首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Prion diseases, also called transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders characterized by neuronal loss, astrogliosis, and spongiform changes in the brain. It is postulated that appearance of astrogliosis may provide the neurotrophic factors to prevent or reduce neuronal cell loss in the pathogenesis of prion diseases. To investigate the role of the glial cell line-derived neurotrophic factor (GDNF), we studied the expression levels of GDNF mRNA and protein in an animal model of prion diseases. The expression levels of GDNF mRNA and protein were significantly increased in the brains of scrapie-infected mice at 100 and 160 days after inoculation with scrapie strain compared with those of control mice. In addition, we found more intensive immunoreactivity of GDNF in the brains of scrapie-infected mice, specifically in the hippocampal astrocytes, than was seen in control mice. These results suggest that GDNF participates in protection against neuronal cell loss and atrophy in neurodegenerative disorders, which may play one of the important roles in the pathogenic mechanisms of prion diseases.  相似文献   

4.
Tsumura Suzuki obese diabetes (TSOD) mice spontaneously develop obesity and type 2 diabetes with aberrant accumulation of excessive iron in the spleen. Aberrantly accumulated iron may cause oxidative stress and result in various symptoms of metabolic syndrome in the mice. We investigated iron metabolism and oxidative stress in TSOD mice. Male TSOD and control mice were killed at 2, 3, 6, and 8 months of age, and blood and tissue samples were collected. The serum levels of ferritin and oxidized low‐density lipoprotein (OxLDL) were measured. Total glutathione concentrations of liver and spleen were also measured. Serum ferritin and OxLDL were higher in TSOD mice than in control mice at 2 and 6 months. In addition, the glutathione concentrations in TSOD mice were lower in the liver and higher in the spleen at 3 and 6 months than those in control mice. These results suggest that abnormal iron metabolism and imbalanced oxidative stress occurs in young and old TSOD mice. We propose herein that TSOD mice might be a unique and valuable model for investigating the role of iron metabolism in pathogenesis of metabolic syndrome.  相似文献   

5.
Selective dopaminergic cell loss in Parkinson's disease is correlated with increased levels of cellular iron. It is still hotly debated as to whether the increase in iron is an upstream event which acts to promote neurodegeneration via formation of oxidative stress or whether iron accumulates as a by-product of the neuronal cell loss. Here we review evidence for loss of iron homeostasis as a causative factor in disease-associated neurodegeneration and the primary players which may be involved. A series of recent studies suggest that iron regulatory proteins (IRPs) coordinate both cellular iron levels and energy metabolism, both of which are disrupted in Parkinson's disease (PD) and may in turn contribute to increased levels of oxidative stress associated with the disease. Iron has also been recently been implicated in promotion of alpha-synuclein aggregation either directly or via increasing levels of oxidative stress suggesting an important role for it in Lewy body formation, another important hallmark of the disease.  相似文献   

6.
Pantothenate kinase-associated neurodegeneration (PKAN) is a neurodegenerative disease belonging to the group of neurodegeneration with brain iron accumulation disorders. It is characterized by progressive impairments in movement, speech and cognition. The disease is inherited in a recessive manner due to mutations in the Pantothenate Kinase-2 (PANK2) gene that encodes a mitochondrial protein involved in Coenzyme A synthesis. To investigate the link between a PANK2 gene defect and iron accumulation, we analyzed primary skin fibroblasts from three PKAN patients and three unaffected subjects. The oxidative status of the cells and their ability to respond to iron were analyzed in both basal and iron supplementation conditions. In basal conditions, PKAN fibroblasts show an increase in carbonylated proteins and altered expression of antioxidant enzymes with respect to the controls. After iron supplementation, the PKAN fibroblasts had a defective response to the additional iron. Under these conditions, ferritins were up-regulated and Transferrin Receptor 1 (TfR1) was down-regulated to a minor extent in patients compared with the controls. Analysis of iron regulatory proteins (IRPs) reveals that, with respect to the controls, PKAN fibroblasts have a reduced amount of membrane-associated mRNA-bound IRP1, which responds imperfectly to iron. This accounts for the defective expression of ferritin and TfR1 in patients' cells. The inaccurate quantity of these proteins produced a higher bioactive labile iron pool and consequently increased iron-dependent reactive oxygen species formation. Our results suggest that Pank2 deficiency promotes an increased oxidative status that is further enhanced by the addition of iron, potentially causing damage in cells.  相似文献   

