首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel class of thioflavone and flavonoid derivatives has been prepared and their antiviral activities against enterovirus 71 (EV71) and the coxsackievirus B3 (CVB3) and B6 (CVB6) were evaluated. Compounds 7d and 9b showed potent antiviral activities against EV71 with IC50 values of 8.27 and 5.48 μM, respectively. Compound 7f, which has been synthesized for the first time in this work, showed the highest level of inhibitory activity against both CVB3 and CVB6 with an IC50 value of 0.62 and 0.87 μM. Compounds 4b, 7a, 9c and 9e also showed strong inhibitory activities against both the CVB3 and CVB6 at low concentrations (IC50=1.42?7.15 μM), whereas compounds 4d, 7c, 7e and 7g showed strong activity against CVB6 (IC50=2.91–3.77 μM) together with low levels of activity against CVB3. Compound 7d exhibited stronger inhibitory activity against CVB3 (IC50=6.44 μM) than CVB6 (IC50>8.29 μM). The thioflavone derivatives 7a, 7c, 7d, 7e, 7f and 7g, represent a new class of lead compounds for the development of novel antiviral agents.  相似文献   

2.
DNA gyrase of Mycobacterium tuberculosis (MTB) is a type II topoisomerase that ensures the regulation of DNA topology and has been genetically demonstrated to be a bactericidal drug target. We present the discovery and optimisation of a novel series of mycobacterial DNA gyrase inhibitors with a high degree of specificity towards the mycobacterial ATPase domain. Compound 5-fluoro-1-(2-(4-(4-(trifluoromethyl)benzylamino)piperidin-1-yl)ethyl)indoline-2,3-dione (17) emerged as the most potent lead, exhibiting inhibition of MTB DNA gyrase supercoiling assay with an IC50 (50% inhibitory concentration) of 3.6 ± 0.16 μM, a Mycobacterium smegmatis GyrB IC50 of 10.6 ± 0.6 μM, and MTB minimum inhibitory concentrations of 6.95 μM and 10 μM against drug-sensitive (MTB H37Rv) and extensively drug-resistant strains, respectively. Furthermore, the compounds did not show any signs of cardiotoxicity in zebrafish ether-à-go-go-related gene (zERG), and hence constitute a major breakthrough among the otherwise cardiotoxic N-linked aminopiperidine analogues.  相似文献   

3.
《Toxicology in vitro》2010,24(1):217-223
Haemato- and myelotoxicity are adverse effects caused by mycotoxins. Due to the relevance of aflatoxins to human health, the present study, employing CFU-GM-, BFU-E- and CFU-E-clonogenic assays, aimed at (i) comparing, in vitro, the sensitivity of human vs. murine haematopoietic progenitors to AFB1 and AFM1 (0.001–50 μg/ml), (ii) assessing whether a single AFB1 in vivo treatment (0.3–3 mg/kg b.w.) alters the ability of murine bone marrow cells to form myeloid and erythroid colonies, and (iii) comparing the in vitro with the in vitro ex-vivo data.We demonstrated (i) species-related sensitivity to AFB1, showing higher susceptibility of human myeloid and erythroid progenitors (IC50 values: about 4 times lower in human than in murine cells), (ii) higher sensitivity of CFU-GM and BFU-E colonies, both more markedly affected, particularly by AFB1 (IC50: 2.45 ± 1.08 and 1.82 ± 0.8 μM for humans, and 11.08 ± 2.92 and 1.81 ± 0.20 μM for mice, respectively), than the mature CFU-E (AFB1 IC50: 12.58 ± 5.4 and 40.27 ± 6.05 μM), irrespectively of animal species, (iii) regarding AFM1, a species- and lineage-related susceptibility similar to that observed for AFB1 and (iv) lack of effects after AFB1 in vivo treatment on the proliferation of haematopoietic colonies.  相似文献   

