共查询到20条相似文献,搜索用时 11 毫秒
1.
Lai HC Yeh YC Wang LC Ting CT Lee WL Lee HW Wang KY Wu A Su CS Liu TJ 《Toxicology and applied pharmacology》2011,(3):437-448
Background
Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells.Methods
Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 μM), propofol (1 μM), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted.Results
Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-δ was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment.Conclusions
Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. 相似文献2.
目的:观察褪黑素(melatonin,MT)对心力衰竭大鼠的心肌细胞凋亡及氧化应激的影响,并初步探讨其影响机制。方法:将52只雄性SD大鼠随机分为3组。MT组及异丙肾上腺素组(ISO组)各20只,对照组12只。MT组及ISO组给予ISO皮下多点注射ISO建立心衰模型,造模成功后MT组给予MT治疗,ISO组不给予MT治疗;对照组不给予任何处置。8周后,随机从各组选取存活大鼠各10只,进行心脏超声检查,并测定心肌组织SOD、GSH-PX活性及MDA的含量;原位末端标记法(TUNEL)检测心肌细胞凋亡指数。结果:与对照组大鼠比较,ISO组及MT组大鼠LVEDD、LVESD明显扩大(P〈0.05或P〈0.01),LVEF、FS明显降低(P〈0.01),心肌细胞凋亡指数升高(P〈0.01),心肌组织MDA含量升高(P〈0.01),SOD、GSH-Px活性均有显著性下降(P〈0.05或0.01);与ISO组大鼠比较,MT组大鼠LVEDD、LVESD明显减小(P〈0.05),LVEF、FS明显增加(P〈0.05),心肌细胞凋亡指数减低(P〈0.01),心肌组织MDA含量下降(P〈0.05),SOD、GSH-Px活性亦有明显升高(P〈0.05)。结论:MT能够改善心力衰竭大鼠心肌组织的氧化应激反应及心肌细胞凋亡,并具有改善心脏功能的作用。 相似文献
3.
Plastic products are widely used in different applications. Thus, exposure of human and other organisms to these products may affect their biological system. The current study was conducted to investigate the potential deleterious effect of Polysterene nanoparticles (PS-NPs) on the liver and to state the cellular and molecular mechanisms associated with exposure to PS-NPs.30 male rats were divided randomly and equally into 3 groups; control (distilled water), low dose (3 mg/kg/day) and high dose (10 mg/kg/day) exposed group via oral gavage for 5 successive weeks. PS-NPs caused elevation in ALT, AST and MDA, upregulation of apoptosis-related genes and significant decrease in GSH and mRNA expression for antioxidant-related genes (Nrf-2 and GPx). Moreover, alterations in hepatic tissue architecture and positive caspase-3 expression was noticed in a dose- dependent manner. Collectively, PS-NPs can induce hepatoxicity in rats in a dose dependent manner, so the health risk of PS-NPs should not be ignored. 相似文献
4.
《Toxicology in vitro》2014,28(8):1386-1395
Over the years, pyrethroids, including D-allethrin, are widely used for domestic and agricultural purposes and are found to be toxic to many organ systems including the male reproductive system. However, the molecular mechanisms of allethrin toxicity are not well understood. In this study, we demonstrate that allethrin exhibited a dose-dependent cytotoxicity on Leydig cell carcinoma cells (LC540) and isolated primary Leydig cells with an IC50 of 125 μM and 59 μM respectively. Cytotoxicity was associated with generation of reactive oxygen species, increased lipid peroxidation and alterations in antioxidant enzyme status. Morphological analyses of LC540 cells treated with allethrin revealed the presence of apoptotic bodies. Using flow cytometry, we observed that the number of cells that displayed early apoptotic features and entering into G0 phase of cell cycle increased significantly with loss of mitochondrial membrane potential. The levels of p53 mRNA and cleaved PARP-1 protein were increased, whereas BCL-2, pro-Caspase-3 and PARP-1 were decreased. Allethrin induced apoptosis was associated with voltage gated calcium channel mediated intracellular calcium release. Results of our study demonstrate that allethrin toxicity in the male reproductive tract may involve Leydig cell apoptotic death. 相似文献
5.
