首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bipolar disorder is a severe psychiatric disorder that is associated with persistent changes in the quality, duration and architecture of sleep. Currently there is no unifying hypothesis explaining the alterations in sleep observable in patients with bipolar disorder and management is often difficult though vital.  相似文献   

2.
《Medical hypotheses》2014,82(6):662-666
Despite widespread use of antioxidants, reactive oxygen species have important functions in normal tissues. Herein, we present an example of a physiological role for free radicals, and in particular, reactive oxygen species, that are suppressed by anti-oxidants. Free radicals catalyze the degradation of hyaluronan in synovial fluid, a tissue in which hyaluronidase activity is barely detectable. Articular cartilage requires a low oxygen environment. The process of hyaluronan peroxidation consumes significant amounts of molecular oxygen, thus keeping the tension of oxygen in the joint at a low but physiologically critical level. One concern is the change in physical activity between day and night, with periods of joint hyperemia and ischemia, respectively. Increased oxygen and the resulting oxidative stress would lead to chondrocyte dysfunction and cartilage damage. A mechanism for keeping oxygen levels low is required. We postulate that a mechanism indeed exists for the removal of excess oxygen. High-molar-mass hyaluronan turnover in synovial fluid utilizes peroxidative degradation, during which oxygen is massively consumed. The peroxidation itself may be initiated by hydrogen peroxide, which is produced by chondrocyte mitochondria, that can diffuse into the synovial fluid. The resulting decrease in available oxygen down-regulates hyaluronan peroxidation. This in turn prevents excessive oxygen consumption. It appears that free radicals and reactive oxygen species may be components of normal physiology, particularly in the synovial fluid of joints and articular cartilage. It is suggested therefore that indiscriminate use of anti-oxidants, vigorously promoted currently by health professionals and the health industry, be approached with caution.  相似文献   

3.
4.
《Medical hypotheses》2014,82(6):1059-1062
Idiopathic intracranial hypertension is a common disorder affecting mainly healthy, young, overweight women. The pathogenesis of this condition is unknown, but it has been shown to follow treatment with several compounds including corticosteroids and vitamin A derivatives. This paper will offer a novel hypothesis and insight on the pathogenesis of drug induced intracranial hypertension following a review and analysis of the literature. Both corticosteroids and vitamin A derivatives have been shown to upregulate the expression of aquaporin 1, a water channel protein. Aquaporin 1 is widely distributed in the human brain and is associated with water secretion into the subarachnoid space. Aquaporin 1 was also shown to participate in the regulation of weight. Agents used for treating idiopathic intracranial hypertension reduce aquaporin 1 expression. Based on these observations, we propose that aquaporin 1 has a pathogenetic role in drug induced idiopathic intracranial hypertension. Over expression of this gene causes increased intracranial pressure, and downregulation reduces pressure and alleviates the symptomatology and complications of idiopathic intracranial hypertension.  相似文献   

5.
6.
Bone morphogenetic protein-2/absorbable collagen sponge (BMP-2/ACS) implants have been approved for clinical use to induce bone regeneration. We previously showed that exaggerated inflammation characterized by elevated level of inflammatory cytokines including TNF-α, IL-1β, and IL-6 has been shown to inhibit BMP-2/ACS-induced bone regeneration. Furthermore, unlike the negative effects of TNF-α and IL-1β, IL-6 seemed not to affect BMP-2-induced osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs). We hypothesized that there may be a regulatory loop between IL-6 and BMP-2 singling to affect BMP-2/ACS-induced bone regeneration. Here, we established a BMP-2/ACS-induced ectopic bone formation model in rats and fund that IL-6 injection significantly increased BMP-2/ACS-induced bone mass. Consistent with this animal model, an in vitro study demonstrated that synergy between IL-6 and soluble IL-6 receptor (IL-6/sIL-6R) promotes BMP-2-induced osteoblastic differentiation of human BMSCs through amplification of BMP/Smad signaling. Strikingly, IL-6 injection did not activate osteoclast-mediated bone resorption in the ectopic bone formation model, and IL-6/sIL-6R treatment did not affect receptor activator of NF-κB ligand (RANKL)-induced osteoclastic differentiation of human peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, IL-6/sIL-6R treatment did not affect expression of BMP receptors, but enhanced the cell surface translocation of BMP receptor IA (BMPRIA) and inhibited the degradation of BMPRIA. Collectively, these findings indicate that synergy between IL-6 and sIL-6R promotes the cell surface translocation of BMPRIA and maintains the stability of BMPRIA expression, leading to enhanced BMP-2/ACS-induced bone regeneration.  相似文献   