4.
The 1d-polymeric iron(III) complexes [Fe(salen)(μ-L)]n (16), involving a deprotonated form of the N-donor heterocyclic compounds (L) imidazole (complex 1), 1,2,4-triazole (2), benztriazole (3), 5-methyltetrazole (4), 5-aminotetrazole (5) and 5-phenyltetrazole (6), were studied for their in vitro cytotoxic activity against human cancer cell lines including lung carcinoma (A549), cervix epithelial carcinoma (HeLa), osteosarcoma (HOS), malignant melanoma (G361), breast adenocarcinoma (MCF7), ovarian carcinoma (A2780) and cisplatin-resistant ovarian carcinoma (A2780cis). Cytotoxicity in vitro (IC50 = 0.39–0.48 μM) was achieved for 26 against A2780 (IC50 of cisplatin equals 11.5 μM) as well as for 5 and 6 against all the tested cells, with IC50 = 2.5–37.7 μM. The Uv–Vis spectroscopic study showed that the complexes are unstable in organic solvents (e.g. dimethyl sulfoxide, dimethylformamide) containing even trace amounts of water (and thus also in the medium, i.e. 0.1% DMF, v/v, used in the MTT assay), where they partially or completely decompose to the mixtures involving, besides [Fe(salen)(μ-L)]n itself, also the starting compounds [{Fe(salen)}2(μ-O)] and appropriate organic compound (HL). In efforts to find how the resulting cytotoxicity of the most active compounds 5 and 6 is influenced by this fact, the in vitro cytotoxicity testing of mixtures of reactants [{Fe(salen)}2(μ-O)] and HL, as well as the respective reactants, was also performed. It has been found that the cytotoxicity of 5 and 6 against all the tested cell lines is probably caused by a combined effect of the individual components presented within the corresponding mixture in the medium used.  相似文献   

5.
Cyclooxygenase-2 (COX-2) inhibitors (coxibs) are non-steroidal anti-inflammatory drugs (NSAIDs) designed to selectively inhibit COX-2. However, drugs of this therapeutic class are associated with drug induced liver injury (DILI) and mitochondrial injury is likely to play a role. The effects of selective COX-2 inhibitors on inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria were investigated. The order of potency of inhibition of ATP synthesis was: lumiracoxib (IC50: 6.48 ± 2.74 μM) > celecoxib (IC50: 14.92 ± 6.40 μM) > valdecoxib (IC50: 161.4 ± 28.6 μM) > rofecoxib (IC50: 238.4 ± 79.2 μM) > etoricoxib (IC50: 405.1 ± 116.3 μM). Mechanism based inhibition of ATP synthesis (Kinact 0.078 min 1 and KI 21.46 μM and Kinact/KI ratio 0.0036 min 1 μM 1) was shown by lumiracoxib and data suggest that the opening of the MPT pore may not be the mechanism of toxicity. A positive correlation (with r2 = 0.921) was observed between the potency of inhibition of ATP synthesis and the log P values. The in vitro metabolism of coxibs in rat liver mitochondria yielded for each drug substance a major single metabolite and identified a hydroxy metabolite with each of the coxibs and these metabolites did not alter the inhibition profile of ATP synthesis of the parent compound. The results suggest that coxibs themselves could be involved in the hepatotoxic action through inhibition of ATP synthesis.  相似文献   

6.
《Toxicology in vitro》2014,28(4):607-615
Phenazine was recently identified as a drinking water disinfection byproduct (DBP), but little is known of its toxic effects. We examined in vitro cytotoxicity and genotoxicity of phenazine (1.9–123 μM) in HepG2 and T24 cell lines. Cytotoxicity was determined by an impedance-based real-time cell analysis instrument. The BrdU (5-bromo-2′-deoxyuridine) proliferation and MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) viability assays were used to examine mechanisms of cytotoxicity. Genotoxicity was determined using the alkaline comet assay. Concentration-dependent cytotoxicity was observed in HepG2 cells, primarily due to an antiproliferative effect (BrdU 24 h IC50: 11 μM; 48 h IC50: 7.8 μM) observed as low as 1.9 μM. T24 cells experienced a minor antiproliferative effect (BrdU 24 h IC50: 47 μM; 48 h IC50: 17 μM). IC50 values for HepG2 proliferation and viability were 54–77% lower compared to T24 cells. In both cell lines, IC50 values for proliferation were 66–90% lower than those for viability. At phenazine concentrations producing equivalent cytotoxicity, HepG2 cells (1.9–30.8 μM) experienced no significant genotoxic effects, while T24 cells (7.7–123 μM) experienced significant genotoxicity at ⩾61.5 μM. While these effects were seen at phenazine concentrations above those found in disinfected water, the persistence of the antiproliferative effect and the differential toxicity in each cell line deserves further study.  相似文献   