《Toxicology in vitro》2015,29(8):1386-1395
Over the years, pyrethroids, including D-allethrin, are widely used for domestic and agricultural purposes and are found to be toxic to many organ systems including the male reproductive system. However, the molecular mechanisms of allethrin toxicity are not well understood. In this study, we demonstrate that allethrin exhibited a dose-dependent cytotoxicity on Leydig cell carcinoma cells (LC540) and isolated primary Leydig cells with an IC50 of 125 μM and 59 μM respectively. Cytotoxicity was associated with generation of reactive oxygen species, increased lipid peroxidation and alterations in antioxidant enzyme status. Morphological analyses of LC540 cells treated with allethrin revealed the presence of apoptotic bodies. Using flow cytometry, we observed that the number of cells that displayed early apoptotic features and entering into G0 phase of cell cycle increased significantly with loss of mitochondrial membrane potential. The levels of p53 mRNA and cleaved PARP-1 protein were increased, whereas BCL-2, pro-Caspase-3 and PARP-1 were decreased. Allethrin induced apoptosis was associated with voltage gated calcium channel mediated intracellular calcium release. Results of our study demonstrate that allethrin toxicity in the male reproductive tract may involve Leydig cell apoptotic death. 相似文献
6.
Xue T Luo P Zhu H Zhao Y Wu H Gai R Wu Y Yang B Yang X He Q 《Toxicology and applied pharmacology》2012,261(3):280-291
Dasatinib, a multitargeted inhibitor of BCR-ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague-Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 and cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. 相似文献
7.
PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation 总被引:2,自引:0,他引:2
Yusheng Ren Chengbo Sun Yan Sun Hongbing Tan Yuechun Wu Bo Cui Zonggui Wu 《Vascular pharmacology》2009,51(2-3):169-174
Cardiovascular disease (CVD) is a leading cause of death and disabilities worldwide. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists possess potent anti-inflammatory actions and have recently emerged as potential therapeutic agents for CVD. Here we show that H2O2 induced apoptosis in cardiomyocytes with a marked down-regulation of Bcl-2 protein. The PPARγ agonist rosiglitazone protected cardiomyocytes from oxidative stress and apoptosis. Cardiomyocytes constitutively overexpressing PPARγ were resistant to oxidative stress-induced apoptosis and protected against impairment of mitochondrial function. On the contrary, cells expressing a dominant negative mutant of PPARγ were highly sensitive to oxidative stress. Cells overexpressing PPARγ exhibited an almost 3 fold increase in Bcl-2 protein content; whereas, in PPARγ dominant negative expressing cells, Bcl-2 was barely detected. Bcl-2 knockdown by siRNA in cells overexpressing PPARγ results in increased sensitivity to oxidative stress, suggesting that Bcl-2 up-regulation mediated the protective effects of PPARγ. These data suggest that, in oxidative stress-induced cardiomyocyte apoptosis, PPARγ protects cells from oxidative stress through upregulating Bcl-2 expression. These findings provide further support for the use of PPARγ agonists in ischemic cardiac disease. 相似文献
8.
Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, little is known about the reproductive toxicity of Mn in birds. To investigate the toxicity of Mn on male reproduction in birds, 50-day-old cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, and 1800 mg/kg MnCl2. After being treated with Mn for 30, 60, and 90 d, the following were determined: Mn content; histological and ultrastructural changes in the testes, apoptosis; the malondialdehyde (MDA) level; the activities of superoxide dismutase (SOD); the inhibition ability of hydroxyl radicals (OH); the levels of nitric oxide (NO), nitric oxide synthase (NOS), and protein carbonyl in the testes; the DNA–protein crosslinks (DPC); and the activity of the ATP enzyme. Exposure to Mn significantly lowered the activity of SOD and glutathione peroxidase (GPx) and the inhibition ability of OH. Mn exposure also increased the levels of MDA, NO, NOS, DPC, and protein carbonyl; the number of apoptotic cells; and the Mn content and caused obvious histopathological changes in the testes. These findings suggested that Mn exposure resulted in the oxidative damage of cock testicular tissue by altering radical formation, ATP enzyme systems, apoptosis, and DNA damage, which are possible underlying reproductive toxicity mechanisms induced by Mn exposure. 相似文献
9.