7.
8.
Chronic anal fissure is a painful disorder caused by linear ulcers in the distal anal mucosa. Even though it counts as one of the most common benign anorectal disorders, its precise etiology and pathophysiology remains unclear. Current thinking is that anal fissures are caused by anal trauma and pain, which leads to internal anal sphincter hypertonia. Increased anal basal pressure leads to diminished anodermal blood flow and local ischemia, which delays healing and leads to chronic anal fissure. The current treatment of choice for chronic anal fissure is either lateral internal sphincterotomy or botulinum toxin injections.In contrast to current thinking, we hypothesize that the external, rather than the internal, anal sphincter is responsible for increased anal basal pressure in patients suffering from chronic anal fissure. We think that damage to the anal mucosa leads to hypersensitivity of the contact receptors of the anal-external sphincter continence reflex, resulting in overreaction of the reflex. Overreaction causes spasm of the external anal sphincter. This in turn leads to increased anal basal pressure, diminished anodermal blood flow, and ischemia. Ischemia, finally, prevents the anal fissure from healing.Our hypothesis is supported by two findings. The first concerned a chronic anal fissure patient with increased anal basal pressure (170 mmHg) who had undergone lateral sphincterotomy. Directly after the operation, while the submucosal anesthetic was still active, basal anal pressure decreased to 80 mmHg. Seven hours after the operation, when the anesthetic had completely worn off, basal anal pressure increased again to 125 mmHg, even though the internal anal sphincter could no longer be responsible for the increase. Second, in contrast to previous studies, recent studies demonstrated that botulinum toxin influences external anal sphincter activity and, because it is a striated muscle relaxant, it seems reasonable to presume that it affects the striated external anal sphincter, rather than the smooth internal anal sphincter.If our hypothesis is proved correct, the treatment option of lateral internal sphincterotomy should be abandoned in patients suffering from chronic anal fissures, since it fails to eliminate the cause of high anal basal pressure. Additionally, lateral internal sphincterotomy may cause damage to the anal-external sphincter continence reflex, resulting in fecal incontinence. Instead, higher doses of botulinum toxin should be administered to those patients suffering from chronic anal fissure who appeared unresponsive to lower doses.  相似文献   

9.
Multidrug resistance (MDR) is a phenomenon expressed by many tumors affecting the chemotherapy efficacy, treatment decision, and the disease prognosis. Considering its great implication, non-invasive approaches are needed to identify this phenomenon in early stages of the disease. This article discusses the potential of the emerging non-invasive bacterium-mediated imaging of cancer in diagnosis of MDR. This potential is derived from the effect of cancer MDR on the pharmacokinetics of certain antibiotics, which are substrates of the MDR proteins. Since MDR proteins actively pump their substrates outside the resistant cancer cells, the elimination of the employed reporter bacteria, proliferating within MDR cancer cells, would require a larger dose of these antibiotics compared to those inside non-MDR cancer cells. These bacteria bear reporter genes that produce specific signals such as bioluminescent, fluorescent, magnetic, or radioactive signals that can be detected by non-invasive imaging modalities. Therefore, the presence, degree, and mechanism of MDR can be estimated by comparing the concentration of the employed antibiotic, required to cease these signals (reflecting the elimination of the bacteria), to a pre-determined reference. The real time imaging of MDR cancer and the early diagnosis of MDR, offered by this approach, would provide a better tool for preclinical studies of MDR, and allow a prompt choice of the most appropriate therapy.  相似文献   

10.
Reestablishment of immune tolerance to the insulin-producing beta cells is the desired goal for type 1 diabetes (T1D) treatment and prevention. Immune tolerance to multiple islet antigens is defective in individuals with T1D, but the mechanisms involved are multifaceted and may involve loss of thymic and peripheral tolerance. In this review we discuss our current understanding of the varied mechanisms by which peripheral tolerance to islet antigens is maintained in healthy individuals where genetic protection from T1D is present and how this fails in those with genetic susceptibility to disease. Novel findings in regards to expression of neo-islet antigens, non-classical regulatory cell subsets and the impact of specific genetic variants on tolerance induction are discussed.  相似文献   