7.
The maintenance of iron homeostasis is critical as both iron deficiency and iron excess are deleterious. In mammals, iron homeostasis is regulated systemically by the iron-hormone hepcidin, an acute-phase protein secreted by the liver which inhibits iron absorption and recycling. Cellularly, the interaction of iron regulatory proteins (IRP) 1 and 2 with iron-responsive elements controls the expression of target mRNAs encoding proteins of iron acquisition, storage, utilization, and export. These processes critically affect iron levels, which in turn impact on numerous aspects of inflammation. To explore the role of IRP1 and IRP2 in inflammation, IRP-deficient mice, i.e., mice with total and constitutive deficiency of either IRP, were subjected to acute aseptic local inflammation. Turpentine oil injection increases the expression of acute phase proteins in the liver and interleukin 6 levels in the serum of control mice. Both IRP-deficient mouse models mount the same responses, indicating that the treatment was efficient in all animals and that the acute phase response does not require expression of both IRPs. As expected, turpentine oil treatment enhances hepcidin mRNA expression in the liver of wild-type mice, associated with decreased serum iron levels. Importantly, Irp1 −/− and Irp2 −/− animals, respectively, display quantitatively similar hepcidin mRNA induction and the appropriate reduction of the serum iron values. Our data indicate that the response of Irp1 −/− and Irp2 −/− mice to acute local inflammation is largely preserved. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The mechanisms behind the pathology of prion diseases are still unknown, but accumulating evidence suggests oxidative impairment along with metal imbalances in scrapie-infected brains. In this study, we have investigated iron-induced oxidative stress in scrapie-infected mouse neuroblastoma N2a (ScN2a) cells. Uninfected N2a and ScN2a cells were treated with ferric ammonium citrate (FAC) for 1-16 h, and the levels of labile iron pool (LIP), the formation of reactive oxygen species (ROS), cell viability and ferritin protein levels were measured. The increase in LIP in N2a cells was transient with a quick recovery to normal levels within 4h accompanied by a moderate increase of formation of ROS after 3h followed by the decrease to the basal level. In ScN2a cells, the increase in LIP was lower, but the process of recovery was prolonged and accompanied by high ROS formation and decreased cell viability. Ferritin protein levels were significantly lower in ScN2a cells than in wild-type cells in all iron treatments. These results suggest that ScN2a cells are more sensitive to iron treatment as compared to wild-type cells with respect to ROS formation and cell viability, and that ferritin deficiency in infected cells may contribute to iron-induced oxidative stress in scrapie-infected cells.  相似文献   

9.
Iron-induced oxidative stress causes hereditary macular degeneration in patients with aceruloplasminemia. Similarly, retinal iron accumulation in age-related macular degeneration (AMD) may exacerbate the disease. The cause of retinal iron accumulation in AMD is poorly understood. Given that bone morphogenetic protein 6 (Bmp6) is a major regulator of systemic iron, we examined the role of Bmp6 in retinal iron regulation and in AMD pathogenesis. Bmp6 was detected in the retinal pigment epithelium (RPE), a major site of pathology in AMD. In cultured RPE cells, Bmp6 was down-regulated by oxidative stress and up-regulated by iron. Intraocular Bmp6 protein injection in mice up-regulated retinal hepcidin, an iron regulatory hormone, and altered retinal labile iron levels. Bmp6(-/-) mice had age-dependent retinal iron accumulation and degeneration. Postmortem RPE from patients with early AMD exhibited decreased Bmp6 levels. Because oxidative stress is associated with AMD pathogenesis and down-regulates Bmp6 in cultured RPE cells, the diminished Bmp6 levels observed in RPE cells in early AMD may contribute to iron build-up in AMD. This may in turn propagate a vicious cycle of oxidative stress and iron accumulation, exacerbating AMD and other diseases with hereditary or acquired iron excess.  相似文献   

10.
Peptidylarginine deiminases (PADs), which are a group of posttranslational modification enzymes, are involved in protein citrullination (deimination) by the conversion of peptidylarginine to peptidylcitrulline in a calcium concentration-dependent manner. Among the PADs, PAD2 is widely distributed in various tissues and is the only type that is expressed in brain. To elucidate the involvement of protein citrullination by PAD2 in the pathogenesis of brain-specific prion diseases, we examined the profiles of citrullinated proteins using the brains of scrapie-infected mice as a prion disease model. We found that, compared with controls, increased levels of citrullinated proteins of various molecular weights were detected in different brain sections of scrapie-infected mice. In support of this data, expression levels of PAD2 protein as well as its enzyme activity were significantly increased in brain sections of scrapie-infected mice, including hippocampus, brain stem, and striatum. Additionally, the expression levels of PAD2 mRNA were increased during scrapie infection. Moreover, PAD2 immunoreactivity was increased in scrapie-infected brains, with staining detected primarily in reactive astrocytes. Using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry, various citrullinated proteins were identified in the brains of scrapie-infected mice, including glial fibrillary acidic protein, myelin basic protein, enolases, and aldolases. This study suggests that accumulated citrullinated proteins and abnormal activation of PAD2 may function in the pathogenesis of prion diseases and serve as potential therapeutic targets.  相似文献   

