首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We previously demonstrated that monotropein isolated from the roots of Morinda officinalis (Rubiaceae) has anti-inflammatory effects in vivo. In the present study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of monotropein in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis mouse model. Monotropein was found to inhibit the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) mRNA in LPS-induced RAW 264.7 macrophages. Treatment with monotropein decreased the DNA binding activity of nuclear factor-κB (NF-κB). Consistent with these findings, monotropein also suppressed phosphorylation and degradation of inhibitory κB-α (IκB-α), and consequently the translocations of NF-κB. In the DSS-induced colitis model, monotropein reduced disease activity index (DAI), myeloperoxidase (MPO) activity, and inflammation-related protein expressions by suppressing NF-κB activation in colon mucosa. Taken together, these findings suggest that the anti-inflammatory effects of monotropein are mainly related to the inhibition of the expressions of inflammatory mediators via NF-κB inactivation, and support its possible therapeutic role in colitis.  相似文献   

2.
青藤碱对核转录因子κB及其抑制因子IκB的影响   总被引:13,自引:0,他引:13  
  相似文献   

3.
4.
Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been reported to have potent anti-inflammatory properties. However, the effect of taraxasterol on lipopolysaccharide (LPS)-induced mice acute lung injury has not been investigated. The aims of this study were to investigate whether taraxasterol could ameliorate the inflammation response in LPS-induced acute lung injury and to clarify the possible mechanism. Male BALB/c mice were pretreated with taraxasterol 1 h before intranasal instillation of LPS. 7 h after LPS administration, the myeloperoxidase (MPO) in lung tissues, lung wet/dry ratio and inflammatory cells in the bronchoalveolar lavage fluid (BALF) were detected. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) in the BALF were measured by ELISA. The extent of phosphorylation of IκB-α, p65 NF-κB, p46–p54 JNK, p42–p44 ERK, and p38 were determined by western blotting. The results showed that taraxasterol attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), lung wet/dry ratio, and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, western blotting results showed that taraxasterol inhibited the phosphorylation of IκB-α, p65 NF-κB, p46–p54 JNK, p42–p44 ERK, and p38 caused by LPS. Our data suggest that anti-inflammatory effects of taraxasterol against the LPS-induced ALI may be due to its ability of inhibition of the NF-κB and MAPK signaling pathways.  相似文献   

5.
Chen L  Zhao Q  Wang XL  You R  Zhang YH  Ji H  Lai YS 《Vascular pharmacology》2011,55(5-6):135-142
Nonsteroidal anti-inflammatory drugs (NSAIDs) are previously found to possess prostaglandin and leukotriene-independent anti-inflammatory effect. The aim of the present study was to investigate the prostaglandin and leukotriene-independent anti-inflammatory effect of an imidazolone COX/5-LOX inhibitor ZLJ-6 and the underlying mechanism. Pretreatment human umbilical vein endothelial cells (HUVECs) with ZLJ-6 (3, 10 and 30μM) concentration-dependently decreased TNF-α-induced monocyte-endothelial interactions in both static and dynamic conditions whereas no effect was found after pretreatment with the COX-2 inhibitor celecoxib (30μM), 5-LOX inhibitor zileuton (30μM) and the combination of them. ZLJ-6 also attenuated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cytoadhesion molecule-1 (VCAM-1) on TNF-α-induced HUVECs. A further analysis indicated that ZLJ-6 attenuated TNF-α-induced nuclear translocation of NF-κB, IκB phosphorylation, IκB kinase β (IKKβ) activity, and subsequent NF-κB-DNA complex formation, suggesting that NF-κB pathway was involved in TNF-α-induced inflammation. However, ZLJ-6 did not affect TNF-α-induced extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK) and p38 phosphorylation. Taken together, our results indicated that ZLJ-6 potently inhibited TNF-α-induced monocyte-endothelial interactions and adhesion molecule (E-selectin, ICAM-1 and VCAM-1) expression and these effects were mediated by NF-κB signaling pathway rather than its primary pharmacological target COX-2 or 5-LOX.  相似文献   

6.
7.
8.
Bone diseases are characterized by the presence of pro-inflammatory cytokines that regulate bone turnover. The receptor activator of NF-κB ligand (RANKL) is a soluble osteoblast-derived protein that induces bone resorption through osteoclast differentiation and activation. Sargachromanol G (SG) was isolated from the brown algae Sargassum siliquastrum; SG has anti-osteoclastogenic activity, but its mechanism of action and its active components remain largely unknown. In the present study, we investigated the anti-osteoclastogenic effects of SG on the expression of interleukin-1β (IL-1β)-induced osteoclastogenic factors (PGE2, COX-2, IL-6, OPG, and RANKL) in the human osteoblast cell line MG-63. We also examined the role of the nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) signaling pathways in IL-1β-stimulated MG-63 cells. SG dose-dependently inhibited the production of osteoclastogenic factors in MG-63 cells. SG also inhibited phosphorylation of MAPK (ERK1/2, p38, and JNK) and NF-κB (p65, p50, and IκB-α). These results suggest that the anti-osteoporotic effect of SG may be because of the modulation of osteoclastogenic factors via suppression of MAPK and NF-κB activation.  相似文献   