11.
Vibrio vulnificus, an opportunistic marine bacterium that causes a serious, often fatal, infection in humans, requires iron for its pathogenesis. This bacterium exports vulnibactin for iron acquisition from the environment. The mechanisms of vulnibactin biosynthesis and ferric-vulnibactin uptake systems have recently been reported, while the vulnibactin export system has not been reported. Mutant growth under low-iron concentration conditions and a bioassay of the culture supernatant indicate that the VV1_0612 protein plays a crucial role in the vulnibactin secretion as a component of the resistance-nodulation-division (RND)-type efflux system in V. vulnificus M2799. To identify which RND protein(s) together with VV1_0612 TolC constituted the RND efflux system for vulnibactin secretion, deletion mutants of 11 RND protein-encoding genes were constructed. The growth inhibition of a multiple mutant (Δ11) of the RND protein-encoding genes was observed 6 h after the beginning of the culture. Furthermore, ΔVV1_1681 exhibited a growth curve that was similar to that of Δ11, while the multiple mutant except ΔVV1_1681 showed the same growth as the wild-type strain. These results indicate that the VV1_1681 protein is involved in the vulnibactin export system of V. vulnificus M2799. This is the first genetic evidence that vulnibactin is secreted through the RND-type efflux systems in V. vulnificus.  相似文献   

12.
Background and objectivesIn this study, coroner's autopsy reports were used to validate results obtained from respiratory virus screening of swabs rather than tissue collected during autopsy in cases of adult death of unknown cause.Study designCoroner's autopsy samples collected for respiratory virus screening between October 2010 and February 2011, were identified. Autopsy reports were requested from cases positive for a virus. Each report was reviewed to correlate findings at autopsy with the virology result and to determine whether the virus found was listed as a contributing factor in the death.ResultsSixty-four coroner's autopsy cases were identified and a respiratory virus was found in 25 cases. Influenza A(H1N1)pdm09 virus was found most frequently, then RSV and influenza B with a dual influenza A and B infection and a parainfluenza type 1. Where multiple sites were swabbed, the virus was detected in all sites. Autopsy reports for 12 cases were obtained each reporting findings consistent with respiratory infection. Influenza A was always listed as a contributing factor in the death whereas RSV was listed once and influenza B was omitted in one case. The quality of the reports was variable and full histology was less likely to be performed in the elderly.ConclusionsWhile coroner's reports supported the use of swabbing rather than tissue collection, the lack of consistency and omission of the virology findings as contributing factors to death means that the burden of viruses on mortality statistics will remain under-estimated particularly in the elderly.  相似文献   

13.
In animal models of acute ischemic stroke, intravenous dehydroascorbic acid (DHAA), unlike ascorbic acid (AA), readily enters brain and is converted in both normal and ischemic brain into protective ascorbic acid. When given parenterally DHAA minimizes infarct volume and facilitates functional recovery. I hypothesize the same effect will occur in humans with acute ischemic stroke. Efficacy in reducing infarct volume is demonstrable in mice and rats even when DHAA is infused three hours after the experimental infarct. Moreover, there is fivefold mechanistic rational for DHA beside excellent pharmacokinetics and rapid penetration of brain and conversion to protective AA: (1) in ischemic brain, there is a precipitous decline in AA which can be reversed by intravenous DHAA; (2) after reduction of DHAA to AA in both normal and ischemic brain, AA can reduce oxidized vitamin E and glutathione, other protectors of brain against damaging reactive oxygen species which build up in ischemic brain; (3) AA itself can protect brain against damaging reactive oxygen species; (4) AA is an essential cofactor for several enzymes in brain including ten-eleven translocase-2 which upregulates production of protective molecules like brain-derived neurotrophic factor; and (5) DHAA after conversion to AA prevents both lipid oxidation and presumably oxidation of other labile substances (e.g., dopamine) in ischemic brain. In terms of safety, based on all available animal information, DHAA is safe in the proposed dosing regimen. For human clinical trials, the methodology for conducting the proposed animal safety, clinical pharmacology and phase II efficacy studies is straightforward. Finally, if DHAA preserved brain substance and function in humans, it could be employed in pre-hospital stroke patients.  相似文献   