7.
Pothomorphe umbellata, a native Brazilian plant, is popularly known to be effective in the treatment of skin lesions. This benefit is attributed to 4-nerolidylcatechol (4-NC), a compound extracted from P. umbellata. Since melanomas show prominent resistance to apoptosis and exhibit extreme chemoresistance to multiple forms of therapy, novel compounds addressing induction of cell death are worth investigating. Here, we evaluated effects on cell cycle progression and possible cytotoxic activity of 4-NC in melanoma cell lines as well as human dermal fibroblasts. Inhibitory effects on cell invasion and MMP activity were also investigated. 4-NC showed cytotoxic activity for all melanoma cell lines tested (IC50 = 20–40 μM, 24 h for tumoral cell lines; IC50 = 50 μM for fibroblast cell line) associated with its capacity to induce apoptosis. Furthermore, this is the first time that 4-NC is described as an inhibitor of cell invasiveness, due mainly to a G1 cell cycle arrest and inhibition of MMP-2 activity in melanoma cell lines.  相似文献   

8.
《Biochemical pharmacology》2006,71(12):1735-1743
Isothiazole dioxides have been shown to inhibit Trypanosoma brucei protein farnesyltransferase (PFTase) in isolated enzyme, but elicited only a minor effect on mammalian PFTase. In the present study we have evaluated the effect of 3-diethylamino-4-(4-methoxyphenyl)-isothiazole 1,1-dioxides with different substituents at C5, on rat PFTase and protein geranylgeranyltransferase-I (PGGTase-I) with the final aims to improve the potency against mammalian PFTase and to identify new compounds with antiproliferative properties. For these purposes, in vitro and cell culture models have been utilized. The results showed that isothiazole dioxides with C4–C5 double bond and sulfaryl substituted at the C5 position but none of the dihydro-derivatives, were able to inhibit in vitro PFTase in a concentration dependent manner (IC50 ranging from 8.56 to 1015 μM). Among those, compound 6n (C5; methyl-S) displayed 500-fold higher inhibitory potency on PFTase than PGGTase-I. Compound 6n was shown to affect rat smooth muscle cell (SMC) proliferation at concentrations similar (IC50 = 61.4 μM) to those required to inhibit [3H]-farnesol incorporation into cellular proteins (−44.1% at 100 μM). Finally, compound 6n interferes with rat SMC proliferation by blocking the progression of G0/G1 phase without inducing apoptosis, as assessed by [3H]-thymidine incorporation assay and flow cytometry analysis. Taken together, we described a new PFTase inhibitor containing the isothiazole dioxide moiety that affects mammalian protein farnesylation and SMC proliferation by inhibiting G0/G1 phase of the cell cycle.  相似文献   

9.
BackgroundEndogenous sphingolipid signaling has been shown to play an important role in prostate cancer endocrine resistance.MethodsThe novel SphK2 inhibitor, ABC294640, was used to explore SphK signaling in androgen resistant prostate cancer cell death signaling.ResultsIt dose-dependently decreased PC-3 and LNCaP cell viability, IC50 of 28 ± 6.1 μM (p < 0.05) and 25 ± 4.0 μM (p < 0.05), respectively. ABC294640 was more potent in long-term clonogenic survival assays; IC50 of 14 ± 0.4 μM (p < 0.05) in PC-3 cells and 12 ± 0.9 μM (p < 0.05) in LNCaP cells. Intrinsic apoptotic assays failed to demonstrate increased caspase-9 activity. Ki-67 staining demonstrated decreased proliferation by 50 ± 8.4% (p < 0.01) in PC-3 cells.ConclusionsSphK2 inhibition decreases androgen resistant prostate cancer viability, survival, and proliferation independently of the intrinsic apoptotic pathway. Findings are in contrast to recent observations of ABC29460 acting dependently on the intrinsic pathway in other endocrine resistant cancer cell lines.  相似文献   