《Toxicology in vitro》2015,30(8):1977-1981
BackgroundMeasuring of oxidative stress in peripheral blood mononuclear cells is a suitable model of dietary induced systemic oxidative stress. Thus, we aimed to evaluate whether a chronic high fructose intake could induce oxidative damage in peripheral blood and bone marrow mononuclear cells of rats.MethodsAnimals were randomly assigned to the following groups: Control group (standard rat chow and tap water n = 8), and Fructose group (standard rat chow and a 10% fructose solution in the drinking water n = 8). Reactive oxygen species and cytokines were measure using flow cytometry in peripheral blood and bone-marrow mononuclear cells. Apoptotic cell death and the advanced oxidation protein products (AOPP) were also determined.ResultsWe observed a significant increase in ROS production in peripheral blood mononuclear cells of fructose group as compared to control rats. Apoptosis and the AOPP were higher in those animals underwent high fructose intake. Serum levels of IL-6 and IL-12 were also increased after 12 weeks of high fructose intake.ConclusionWe concluded that fructose intake leads to systemic oxidative stress and pro-inflammatory condition which affect peripheral blood mononuclear cells and bone-marrow mononuclear cells viability. 相似文献
10.
Wu CW Ping YH Yen JC Chang CY Wang SF Yeh CL Chi CW Lee HC 《Toxicology and applied pharmacology》2007,220(3):243-251
Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in the brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects. 相似文献
11.
Recent studies have suggested that oxidative stress may play a role in the cytotoxic activity of statins against cancer cells. The objective of this study was to elucidate the role of oxidative stress in the cytotoxicity of simvastatin in murine CT26 colon carcinoma cells and B16BL6 melanoma cells. We found that CT26 cells were more sensitive to simvastatin than B16BL16 cells. Interestingly, exposure to simvastatin causes significant apoptotic cell death and perturbations in parameters indicative of oxidative stress in CT26 cells. Moreover, the increase in oxidative stress parameters and cell death were suppressed by isoprenoids including mevalonolactone, farnesyl pyrophosphate ammonium salt, geranylgeranyl pyrophosphate ammonium salt, and coenzyme Q10, and by antioxidants including N-acetyl cysteine, reduced glutathione, superoxide dismutases (SOD), and catalase (CAT) alone or in combination, but were promoted by an inhibitor of glutathione synthesis, L-buthionine-sulfoximine. The signaling pathway induced by simvastatin breaks down the antioxidant defense system by suppressing the expression of reactive oxygen species scavengers, particularly Mn-SOD, CAT, GPx1, and SESN 3, thereby inducing oxidative stress and apoptotic cell death. Collectively, our results demonstrate that simvastatin induces colon cancer cell death at least in part by increasing intracellular oxidative stress and inducing apoptosis. 相似文献
12.