9.
10.
We investigated the composition of essential oil from fingered citron (Citrus medica L. var. sarcodactylis) (FCEO) peels by GC–MS and its anti-inflammatory effects on lipopolysaccharide (LPS) – stimulated mouse macrophage (RAW 264.7) cells. Fifteen compounds, representing 98.97% of the essential oil, were tentatively identified; the main constituents were limonene (52.44%) and γ-terpinene (28.41%). FCEO significantly inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) by suppressing the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, respectively. Additionally, FCEO suppressed the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. FCEO attenuated LPS-induced nuclear factor-κB (NF-κB) activation via inhibition of inhibitor κB-α phosphorylation. Furthermore, FCEO blocked activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) but not that of p38 mitogen-activated protein kinase. These results indicate that FCEO inhibits LPS-stimulated inflammation by blocking the NF-κB, JNK, and ERK pathways in macrophages, and demonstrate that FCEO possesses anti-inflammatory properties.  相似文献   

11.
Recently, we reported the synthesis of damaurone D (DD), originally derived from Rosa damascene, and its anti-inflammatory effect in macrophages. Here, we investigated the molecular mechanism underlying the anti-inflammatory effect of DD in macrophages and further tested whether DD is protective against lipopolysaccharide (LPS)-induced liver injury. DD inhibited LPS-stimulated expression of pro-inflammatory genes and cytokine/chemokine secretion in a concentration-dependent manner in RAW 264.7 cells and thioglycolate-elicited mouse peritoneal macrophages. DD suppressed LPS-stimulated nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, as demonstrated by reduction in IκB kinase α/β phosphorylation, IκBα degradation, and levels of phosphorylated ERK, JNK, and p38 MAPK. The luciferase reporter activity of NF-κB and activator protein 1 was also attenuated by DD pretreatment. Furthermore, DD treatment induced AMP-activated protein kinase (AMPK) activation in cells and mouse liver, although the anti-inflammatory effect of DD was similar in dominant-negative AMPK-overexpressing cells. Lastly, DD-treated mice were protected against LPS-induced acute liver injury, based on morphologic and immunohistochemical observations; reduction in the plasma levels of aspartate aminotransferase, TNF-α, and MCP-1; and a decrease in inflammatory gene expression. In summary, our findings indicate that DD can protect against LPS-stimulated inflammation and liver injury at least partly by suppression of NF-κB and MAPK signaling pathways.  相似文献   

12.
《Toxicology in vitro》2010,24(1):10-20
The aims of the present study were to establish to what extent IL-1, and intracellular pathways involving mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB), play a role in ultrafine particle-induced release of IL-6 by primary rat epithelial lung cells.Ultrafine carbon black (Printex 90) induced a concentration- and time-dependent increase in the release of IL-1α, IL-1β and IL-6. The ultrafine carbon black-induced release of IL-6 was completely eliminated by an IL-1 receptor antagonist (IL-1ra). Cellular release of IL-1α, IL-1β and IL-6 was significantly attenuated by curcumin and by inhibitors of the MAPKs ERK1/2 (PD98069), p38 (SB202190) and JNK (SP600125), whereas pyrrolidine dithiocarbamate (PDTC) attenuated the release of IL-6, but not of IL-1α and IL-1β. The effects of curcumin and PDTC may indicate an involvement of NF-κB. Furthermore, ultrafine carbon black induced degradation of IκBα, used as an indicator of NF-κB activation, and induced phosphorylation of ERK1/2, p38 and JNK1/2. This degradation and phosphorylation was attenuated by IL-1ra.The present findings provide more insight into the largely unknown mechanisms involved in ultrafine particle-induced release of cytokines from lung cells. The findings suggest that ultrafine carbon black-induced release of IL-6 strongly depends on IL-1 and that activation of MAPKs and NF-κB is involved in this response.  相似文献   