10.
The results of this study have shown that N-acetyl-l-cysteine (NAC), a compound used for protection of tissues or cell cultures against the deleterious effects of various environmental pollutants, has certain unusual effects on the contraction of the spontaneously beating atria of the frog isolated in saline (ex vivo): (1) NAC, 6.0 and 10.0 mM, eliminated, in a concentration-dependent manner, the contractile properties of the atria (force and frequency) within minutes, without affecting its electrical properties; (2) the IC50 of NAC for the force was 5.09 ± 1.01 mM (n = 6) [4.98–5.19 mM, 95% confidence interval (CI)], significantly lower than the IC50 for the frequency, 6.15 ± 1.01 mM, (6.02–6.29 mM, 95% CI), indicating that working atria cells are more sensitive to NAC than autorhythmic cells. The no-observed-effect concentration (NOEC) was 1–2 mM; (3) the pattern of NAC-induced inhibition of electromechanical activity was similar to that of verapamil, an indication that NAC possibly affects L-type voltage-gated calcium channels; (4) NAC at 2 mM protected against cadmium-induced inhibition of atria contraction. The IC50 for cadmium was 17.9 ± 1.1 μM (n = 6) (16.9–19.0 μM, 95% CI), while in the presence of 2 mM NAC, it became 123.3 ± 1.0 μΜ (n = 6) (114.8–132.4 μM, 95% CI). The same concentration of NAC failed to exert any protective effects against rotenone (5 μM)-induced inhibition of atria contraction. The protective effects of NAC are probably due to chelation of cadmium, rather than scavenging of oxidants.  相似文献   

11.
ObjectivesFlavonoids are present in varying concentrations in plant foods and have been reported to have numerous pharmacological activities, such as anti-cancer, antioxidant, anti-inflammatory, hepatoprotective, and vasodilator effects. We found that quercetin, fisetin, and some related flavonoid derivatives could inhibit human ether-à-go-go-related gene (hERG) K+ channels.Key findingsIn this study, we tested the effects of a series of flavonoids on the hERG K+ channel expressed in HEK293 cells. For the first time, we demonstrate that quercetin and fisetin (Fise) are potent hERG current blockers. The 50% inhibiting concentration (IC50) and maximum efficacy (Emax) of quercetin were 11.8 ± 0.9 μM and 82 ± 2%, while those of fisetin were 38.4 ± 6 μM and 100 ± 6%, respectively. Luteolin (Lute) was a less potent inhibitor of hERG current (48 ± 1% at 100 μM). Galangin, kaempferol, and isorhamnetin (100 μM) showed weaker activity on the hERG currents.ConclusionThese results suggest that quercetin, fisetin, and luteolin are potent hERG K+ channel inhibitors and reveal the structure-activity relationship of natural flavonoids.  相似文献   

12.
《Toxicology in vitro》2010,24(6):1562-1568
Ruthenium(III) complexes are increasingly attracting the interest of researchers due to their promising pharmacological properties. In the present study, we investigated the ability of cis-(dichloro)tetrammineruthenium(III) chloride to produce lethal effects in human chronic myelogenous leukemia K562 cells. The MTT tetrazolium reduction test and the trypan blue exclusion assay revealed that the IC50 for the compound after 48 h of incubation with K562 cells was approximately 10.74 and 73.45 μM, respectively. Interestingly, it was observed that this compound exhibits mild cytotoxicity towards MRC-5 human fibroblast cells (IC50 > 383 μM). Flow cytometric analysis revealed that cis-(dichloro)tetrammineruthenium(III) chloride was capable of change cell cycle distribution since the percentage of cells in the G1, S and G2 phases decreased. In addition, treatment with this compound induced apoptotic cell death in K562 cells, demonstrated by increased DNA content in the sub-G1-peak and a significant increase in caspase-3 activity. Assay using cyclosporin A, an inhibitor of the mitochondrial permeability transition pore (MPT) showed that the preincubation of K562 cells with this inhibitor had not effect on cis-(dichloro)tetrammineruthenium(III) chloride induced caspase-3 activation. In summary, cis-(dichloro)tetrammineruthenium(III) chloride displayed a significant cytotoxic effect through cell cycle arrest and apoptotic induction in K562 cells, which suggests that cis-(dichloro)tetrammineruthenium(III) chloride might have therapeutic potential against leukemia.  相似文献   