Approximately 2 billion people worldwide are susceptible to iodine deficiency. Iodine deficiency has largely been tackled by iodine fortification in salt; however indiscriminate use of iodine raises the risk of iodine toxicity. In this study, we aimed to investigate the molecular mechanisms underlying adverse effect of excess iodine on spermatogenesis. Sprague Dawley (SD) rats were orally administered with 0.7 mg potassium iodide (KI)/100 g Bw and 3.5 mg potassium iodide (KI)/100 g Bw for a period of 60 days. This resulted in significant loss of sperm count and motility. Molecular investigations provided evidence for the generation of oxidative stress with high SOD levels, reduced Nrf2, HO-1 and increased NF-kB and Follistatin. Further investigations showed increased apoptosis evidenced by reduced expression of anti-apoptotic (BCL-2, Survivin), increased expression of pro-apoptotic (Bid, Bax) markers, and increased expression of p53 and other modulators/effectors of apoptosis (cytochrome c, cleaved PARP, caspase3 and caspase9). Analysis of the blood testis barrier proteins showed reduced expression of tight junction (JAM-A, Tricellulin), ectoplasmic specialization (Integrin- β1), adherens junction (N-Cadherin, E-cadherin, β-catenin) proteins, and reduced expression of other junction protein coding genes (Claudin1, Claudin 5, Occludin, ZO-1, Testin, Fibronectin, CAR-F). Focal adhesion kinase (FAK) and key regulators of spermatogenesis (c-Kit receptor, androgen receptor) were also parallelly decreased. Further investigation showed reduced expression of germ cell proliferation and differentiation markers (PCNA, Cyclin D1, c-Kit, Cdk-4). These findings collectively explain the loss of spermatogenesis under excess iodine conditions. In conclusion, excess iodine causes loss of spermatogenesis by inducing oxidative stress and disrupting the blood testis barrier and cytoskeleton. 相似文献
13.
As a common pollutant in marine environment, benzo[a]pyrene (B[a]P) has high toxicity to economic shellfish. In order to explore the mechanism of oxidative stress and apoptosis, the effects of 0, 2, 4, 8 μg/mL B[a]P on gill cells of C. farreri at 12 and 24 h were studied. The results showed that B[a]P decreased the activity of gill cells, increased the content of reactive oxygen species (ROS) and the expression of antioxidant defense genes. Besides, B[a]P could induce oxidative damage to nucleus and mitochondria. The gene expression and enzyme activity of apoptosis pathway related factors were changed. In conclusion, these results showed that B[a]P could cause oxidative stress and oxidative damage in gill cells of C. farreri, and mediate gill cell apoptosis through mitochondrial pathway and death receptor pathway. This article provides a theoretical basis for clarifying the molecular mechanism of PAHs-included oxidative stress and apoptosis in bivalves. 相似文献
14.
Selenium, an essential trace element, showed the significant protective effects against kidney damage induced by some heavy metals. Our previous research have found that the protection effects of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium (Cd)-induced LLC-PK1 cells. The present study as a continuation of our earlier one to investigate the protective effects and mechanism of selenium on Cd-induced apoptosis of kidney in vivo. Cadmium exposure increased the production of reactive oxygen species (ROS) and altered the levels of oxidative stress related biomarkers in kidney tissue. A concomitant by the loss of mitochondrial membrane potential, cytochrome c release and regulation of VDAC, Bcl-2 and Bax were observed. Apoptotic nature of cell death is confirmed by activation of caspase-3, which is also supported by histological examination. During the process, selenium played a beneficial role against Cd-induced renal damage. Pretreatment with selenium partially blocked Cd-induced ROS generation, inhibited Cd induced mitochondrial membrane potential collapse, prevented cytochrome c release, inhibited caspase activation and changed the level of VDAC, Bcl-2 and Bax. Combining all, results suggest that selenium has an ability to inhibit mitochondrial apoptotic pathway in oxidative stress mediated kidney dysfunction caused by cadmium. 相似文献
15.
