首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Joanisse MF  Gati JS 《NeuroImage》2003,19(1):64-79
Speech perception involves recovering the phonetic form of speech from a dynamic auditory signal containing both time-varying and steady-state cues. We examined the roles of inferior frontal and superior temporal cortex in processing these aspects of auditory speech and nonspeech signals. Event-related functional magnetic resonance imaging was used to record activation in superior temporal gyrus (STG) and inferior frontal gyrus (IFG) while participants discriminated pairs of either speech syllables or nonspeech tones. Speech stimuli differed in either the consonant or the vowel portion of the syllable, whereas the nonspeech signals consisted of sinewave tones differing along either a dynamic or a spectral dimension. Analyses failed to identify regions of activation that clearly contrasted the speech and nonspeech conditions. However, we did identify regions in the posterior portion of left and right STG and left IFG yielding greater activation for both speech and nonspeech conditions that involved rapid temporal discrimination, compared to speech and nonspeech conditions involving spectral discrimination. The results suggest that, when semantic and lexical factors are adequately ruled out, there is significant overlap in the brain regions involved in processing the rapid temporal characteristics of both speech and nonspeech signals.  相似文献   

2.
Hashimoto T  Usui N  Taira M  Nose I  Haji T  Kojima S 《NeuroImage》2006,31(4):1762-1770
This event-related fMRI study was conducted to examine the blood-oxygen-level-dependent responses to the processing of auditory onomatopoeic sounds. We used a sound categorization task in which the participants heard four types of stimuli: onomatopoeic sounds, nouns (verbal), animal (nonverbal) sounds, and pure tone/noise (control). By discriminating between the categories of target sounds (birds/nonbirds), the nouns resulted in activations in the left anterior superior temporal gyrus (STG), whereas the animal sounds resulted in activations in the bilateral superior temporal sulcus (STS) and the left inferior frontal gyrus (IFG). In contrast, the onomatopoeias activated extensive brain regions, including the left anterior STG, the region from the bilateral STS to the middle temporal gyrus, and the bilateral IFG. The onomatopoeic sounds showed greater activation in the right middle STS than did the nouns and environmental sounds. These results indicate that onomatopoeic sounds are processed by extensive brain regions involved in the processing of both verbal and nonverbal sounds. Thus, we can posit that onomatopoeic sounds can serve as a bridge between nouns and animal sounds. This is the first evidence to demonstrate the way in which onomatopoeic sounds are processed in the human brain.  相似文献   

3.
Functional near-infrared spectroscopy (fNIRS) was used to investigate resting state connectivity of language areas including bilateral inferior frontal gyrus (IFG) and superior temporal gyrus (STG). Thirty-two subjects participated in the experiment, including twenty adults and twelve children. Spontaneous hemodynamic fluctuations were recorded, and then intra- and inter-hemispheric temporal correlations of these signals were computed. The correlations of all hemoglobin components were observed significantly higher for adults than children. Moreover, the differences for the STG were more significant than for the IFG. In the adult group, differences in the correlations between males and females were not significant. Our results suggest by measuring resting state intra- and inter-hemispheric correlations, fNIRS is able to provide qualitative and quantitative evaluation on the functioning of the cortical network.OCIS codes: (170.2655) Functional monitoring and imaging, (170.3880) Medical and biological imaging, (170.5380) Physiology  相似文献   

4.
In visual perception of emotional stimuli, low- and high-level appraisal processes have been found to engage different neural structures. Beyond emotional facial expression, emotional prosody is an important auditory cue for social interaction. Neuroimaging studies have proposed a network for emotional prosody processing that involves a right temporal input region and explicit evaluation in bilateral prefrontal areas. However, the comparison of different appraisal levels has so far relied upon using linguistic instructions during low-level processing, which might confound effects of processing level and linguistic task. In order to circumvent this problem, we examined processing of emotional prosody in meaningless speech during gender labelling (implicit, low-level appraisal) and emotion labelling (explicit, high-level appraisal). While bilateral amygdala, left superior temporal sulcus and right parietal areas showed stronger blood oxygen level-dependent (BOLD) responses during implicit processing, areas with stronger BOLD responses during explicit processing included the left inferior frontal gyrus, bilateral parietal, anterior cingulate and supplemental motor cortex. Emotional versus neutral prosody evoked BOLD responses in right superior temporal gyrus, bilateral anterior cingulate, left inferior frontal gyrus, insula and bilateral putamen. Basal ganglia and right anterior cingulate responses to emotional versus neutral prosody were particularly pronounced during explicit processing. These results are in line with an amygdala-prefrontal-cingulate network controlling different appraisal levels, and suggest a specific role of the left inferior frontal gyrus in explicit evaluation of emotional prosody. In addition to brain areas commonly related to prosody processing, our results suggest specific functions of anterior cingulate and basal ganglia in detecting emotional prosody, particularly when explicit identification is necessary.  相似文献   