11.
《Microbial pathogenesis》1998,24(3):133-143
Iron plays a central role in the pathogenesis ofMycobacterium tuberculosis, the principal causative agent of tuberculosis. To learn more about iron acquisition by this bacterium, its iron regulated proteins (IRPs) were investigated. Seven IRPs were identified — three increased by high iron concentrations, and four by low iron concentrations. The smallest protein induced by low iron, Irp10, is tightly iron regulated as it is virtually absent in bacteria cultured in the presence of high iron concentrations. The gene (irpA) encoding this protein and an adjacent open reading frame,mtaA, were cloned and sequenced. The protein encoded bymtaA(Mta72) has striking homology to metal transporting P-type ATPases. This study suggests that Irp10 and Mta72 function as a two-component metal transport system inM. tuberculosis.  相似文献   

12.
Multiple lines of evidence indicate that oxidative stress is an integral component of the pathogenesis of Alzheimer disease (AD). The precipitating cause of such oxidative stress may be misregulated iron homeostasis because there are profound alterations in heme oxygenase-1 (HO-1), redox-active iron, and iron regulatory proteins. In this regard, HasA, a recently characterized bacterial protein involved in heme acquisition and iron metabolism, may also be important in the generation of reactive oxygen species (ROS) given its ability to bind heme and render iron available for free radical generation through the Fenton reaction. To study further the role of heme binding and iron metabolism in AD, we show an abnormal localization of anti-HasA to the neurofibrillary pathology of AD, but not in normal-appearing neurons in the brains of cases of AD or in age-matched controls. These results suggest the increased presence in AD of a HasA homologue or protein sharing a common epitope with HasA, which we term HasAh. We conclude that heme binding of HasAh is a potential source of free soluble iron and therefore toxic free radicals in AD and in aging. This furthers the evidence that redox-active iron and subsequent Fenton reaction generating reactive oxygen are critical factors in the pathogenesis of AD.  相似文献   

13.
14.
Neurotransmitter and carbohydrate metabolism during aging and mild hypoxia   总被引:3,自引:0,他引:3  
Alterations in the metabolism of the glucose derived neurotransmitters may underlie some of the deficits in brain function that can accompany aging. We examined the whole brain syntheses of acetylcholine (ACh), alanine, aspartate, glutamate, gamma-aminobutyrate (GABA), glutamine and serine in two strains (C57BL and BALB/c) of aged mice (3, 10 and 30 months). ACh synthesis in C57BL and BALB/c mice declined 41 and 44% at 10 months and 64 and 75% by 30 months. Incorporation of [U-14C]glucose into amino acids generally decreased with aging, but it was not depressed as much as ACh formation. The only significant reductions in the amino acids in the 30 month old mice of both strains were in the syntheses of GABA (46 and 32%) and glutamine (44 and 55%). These changes may make the aged brain more vulnerable to metabolic insults, since mild anemic hypoxia decreased the syntheses of all the neurotransmitters at all ages even further. ACh synthesis in hypoxic 30 month old mice was only 9-11% of the 3 month old nonhypoxic mice, whereas amino acid formation ranged from 18-55% of the 3 month old nonhypoxic mice. Carbohydrate metabolism and its response to metabolic insults was also altered by age in both strains. The 30 month old mice had higher brain lactate concentrations than the 3 month old mice. The combination of hypoxia and aging further depressed oxidative metabolism, since a greater increase in brain lactates occurred in the aged hypoxilism and its response to metabolic insults was also altered by age in both strains. The 30 month old mice had higher brain lactate concentrations than the 3 month old mice. The combination of hypoxia and aging further depressed oxidative metabolism, since a greater increase in brain lactates occurred in the aged hypoxilism and its response to metabolic insults was also altered by age in both strains. The 30 month old mice had higher brain lactate concentrations than the 3 month old mice. The combination of hypoxia and aging further depressed oxidative metabolism, since a greater increase in brain lactates occurred in the aged hypoxic mice than in young hypoxic mice. Thus, aging may reduce the ability of the brain to adapt to metabolic insults.  相似文献   

15.
《Pathophysiology》2006,13(3):171-181
Autism is a severe developmental disorder with poorly understood etiology. Oxidative stress in autism has been studied at the membrane level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense system against reactive oxygen species (ROS). Lipid peroxidation markers are elevated in autism, indicating that oxidative stress is increased in this disease. Levels of major antioxidant serum proteins, namely transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein), are decreased in children with autism. There is a positive correlation between reduced levels of these proteins and loss of previously acquired language skills in children with autism. The alterations in ceruloplasmin and transferrin levels may lead to abnormal iron and copper metabolism in autism. The membrane phospholipids, the prime target of ROS, are also altered in autism. The levels of phosphatidylethanolamine (PE) are decreased, and phosphatidylserine (PS) levels are increased in the erythrocyte membrane of children with autism as compared to their unaffected siblings. Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism. Furthermore, environmental and genetic factors may increase vulnerability to oxidative stress in autism. Taken together, these studies suggest increased oxidative stress in autism that may contribute to the development of this disease. A mechanism linking oxidative stress with membrane lipid abnormalities, inflammation, aberrant immune response, impaired energy metabolism and excitotoxicity, leading to clinical symptoms and pathogenesis of autism is proposed.  相似文献   