13.
Osteoarthritis (OA) is a common degenerative disease characterized by progressive erosion of articular cartilage, subchondral bone sclerosis and synovitis. Cryptotanshinone (CTS), an active component extracted from the root of Salvia miltiorrhiza Bunge, has been shown to have potent anti-inflammatory effects. However, its effects on OA have not been clearly elucidated. This study aimed to assess the effect of CTS on human OA chondrocytes and mice OA models. Human OA chondrocytes were pretreated with CTS (5, 10 and 20 μM) for 2 h and subsequently stimulated with IL-1β for 24 h. Production of NO, PGE2, IL-6, TNF-α was evaluated by the Griess reaction and ELISA. The protein expression of COX-2, iNOs, MMP-3, MMP13, COX-2, ADAMTS-5, JNK, p-JNK, ERK, p-ERK, p38, p-p38, p-IKKα/β, p65, p-p65, IκB-α, and p-IκB-α was tested by Western blot. In vivo, the severity of OA was determined by histological analysis. We found that CTS significantly inhibited the IL-1β-induced production of NO and PGE2; expression of COX-2, iNOS, MMP-3, MMP-13, and ADAMTS-5. Furthermore, CTS in dramatically suppressed IL-1β-stimulated NF-κB and MAPK activation. Immunofluorescence staining demonstrated that CTS could suppress IL-1β-induced phosphorylation of p65 nuclear translocation. In vivo, treatment of CTS prevented the destruction of cartilage and the thickening of subchondral bone in mice OA models. These results indicate that the therapeutic effect of CTS on OA is accomplished through the inhibition of both NF-κB and MAPK signaling pathways. Our findings provide the evidence to develop CTS as a potential therapeutic agent f or patients with OA.  相似文献   

14.
In the course of a search for anti-neuroinflammatory metabolites from marine fungi, aurantiamide acetate (1) was isolated from marine-derived Aspergillus sp. as an anti-neuroinflammatory component. Compound 1 dose-dependently inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in BV2 microglial cells. It also attenuated inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and other pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In a further study designed to elucidate the mechanism of its anti-neuroinflammatory effect, compound 1 was shown to block the activation of nuclear factor-kappa B (NF-κB) in lipopolysaccharide (LPS)-induced BV2 microglial cells by inhibiting the phosphorylation of the inhibitor kappa B-α (IκB)-α. In addition, compound 1 decreased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). These results suggest that compound 1 has an anti-neuroinflammatory effect on LPS stimulation through its inhibition of the NF-κB, JNK and p38 pathways.  相似文献   

15.
16.
Butyrate is a bacterial metabolite of dietary fiber in the colon that has been used to treat inflammatory disease. However, the effect of oral supplementation with butyrate on colitis has not been fully explored. We evaluated the effects of and mechanisms underlying oral supplementation with butyrate on experimental murine colitis. In an in vitro study, we found that LPS induced the secretion of cytokines (i.e., IL-8 in COLO 205; TNF-α, IL-6, IL-12, and IL-10 in RAW 264.7; and TNF-α, IL-6 and IL-12 in peritoneal macrophages obtained from IL-10-deficient [IL-10−/−] mice). Butyrate (100 μM and 500 μM) inhibited pro-inflammatory cytokine production (i.e., IL-8 in COLO205 and TNF-α, IL-6 and IL-12 in macrophages) but promoted anti-inflammatory cytokine (i.e., IL-10) production in RAW264.7 cells. Butyrate attenuated both the LPS-induced degradation/phosphorylation of IκBα and DNA binding of NF-κB and enhanced histone H3 acetylation. To confirm that butyrate played a protective role in colitis, an acute colitis model was induced using dextran sulfate sodium (DSS) and a chronic colitis model was induced in IL-10−/− mice. The administration of oral butyrate (100 mg/kg) significantly improved histological scores in both colitis models, including the IL-10−/− mice. In immunohistochemical staining, IκBα phosphorylation was attenuated, and histone H3 acetylation was reversed in the treated colons of both colitis models. Our results indicate that oral supplementation with butyrate attenuates experimental murine colitis by blocking NF-κB signaling and reverses histone acetylation. These anti-colitic effects of butyrate were IL-10-independent. Butyrate may therefore be a therapeutic agent for colitis.  相似文献   

17.
The large amount of nitric oxide (NO) produced by inducible NO synthase (iNOS) contributes to cellular injury in inflammatory disease. In the present study, a novel synthetic compound (3E)-4-(2-hydroxyphenyl)but-3-en-2-one (HPB) was found to inhibit lipopolysaccharide (LPS)-induced NO generation, but not through the inhibition of iNOS activity, in RAW 264.7 macrophages. Administration of HPB into mice also inhibited the LPS-induced increase in serum nitrite/nitrate levels. To evaluate the underlying mechanisms of HPB inhibition of NO generation, the expression of the iNOS gene in RAW 264.7 macrophages was examined. HPB abolished the LPS-induced expression of iNOS protein, iNOS mRNA and iNOS promoter activity in a similar concentration-dependent manner. LPS-induced nuclear factor-κB (NF-κB) DNA binding and NF-κB-dependent reporter gene activity were both significantly inhibited by HPB. This effect was mediated through the inhibition of inhibitory factor-κBα (IκBα) phosphorylation and degradation, and of p65 nuclear translocation. HPB had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinases (MAPK), and c-Jun NH2-terminal kinase (JNK). However, HPB suppressed the LPS-induced intracellular reactive oxygen species (ROS) production. These results indicate that HPB down-regulates iNOS gene expression probably through the inhibition of LPS-induced intracellular ROS production, which has been implicated in the activation of NF-κB.  相似文献   