Petrik J Zanić-Grubisić T Barisić K Pepeljnjak S Radić B Ferencić Z Cepelak I 《Archives of toxicology》2003,77(12):685-693
Ochratoxin A (OTA) is a widespread mycotoxin produced by several species of fungi. OTA induces a tubular-interstitial nephropathy in humans and in animals. It has been implicated as one of the aetiological agents involved in the development of endemic nephropathy. OTA-induced oxidative stress and apoptosis may play key roles in the development of chronic tubulointerstitial nephritis connected to the long-term exposure to this food contaminant. We studied the effects of low doses of OTA on kidney cells. Wistar rats were treated with 120 g OTA/kg bodyweight daily, for 10, 30 or 60 days. Toxin concentration in kidney was proportional to the time of exposure, and amounted to 547.2, 752.5 and 930.3 ng OTA/g kidney tissue after 10, 30 and 60 days, respectively. OTA treatment caused an increased number of cells undergoing apoptosis in both proximal and distal epithelial kidney cells. The apoptotic cells were visualised using the TUNEL assay and staining with haematoxylin and eosin in situ. The number of apoptotic cells in rats treated for 10, 30 and 60 days increased by 5-, 6.4- and 12.7-fold, respectively, compared with the control cells. However, DNA electrophoresis did not show characteristic fragmentation (DNA laddering). The oxidative stress was evident via increased malondialdehyde formation. The concentration of lipid peroxides showed an increase (36%), but the activity of superoxide dismutase decreased (26%) in 60-day treated rats. In spite of the observed biochemical and morphological changes in the kidney cells, renal functional status was preserved to the end of experiment. This study demonstrates that a combination of morphologic and biochemical markers can be used to monitor early cell death in OTA-induced renal injury. We have shown that the exposure to the relatively low OTA concentrations has activated apoptotic processes and oxidative damage in kidney cells. 相似文献
16.
Diabetic cardiomyopathy has been increasingly recognized as an important cause of heart failure in diabetic patients. Excessive oxidative stress has been suggested to play a critical role in the development of diabetic cardiomyopathy. The objective of this study was to investigate the potential protective effects and mechanisms of taxifolin on cardiac function of streptozotocin-induced diabetic mice and on hyperglycemia-induced apoptosis of H9c2 cardiac myoblasts. In vivo study revealed that taxifolin improved diastolic dysfunction, ameliorated myocardium structure abnormality, inhibited myocyte apoptosis and enhanced endogenous antioxidant enzymes activities. Interestingly, taxifolin reduced angiotensin II level in myocardium, inhibited NADPH oxidase activity, and increased JAK/STAT3 activation. In vitro investigation demonstrated that taxifolin inhibited 33 mM glucoseinduced H9c2 cells apoptosis by decreasing intracellular ROS level. It also inhibited caspase-3 and caspase-9 activation, restored mitochondrial membrane potential, and regulated the expression of proteins related to the intrinsic pathway of apoptosis, thus inhibiting the release of cytochrome c from mitochondria into the cytoplasm. In conclusion, taxifolin exerted cardioprotective effects against diabetic cardiomyopathy by inhibiting oxidative stress and cardiac myocyte apoptosis and might be a potential agent in the treatment of diabetic cardiomyopathy. 相似文献
17.
In our previous study, the effects of dioscin against alcohol-, carbon tetrachloride- and acetaminophen-induced liver damage have been found. However, the activity of it against dimethylnitrosamine (DMN)-induced acute liver injury remained unknown. In the present study, dioscin markedly decreased serum ALT and AST levels, significantly increased the levels of SOD, GSH-Px, GSH, and decreased the levels of MDA, iNOS and NO. Mechanism study showed that dioscin significantly decreased the expression levels of IL-1β, IL-6, TNF-α, IκBα, p50 and p65 through regulating TLR4/MyD88 pathway to rehabilitate inflammation. In addition, dioscin markedly up-regulated the expression levels of SIRT1, HO-1, NQO1, GST and GCLM through increasing nuclear translocation of Nrf2 against oxidative stress. Furthermore, dioscin significantly decreased the expression levels of FasL, Fas, p53, Bak, Caspase-3/9, and upregulated Bcl-2 level through decreasing IRF9 level against apoptosis. In conclusion, dioscin showed protective effect against DMN-induced acute liver injury via ameliorating apoptosis, oxidative stress and inflammation, which should be developed as a new candidate for the treatment of acute liver injury in the future. 相似文献
18.