16.
17.
Osteoarthritis (OA) is a degenerative joint disease characterized by low-grade inflammation and high levels of clinical heterogeneity. Aberrant chondrocyte metabolism is a response to changes in the inflammatory microenvironment and may play a key role in cartilage degeneration and OA progression. Under conditions of environmental stress, chondrocytes tend to adapt their metabolism to microenvironmental changes by shifting from one metabolic pathway to another, for example from oxidative phosphorylation to glycolysis. Similar changes occur in other joint cells, including synoviocytes. Switching between these pathways is implicated in metabolic alterations that involve mitochondrial dysfunction, enhanced anaerobic glycolysis, and altered lipid and amino acid metabolism. The shift between oxidative phosphorylation and glycolysis is mainly regulated by the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways. Chondrocyte metabolic changes are likely to be a feature of different OA phenotypes. Determining the role of chondrocyte metabolism in OA has revealed key features of disease pathogenesis. Future research should place greater emphasis on immunometabolism and altered metabolic pathways as a means to understand the pathophysiology of age-related OA. This knowledge will advance the development of new drugs against therapeutic targets of metabolic significance.  相似文献   

18.
Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative diseases of man and animals and are transmitted by a filterable pathogen whose identity is currently unresolved. Our data indicates that Spiroplasma, a wall-less bacterium, is involved in the pathogenesis of TSE. We searched for Spiroplasma ribosomal gene sequences in 10 scrapie-infected sheep brains and 10 normal sheep brains, 7 cervid samples infected with chronic wasting disease (CWD), and 7 normal cervid brains. DNA was extracted from these tissue samples and amplified by polymerase chain reaction (PCR) using primers specific for Spiroplasma-specific 16S rDNA. Specificity of the amplicon was determined by Southern blotting and DNA sequence analyses. Spiroplasma 16S rDNA was found in 8 of 10 scrapie-infected sheep brains and 6 of 7 CWD-infected tissue samples. All normal animal brain samples were negative. Spiroplasma 16S rDNA was also found in two human Creutzfeldt-Jakob diseased (CJD) brains but not in two age-matched normal human brains. DNA sequence analyses of the amplified PCR products from human and animal TSE cases revealed greater than 99% nucleotide sequence homology with Spiroplasma mirum. The presence of Spiroplasma DNA in TSE-infected tissues supports our hypothesis that Spiroplasma may be involved in the pathogenesis of these diseases.  相似文献   

19.
Infections with Vibrio vulnificus resulting in septicemia and high mortality have been correlated with pre-existing liver disease and hemochromatosis. As these conditions are associated with impaired iron metabolism and as iron availability in the host has been implicated in the pathogenicity of a number of bacterial infections, the role of iron as a possible factor in the pathogenesis of V. vulnificus was examined. Injection of mice with iron resulted in a lowering of the 50% lethal dose from 10(6) to 1.1 cells and in a reduction in the time of death postinfection. Elevated serum iron levels were also produced by damaging livers with injections of CCl4. The inoculum size required to kill these mice was directly correlated with serum iron levels. Since the portal of infection of this organism may be ingestion of contaminated seafood, the effects of iron upon orally induced infection were also studied. The effects of adding iron, transferrin, or Desferal (an iron chelate) upon the growth of V. vulnificus in human and rabbit sera were also examined. Iron appeared to be the limiting factor in the ability of this organism to survive or grow in mammalian sera. These results, both in vitro and in vivo, provided strong evidence that iron may play a major role in the pathogenesis of V. vulnificus.  相似文献   

20.
心肌细胞代谢及死亡方式是心肌病的重要病理生理学基础。许多研究提示,铁代谢紊乱是心肌病发生发展的关键环节之一。铁是人体重要生理功能所必需的矿物质,参与细胞呼吸、脂质代谢以及蛋白质合成;在病理条件下,铁蓄积诱导的毒性作用可破坏心肌细胞稳态和活力,导致细胞死亡,即铁死亡。过量的铁则通过芬顿反应诱导过氧化物生成,造成心肌细胞功能损害。因此,铁死亡在调控心肌病的发生及发展过程中具有重要意义。本文总结了铁代谢及铁死亡在心肌病中的病理生理改变及其调控机制,深刻认识铁代谢及铁死亡的调控靶点将为心肌病防治开辟新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号