13.
A series of nitro substituted benzamide derivatives were synthesized and evaluated for their potential anti-inflammatory activities in vitro. Firstly, all compounds (16) were screened for their inhibitory capacity on LPS induced nitric oxide (NO) production in RAW264.7 macrophages. Compounds 5 and 6 demonstrated significantly high inhibition capacities in a dose-dependent manner with IC50 values of 3.7 and 5.3 μM, respectively. These two compounds were also accompanied by no cytotoxicity at the studied concentrations (max 50 μM) in macrophages. Molecular docking analysis on iNOS revealed that compounds 5 and 6 bind to the enzyme more efficiently compared to other compounds due to having optimum number of nitro groups, orientations and polarizabilities. In addition, 5 and 6 demonstrated distinct regulatory mechanisms for the expression of the iNOS enzyme at the mRNA and protein levels. Specifically, both suppressed expressions of COX-2, IL-1β and TNF-α significantly, at 10 and 20 μM. However, only compound 6 significantly and considerably decreased LPS-induced secretion of IL-1β and TNF-α. These results suggest that compound 6 may be a multi-potent promising lead compound for further optimization in structure and as well as for in vivo validation studies.  相似文献   

14.
IntroductionWe described a first approach to the pharmacological targets of mephedrone (4-methyl-methcathinone) in rats to establish the basis of the mechanism of action of this drug of abuse.Experimental proceduresWe performed in vitro experiments in isolated synaptosomes or tissue membrane preparations from rat cortex or striatum, studying the effect of mephedrone on monoamine uptake and the displacement of several specific radioligands by this drug.ResultsIn isolated synaptosomes from rat cortex or striatum, mephedrone inhibited the uptake of serotonin (5-HT) with an IC50 value lower than that of dopamine (DA) uptake (IC50 = 0.31 ± 0.08 and 0.97 ± 0.05 μM, respectively). Moreover, mephedrone displaced competitively both [3H]paroxetine and [3H]WIN35428 binding in a concentration-dependent manner (Ki values of 17.55 ± 0.78 μM and 1.53 ± 0.47 μM, respectively), indicating a greater affinity for DA than for 5-HT membrane transporters. The affinity profile of mephedrone for the 5-HT2 and D2 receptors was assessed by studying [3H]ketanserin and [3H] raclopride binding in rat membranes. Mephedrone showed a greater affinity for the 5-HT2 than for the D2 receptors.DiscussionThese results provide evidence that mephedrone, interacting with 5-HT and DA transporters and receptors must display a similar pattern of other psychoactive drugs such as amphetamine-like compounds.  相似文献   

15.
In this contribution, a chemical collection of aromatic compounds was screened for inhibition on butyrylcholinesterase (BChE)’s hydrolase activity using Ellman’s reaction. A set of diarylimidazoles was identified as highly selective inhibitors of BChE hydrolase activity and amyloid β (Aβ) fibril formation. New derivatives were synthesized resulting in several additional hits, from which the most active was 6c, 4-(3-ethylthiophenyl)-2-(3-thienyl)-1H-imidazole, an uncompetitive inhibitor of BChE hydrolase activity (IC50 BChE = 0.10 μM; Ki = 0.073 ± 0.011 μM) acting also on Aβ fibril formation (IC50 = 5.8 μM). With the aid of structure–activity relationship (SAR) studies, chemical motifs influencing the BChE inhibitory activity of these imidazoles were proposed. These bifunctional inhibitors represent good tools in basic studies of BChE and/or promising lead molecules for AD therapy.  相似文献   