18.
Vitisin A, a resveratrol tetramer isolated from Vitis vinifera roots, exhibits antioxidative, anticancer, antiapoptotic, and anti-inflammatory effects. It also inhibits nitric oxide (NO) production. Here, we examined the mechanism by which vitisin A inhibits NO production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells. Vitisin A dose dependently inhibited LPS-induced NO production and inducible NO synthase (iNOS) expression. In contrast, the production of proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) was not altered by vitisin A. To investigate the signaling pathway for NO inhibition by vitisin A, we examined nuclear factor-κB (NF-κB) activation in the mitogen-activated protein kinase (MAPK) pathway, an inflammation-induced signal pathway in RAW 264.7 cells. Vitisin A inhibited LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 phosphorylation and suppressed LPS-induced NF-κB activation in RAW 264.7 cells. This suggests that vitisin A decreased NO production via downregulation of ERK1/2 and p38 and the NF-κB signal pathway in RAW 264.7 cells.  相似文献   

19.
This study examined the protective effects of magnesium chenoursodeoxycholic acid (Mg-CUD), a magnesium trihydrate salt of chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), against D-galactosamine (D-GalN)-induced liver injury. Hepatotoxicity was induced by intraperitoneal injection of D-GalN (700mg/kg) and Mg-CUD (15.625, 31.25 and 62.5mg/kg) was administered orally once a day for 2weeks and 6h after D-GalN injection. Significant increases in the level of serum alanine aminotransferase activity and lipid peroxidation were attenuated by Mg-CUD 24h after D-GalN treatment. Hepatic glutathione/oxidized glutathione ratio was decreased, and this decrease was attenuated by Mg-CUD. Mg-CUD attenuated the increase in the levels of serum tumor necrosis factor (TNF)-α and interleukin (IL)-6, while it augmented the increase in serum IL-10 level and heme oxygenase (HO)-1 protein expression. Mg-CUD attenuated increased levels of TNF-α, IL-6, and IL-1β mRNA expression. Increased levels of IL-10 and HO-1 mRNA expression were augmented by Mg-CUD. The increased nuclear level of nuclear factor-κB (NF-κB) and decreased cytosolic level of Inhibitory κB-α protein were attenuated by Mg-CUD. Nuclear phosphorylated c-Jun (p-c-Jun) level showed a significant increase and this increase was attenuated by Mg-CUD. Our results suggest that Mg-CUD ameliorates D-GalN-induced acute hepatitis and that this protection is likely due to its anti-oxidative and anti-inflammatory activities, and inhibition of NF-κB nuclear translocation and nuclear p-c-Jun expression.  相似文献   

20.
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal inflammatory disease with high risks for colorectal cancer and extremely affect people's health. Secoisolariciresinol diglucoside (SDG), a major component of lignans, exerts anti-inflammatory effects against digestive system diseases through a multi-target mechanism. However, the effect of SDG on IBD is not clear. In the present study, we aimed to investigate the effects of SDG on IBD and elucidate the underlying mechanism. The Dextran Sulfate Sodium Salt (DSS)-induced colitis model and lipopolysaccharide (LPS) stimulated RAW264.7 mouse macrophages cellular inflammation model were established. Morphological and pathological changes in colitis tissue in mice were observed by HE staining. Macrophage infiltration was detected by flow cytometry. The levels of nucleotide oligomerization domain-like receptor protein 1 (NLRP1) inflammasome complexes, nuclear factor-kappa B (NF-κB) and inflammatory cytokines were determined using quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The results showed that SDG significantly attenuated the pathological severity and the number of macrophage infiltration of colitis in mice. Besides, SDG decreased the levels of inflammatory cytokines (IL-1β, IL-18 and TNF-α) and inhibited the activation of the NLRP1 inflammasome in DSS-induced colitis mice and RAW264.7 mouse macrophages. Moreover, the inhibitory effect of SDG was partly dependent on the disruption of NF-κB activation. Our results indicated that SDG relieves colitis by inhibiting NLRP1 inflammasome, and partly dependent on the disruption of NF-κB activation. Therefore, SDG may be a potential treatment option for IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号