14.
Heavy metals can accumulate in organisms via various pathways, including respiration, adsorption and ingestion. They are known to generate free radicals and induce oxidative and/or nitrosative stress with depletion of anti-oxidants. Tuna by-product meal (TBM) is rich in proteins and can, therefore, offer an attractive protein source for animals. This study was undertaken to assess the effects of metals present in TBM, namely cadmium (Cd), lead (Pb), and mercury (Hg), separately or in combination with oxidative stress, on cell viability. Three cell models: rat liver FTO2B, human hepatoma HepG2, and human hepatic WRL-68, were used. Cell viability was determined following exposure to various concentrations of the metals. Two antioxidant genes, catalase (CAT) and superoxide dismutase (SOD), were measured to obtain a better understanding of oxidative stress-associated gene expression. Among the metals present in TBM, only Cd at a concentration of 30 μM was noted to exhibit cytotoxic effects. This cytotoxicity was even more pronounced after co-stimulation with H2O2, used to mimic systemic oxidative stress. At non-toxic concentrations, Hg and Pb were noted to aggravate oxidative stress toxicity. The results further revealed that exposure to Cd, Pb, and a co-stimulation of H2O2 with Hg resulted in the increased expression of antioxidant gene SOD. A risk assessment of toxic contaminants in TBM indicated that food safety objectives should consider the human health impacts of foods derived from animals fed on contaminated meal and that much care should be taken when TBM is used in animal diet.  相似文献   

15.
16.
Whilst the future for social media in chronic disease management appears to be optimistic, there is limited concrete evidence indicating whether and how social media use significantly improves patient outcomes. This review examines the health outcomes and related effects of using social media, while also exploring the unique affordances underpinning these effects. Few studies have investigated social media’s potential in chronic disease, but those we found indicate impact on health status and other effects are positive, with none indicating adverse events. Benefits have been reported for psychosocial management via the ability to foster support and share information; however, there is less evidence of benefits for physical condition management. We found that studies covered a very limited range of social media platforms and that there is an ongoing propensity towards reporting investigations of earlier social platforms, such as online support groups (OSG), discussion forums and message boards. Finally, it is hypothesized that for social media to form a more meaningful part of effective chronic disease management, interventions need to be tailored to the individualized needs of sufferers. The particular affordances of social media that appear salient in this regard from analysis of the literature include: identity, flexibility, structure, narration and adaptation. This review suggests further research of high methodological quality is required to investigate the affordances of social media and how these can best serve chronic disease sufferers. Evidence-based practice (EBP) using social media may then be considered.  相似文献   

17.
18.
19.
BackgroundBoth PUFA and miRNAs are believed to be of importance in vascular diseases. On the one hand diverse nutrition societies recommend PUFA consumption to dampen inflammatory processes. On the other hand scientists intensify efforts to use miRNAs for diagnostics or therapy in context of vascular disorders.Presentation of the hypothesisThere might be is a causal link between the plasma membrane lipid composition and the miRNA expression of monocytes and endothelial cells. PUFA enrichment of cells may affect the type and the amount of particular miRNAs produced. In this way dietary fatty acids are supposed to impact the miRNA-mediated regulation of vascular inflammatory processes.Proposed experimental setting to test the hypothesisPUFA-supplemented monocytes and endothelial cells are analyzed with respect to membrane fatty acid patterns, typical markers of vascular inflammation and miRNA expression. Experiments are performed both for undifferentiated/unstimulated as well as for differentiated/stimulated cells. Verification of identified miRNA targets is performed by means of mimics/antagomirs.Implications of the hypothesisInnovative mechanism of action, which could point the way to a new understanding of the PUFA-mediated modulation of cellular signal transduction. If confirmed experimentally, it might stimulate vascular inflammation research and immunologic lipid science, hence, acting as source of inspiration for future therapeutic interventions in vascular diseases.  相似文献   

20.
Eukaryotic Initiation Factor 6 (eIF6) is required for 60S ribosomal subunit biogenesis and efficient initiation of translation. Intriguingly, in both mice and humans, endogenous levels of eIF6 are detrimental as they act as tumor and obesity facilitators, raising the question on the evolutionary pressure that maintains high eIF6 levels. Here we show that, in mice and humans, high levels of eIF6 are required for proper immune functions. First, eIF6 heterozygous (het) mice show an increased mortality during viral infection and a reduction of peripheral blood CD4+ Effector Memory T cells. In human CD4+ T cells, eIF6 levels rapidly increase upon T-cell receptor activation and drive the glycolytic switch and the acquisition of effector functions. Importantly, in CD4+ T cells, eIF6 levels control interferon-γ (IFN−γ) secretion without affecting proliferation. In conclusion, the immune system has a high evolutionary pressure for the maintenance of a dynamic and powerful regulation of the translational machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号