16.
《Toxicology in vitro》2010,24(8):2090-2096
The aim of the present study was to investigate the influence of the maintenance culture conditions on the competence of C6 rat glioma cells to cope with peroxide-induced oxidative stress. C6 cells were maintained either in Ham’s nutrient mixture F-10 supplemented with 15% horse serum and 2.5% foetal bovine serum (FBS) or in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 5% FBS. The differently cultured cells were exposed under identical conditions to hydrogen peroxide (H2O2) and cumene hydroperoxide (CHP) in serum-free DMEM. The cells maintained in high serum Ham’s F-10 medium (1) were less sensitive towards the cytotoxic action of both peroxides (EC50-values: H2O2: 193 ± 23 μM; CHP: 94 ± 16 μM) than the cells maintained in low serum DMEM (EC50-values: H2O2: 51 ± 10 μM; CHP: 27 ± 11 μM), (2) eliminated the peroxides (initial concentration: 100 μM) with higher rates (H2O2: 56 ± 5.5 vs. 32 ± 2.7, CHP: 32 ± 6 vs. 3.4 ± 0.6 nmol/min mg protein), (3) contained more glutathione (30 ± 2.5 vs. 14 ± 1.1 nmol/mg protein) and (4) owned a higher glutathione peroxidase activity (28 ± 3.4 vs. 9.5 ± 0.8 mU/mg protein). Glutathione reductase and catalase activities were not affected. These results demonstrate that the preceding culture conditions have a lasting effect on the susceptibility of cultured cells to oxidative stressors like peroxides. As cause for these differences a dissimilar supply of the cells with serum born antioxidants like selenium and α-tocopherol is discussed.  相似文献   

17.
Loperamide, an antidiarrhea drug, is a peripheral opiate agonist. Some other opiate agonists have been shown to promote cell apoptosis. In this research, we studied the apoptosis-inducing and cytotoxic activities of loperamide. MTT assay was used to determine its cytotoxicity on nine established human tumor cell lines. Cell apoptosis was detected by flow cytometry. Hypodiploid cells and cell cycles were analyzed by propidium iodide (PI) staining, while early apoptotic cells were detected by annexin V-FITC/PI staining. It was found that loperamide could inhibit the proliferation of the tested tumor cell lines. The IC50 values for SMMC7721, MCF7, SPC-A1, SKOV3-DDP, H460, HepG2, SGC7901, U2OS, and ACHN cells were 24.2 ± 2.1 μM, 23.6 ± 2.5 μM, 25.9 ± 3.1 μM, 27.1 ± 2.5 μM, 41.4 ± 2.1 μM, 23.7 ± 1.3 μM, 35.4 ± 3.5 μM, 11.8 ± 2.8 μM, and 28.5 ± 3.4 μM, respectively. Loperamide was more effective to the human osteosarcoma U2OS cells with an IC50 value of 11.8 ± 2.8 μM. Meanwhile, it could induce cell apoptosis and cause G2/M-phase cell cycle arrest. The apoptotic cells could be found when treating with loperamide for 6 h and most of them belonged to early apoptosis. In loperamide-treated cells, activation of caspase-3 was found, namely that caspase-3 was involved in the loperamide-induced apoptosis. The results of these studies indicate that loperamide is a potential antitumor agent. To our knowledge, this is the first report on antitumor activity of loperamide.  相似文献   