Obesity has been reported to induce oxidative stress, inflammation and apoptosis in the testis. The objective of this study was to determine the effects of the anti-obesity drug orlistat, on testicular oxidative stress, inflammation and apoptosis in high-fat diet (HFD)-fed rats. Twenty-four adult male Sprague Dawley rats weighing 250−300 g were randomized into four groups (n = 6/group), namely; normal control (NC), high-fat diet (HFD), HFD plus orlistat (10 mg/kg body weight/day administered concurrently for 12 weeks) (HFD + Opr) and HFD plus orlistat (10 mg/kg body weight/day administered 6 weeks after induction of obesity) (HFD + Ot) groups. Antioxidant enzymes activities were significantly decreased, while mRNA levels of pro-apoptotic markers (p53, Bax/BCl-2, caspase-9, caspase-8 and caspase-3) were significantly increased in the testis of HFD group relative to NC group. Furthermore, the mRNA levels of pro-inflammatory markers (nuclear factor kappa B, inducible nitric oxide synthase, tumor necrosis factor alpha and interleukin (IL)-1β increased significantly, while anti-inflammatory marker (IL-10) decreased significantly in the testis of the HFD group relative to NC group. However, in both models of orlistat intervention (protective and treatment models) up-regulated antioxidant enzymes, down-regulated inflammation and apoptosis were observed in the testis of HFD-fed rats. Orlistat ameliorated testicular dysfunction by attenuating oxidative stress, inflammation and apoptosis in HFD-fed rats, suggesting its potential protective and therapeutic effects in the testis compromised by obesity. 相似文献
19.
目的 通过高糖环境下培养人RPE细胞建立RPE细胞的氧化应激模型,观察脂联素对RPE细胞各氧化应激指标及凋亡的影响,从而揭示脂联素对RPE细胞可能的保护机制.方法 将体外培养的人RPE细胞分为3组:正常对照组、高糖组、高糖+脂联素组,分别干预24、48、72 h.在倒置显微镜下观察RPE细胞形态变化,采用硫代巴比妥酸法测定MDA含量,用黄嘌呤氧化酶法检测SOD含量和活性,用荧光定量RT-PCR法测定p66Shc、Ho-1在各个时间点上的表达,通过流式细胞术检测RPE细胞的凋亡率.结果 与正常对照组相比,高糖组MDA含量显著上升,SOD含量显著下降(P<0.05),与高糖组相比,脂联素组MDA含量显著下降,SOD含量显著上升(P<0.05),并且呈时间依赖性.与正常对照组相比,高糖组Ho-1 mRNA表达增高;脂联素组较高糖组表达亦增高(P<0.05).与正常对照组相比,高糖组p66Shc mRNA表达增高;脂联素组较高糖组表达降低(P<0.05),呈时间依赖性.流式细胞术RPE细胞凋亡高糖组细胞凋亡率较正常对照组明显增加,而脂联素组细胞凋亡率较高糖组显著下降.结论 脂联素可通过减少p66Shc表达,从而减少线粒体ROS产生、增加Ho-1表达,增加抗氧化能力,减少氧化应激反应,减少细胞凋亡,对糖尿病RPE细胞起保护作用. 相似文献
20.
5-Fluorouracil (5-FU) is a potent antineoplastic agent commonly used for the treatment of various malignancies. It has diverse adverse effects such as cardiotoxicity, nephrotoxicity and hepatotoxicity which restrict its wide and extensive clinical usage. It causes marked organ toxicity coupled with increased oxidative stress and apoptosis. Chrysin (CH), a natural flavonoid found in many plant extracts, propolis, blue passion flower. It has antioxidative and anti-cancerous properties. The present study was designed to investigate the protective effects of CH against 5-FU induced renal toxicity in wistar rats using biochemical, histopathological and immunohistochemical approaches.Rats were subjected to prophylactic oral treatment of CH (50 and 100 mg/kg b.wt.) for 21 days against renal toxicity induced by single intraperitoneal administration of 5-FU (150 mg/kg b.wt.). The possible mechanism of 5-FU induced renal toxicity is the induction of oxidative stress; activation of apoptotic pathway by upregulation of p53, bax, caspase-3 and down regulating Bcl-2. However prophylactic treatment of CH decreased serum toxicity markers, increased anti-oxidant armory as well as regulated apoptosis in kidney. Histopathological changes further confirmed the biochemical and immunohistochemical results. Therefore, results of the present finding suggest that CH may be a useful modulator in mitigating 5-FU induced renal toxicity. 相似文献