (CMS) paradigm in rats.MethodsSD rats were exposed to a battery of stressors for 56 days. 7,8-dihydroxyflavone (5 and 20 mg/kg) were administered intraperitoneally during the last 28 days of the CMS paradigm. Rats were tested in sucrose consumption test (SCT), forced-swimming test (FST) and elevated T-maze (ETM). Serum corticosterone levels and hippocampal BDNF levels of the rats were measured.ResultsFour-week CMS on the rats induced their depression-like behavior in SCT. The CMS-reduced sucrose consumption was reversed starting from 7 days after the 7,8-dihydroxyflavone (20 mg/kg) treatment and remained across the subsequent treatment regime. 7,8-dihydroxyflavone, when given at 5 mg/kg for 3 weeks, reduced the immobility time in the FST in the CMS-subjected rats. Additionally, the 4-week treatment with 7,8-dihydroxyflavone (20 mg/kg) attenuated the CMS-induced increase in anxiety-like behavior in the ETM. For the CMS-subjected rats, 7,8-dihydroxyflavone treatment dose-dependently reduced their serum corticosterone levels but increased their hippocampal BDNF levels only at 5 mg/kg.Conclusion7,8-dihydroxyflavone was beneficial for both depression and anxiety-like behaviors, and may exert fast-onset antidepressant effects. This provides a new insight into the pharmacological management of depression.  相似文献   

17.
To investigate the functions of neurons in the ventral tegmental area, recordings were made of the activity of 257 single neurons in this area in the behaving monkey. Four main types of neuronal response were found in the ventral part of the tegmentum. First, neurons with activity phasically related to mouth or arm movements were found. Most of these were located relatively far lateral, close to the junction of the midbrain reticular formation with the zona incerta, or were in the substantia nigra, pars reticulata. Second, neurons were found which responded differentially in a visual discrimination task on trials on which the monkey had to initiate a licking response compared with trials on which he did not, and which also altered their firing rate tonically while mouth movements were being made in other situations (differential motor neurons). These were found mainly in the midbrain reticular formation, consistent with the view that populations of neurons in these regions are involved in the execution of movements. Third, neurons which also responded differentially in the visual discrimination task, but did not respond when the same movements were made in other situations, were found in the ventral tegmental area, in a region medial to and in some cases immediately dorsal to the substantia nigra pars compacta. Fourth, neurons which responded to cues such as a tone which enabled the monkey to prepare for performance on each trial of the visual discrimination task were found in the ventral tegmental area close to the midline. These third and fourth types of neurons were thus found in the region where neurons of the mesocortical and mesolimbic pathways are located. Their responses are similar to those of neurons found in the striatum, and it is suggested that they are important in enabling the animal to prepare for and then to engage in particular behavioral responses.  相似文献   

18.
A major driver of obesity is the increasing palatability of processed foods. Although reward circuits promote the consumption of palatable food, their involvement in obesity remains unclear. The ventral pallidum (VP) is a key hub in the reward system that encodes the hedonic aspects of palatable food consumption and participates in various proposed feeding circuits. However, there is still no evidence for its involvement in developing diet-induced obesity. Here we examine, using male C57BL6/J mice and patch-clamp electrophysiology, how chronic high-fat high-sugar (HFHS) diet changes the physiology of the VP and whether mice that gain the most weight differ in their VP physiology from others. We found that 10–12 weeks of HFHS diet hyperpolarized and decreased the firing rate of VP neurons without a major change in synaptic inhibitory input. Within the HFHS group, the top 33% weight gainers (WGs) had a more hyperpolarized VP with longer latency to fire action potentials on depolarization compared with bottom 33% of weight gainers (i.e., non-weight gainers). WGs also showed synaptic potentiation of inhibitory inputs both at the millisecond and minute ranges. Moreover, we found that the tendency to potentiate the inhibitory inputs to the VP might exist in overeating mice even before exposure to HFHS, thus making it a potential property of being an overeater. These data point to the VP as a critical player in obesity and suggest that hyperpolarized membrane potential of, and potentiated inhibitory inputs to, VP neurons may play a significant role in promoting the overeating of palatable food.SIGNIFICANCE STATEMENT In modern world, where highly palatable food is readily available, overeating is often driven by motivational, rather than metabolic, needs. It is thus conceivable that reward circuits differ between obese and normal-weight individuals. But is such difference, if it exists, innate or does it develop with overeating? Here we reveal synaptic properties in the ventral pallidum, a central hub of reward circuits, that differ between mice that gain the most and the least weight when given unlimited access to highly palatable food. We show that these synaptic differences also exist without exposure to palatable food, potentially making them innate properties that render some more susceptible than others to overeat. Thus, the propensity to overeat may have a strong innate component embedded in reward circuits.  相似文献   

19.
应用荧光分光光度法和放射免疫法,在以6-羟基多巴胺(6-OHDA)单侧损毁内侧前脑束(MFB)制备的偏侧帕金森病(PD)大鼠模型身上,测定了腹侧被盖区(VTA)和伏核(Acb)中多巴胺(DA)和八胺胆囊收缩素(CCK-8)的含量,并测定了TVA和Acb区微量注射CCK-8对正常大鼠DA含量的影响。结果如下:PD大鼠模型损毁侧VTA和Acb的DA和CCK-8的含量与健康及对照组相比均减少(P〈0.0  相似文献   

20.
Glutamate plays a critical role in neuroadaptations induced by drugs of abuse. This study determined whether expression of the NMDAR1 subunit of the NMDA receptor is altered by repeated amphetamine administration. We quantified NMDAR1 mRNA (using in situ hybridization with 35S-labelled oligonucleotide probes) and immunolabelling (using immunocytochemistry with 35S-labelled secondary antibodies) in rat ventral midbrain, nucleus accumbens and prefrontal cortex after 3 or 14 days of withdrawal from five daily injections of saline or amphetamine sulphate (5 mg/kg/day). No changes in NMDAR1 expression were observed after 3 days of withdrawal, whereas significant decreases were observed in all regions after 14 days. NMDAR1 mRNA levels in midbrain were too low for reliable quantification, but immunolabelling was decreased significantly in intermediate and caudal portions of the substantia nigra. This may indicate a reduction in excitatory drive to substantia nigra dopaminergic neurons. In the nucleus accumbens, there were significant decreases in NMDAR1 mRNA levels (74.8 +/- 7. 7% of control, P < 0.05) and immunolabelling (76.7 +/- 4.4%, P < 0. 05). This may account for previously-reported decreases in the electrophysiological responsiveness of nucleus accumbens neurons to NMDA after chronic amphetamine treatment, and contribute to dysregulation of goal-directed behaviour. In prefrontal cortex, there was a significant decrease in NMDAR1 mRNA levels (76.1 +/- 7. 1%, P < 0.05) and a trend towards decreased immunolabelling (89.5 +/- 7.0%). This may indicate decreased neuronal excitability within prefrontal cortex. A resultant decrease in activity of excitatory prefrontal cortical projections to nucleus accumbens or midbrain could synergize with local decreases in NMDAR1 to further reduce neuronal excitability in these latter regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号