18.
In the course of screening for neuroprotective natural products, Magnoliae Cortex showed potent inhibition of hippocampal neuronal HT22 cell death. Obovatol, honokiol, and magnolol were isolated from the ethanolic extract of Magnoliae Cortex. Isolated compounds obovatol, honokiol, and magnolol were protective against 5 mM glutamate-induced cell death. When cells were stressed using glutamate, cell viability decreased to 16.98 ± 4.58% over the control (100.00 ± 10.15%). In contrast, 10 μM obovatol, 10 μM honokiol, and 50 μM magnolol increased cell viability to 91.80 ± 1.70%, 93.59 ± 1.93%, and 85.36 ± 7.40%, respectively. The neuroprotective effects of obovatol and honokiol were attributable to the inhibition of intracellular reactive oxygen species production, followed by protection of the mitochondrial membrane potential (ΔΨm), recovery of Bcl-2 and Bid levels, inhibition of apoptosis-inducing factor expression, and phosphorylation of mitogen-activated protein kinases such as p38 kinases, extracellular signal-regulated kinases, and c-Jun N-terminal kinases. On the contrary, magnolol did not show any significant effect on the ΔΨm and apoptotic factors. Among three compounds, obovatol most strongly scavenged 2,2-diphenyl-1-picrylhydrazyl radicals and inhibited the elevation of intracellular reactive oxygen species levels in glutamate-stressed HT22 cells. These data suggest that obovatol and honokiol may have clinical applications for preventing neurodegenerative disorders.  相似文献   

19.
One new naturally isoflavone compound, 5,7,2′,3′,4′ penta hydroxyl isoflavone-4′-O-β-glucopyranoside (1) was isolated from the aqueous methanol extract (AME) of Pulicaria undulata subsp. undulata, together with seven known compounds: kaempferol (2), kaempferol 3-O-β-glucoside (3), quercetin (4), quercetin 3-O-β-glucoside (5), quercetin 3-O-β-galactoside (6), quercetin 3,7-di OCH3 (7), and caffeic acid (8). Their structures were established through chemical (acid hydrolysis) and spectral analysis (UV, NMR, and ESIM). The AME and some isolated compounds were evaluated as protective agents. Free radical scavenging using a microscaled 2,2-diphenyl-1-picrylhydrazyl assay was used to assess the direct antioxidant properties that were evaluated by the ability to protect murine Hepa1c1c7 liver cells against damage induced by the organic peroxide tert-butyl hydroperoxide. The neutral red uptake assay (NRU) was used to record the activity. Results of the 2,2-diphenyl-1-picrylhydrazyl assay recorded differential scavenging properties in ascending order: 5,7,2′,3′,4′ penta hydroxyl isoflavone-4′-O-β-glucopyranoside > quercetin > quercetin 3-O-galactoside > caffeic acid > quercetin 3,7-di-OCH3 > kaempferol with 50% inhibitory concentrations of 3.9 μM, 7.5 μM, 11.4 μM, 12.2 μM, 78.1 μM, and 252.3 μM, respectively. The antioxidative potential reveals the potency of AME, quercetin, and quercetin 3,7-di-OCH3. The latter compound showed full protection at 100 μM (33 μg/mL) against the induced toxicant effect where the 50% effective concentration was calculated as 33.6 ± 1.7 μM (11.1 μg/mL). In addition to quercetin, which was extensively shown previously as a cytoprotective agent, AME was less potent; it was capable of protecting 75% at 100 μg/mL with 50% effective concentration of 92.3 ± 4 μg/mL. Moreover, the isolated flavonoids were found to be significantly chemosystematic markers.  相似文献   

20.
α-Glucosidase and lipase inhibitors play important roles in the treatment of hyperglycaemia and dyslipidemia. To identify novel naturally occurring inhibitors, a bioactivity-guided phytochemical research was performed on the pu-erh tea. One new flavanol, named (–)-epicatechin-3-O-(Z)-coumarate (1), and 16 known analogs (217) were isolated from the aqueous extract of the pu-erh tea. Their structures were determined by spectroscopic and chemical methods. Furthermore, the water extract of pu-erh tea and its fractions exhibited inhibitory activities against α-glucosidases and lipases in vitro; compound 15 showed moderate inhibitory effect against sucrase with an IC50 value of 32.5 μmol/L and significant inhibitory effect against maltase with an IC50 value of 1.3 μmol/L. Compounds 8, 10, 11 and 15 displayed moderate activity against a lipase with IC50 values of 16.0, 13.6, 19.8, and 13.3 μmol/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号