5.
The current study examined developmental changes in activation and effective connectivity among brain regions during a phonological processing task, using fMRI. Participants, ages 9-15, were scanned while performing rhyming judgments on pairs of visually presented words. The orthographic and phonological similarity between words in the pair was independently manipulated, so that rhyming judgment could not be based on orthographic similarity. Our results show a developmental increase in activation in the dorsal part of left inferior frontal gyrus (IFG), accompanied by a decrease in the dorsal part of left superior temporal gyrus (STG). The coupling of dorsal IFG with other selected brain regions involved in the phonological decision increased with age, while the coupling of STG decreased with age. These results suggest that during development there is a shift from reliance on sensory auditory representations to reliance on phonological segmentation and covert articulation for performing rhyming judgment on visually presented words. In addition, we found a developmental increase in activation in left posterior parietal cortex that was not accompanied by a change in its connectivity with the other regions. These results suggest that maturational changes within a cortical region are not necessarily accompanied by an increase in its interactions with other regions and its contribution to the task. Our results are consistent with the idea that there is reduced reliance on primary sensory processes as task-relevant processes mature and become more efficient during development.  相似文献   

6.
Tse CY  Tien KR  Penney TB 《NeuroImage》2006,29(1):314-320
The mismatch negativity (MMN) is a pre-attentive brain response to auditory environmental change. Temporal and frontal cortex generators of pre-attentive change detection have been proposed based on source localization of event-related potentials (ERP), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) studies. The temporal cortex generators are believed to underlie change detection, whereas the frontal cortex generators are thought to subserve reorientation of attention in response to change. The present study used the event-related optical signal (EROS), an imaging technique that is sensitive to activity related changes in the light scattering properties of neurons, to investigate the pre-attentive brain response to stimulus omissions. The stimulus train comprised 10 ms tone pips presented with a stimulus onset asynchrony (SOA) of 84 ms. Occasional tone omissions elicited a significant increase in right superior temporal gyrus (STG) activity 140 ms after the omitted stimulus, followed 60 ms later by right inferior frontal gyrus (IFG) activity. This result provides support for a temporal-frontal cortical network that underlies pre-attentive change detection.  相似文献   

7.
Previous electrophysiological and neuroimaging studies suggest that the mismatch negativity (MMN) is generated by a temporofrontal network subserving preattentive auditory change detection. In two experiments we employed event-related brain potentials (ERP) and event-related functional magnetic resonance imaging (fMRI) to examine neural and hemodynamic activity related to deviance processing, using three types of deviant tones (small, medium, and large) in both a pitch and a space condition. In the pitch condition, hemodynamic activity in the right superior temporal gyrus (STG) increased as a function of deviance. Comparisons between small and medium and between small and large deviants revealed right prefrontal activation in the inferior frontal gyrus (IFG; BA 44/45) and middle frontal gyrus (MFG; BA 46), whereas large relative to medium deviants led to left and right IFG (BA 44/45) activation. In the ERP experiment the amplitude of the early MMN (90-120 ms) increased as a function of deviance, by this paralleling the right STG activation in the fMRI experiment. A U-shaped relationship between MMN amplitude and the degree of deviance was observed in a late time window (140-170 ms) resembling the right IFG activation pattern. In a subsequent source analysis constrained by fMRI activation foci, early and late MMN activity could be modeled by dipoles placed in the STG and IFG, respectively. In the spatial condition no reliable hemodynamic activation could be observed. The MMN amplitude was substantially smaller than in the pitch condition for all three spatial deviants in the ERP experiment. In contrast to the pitch condition it increased as a function of deviance in the early and in the late time window. We argue that the right IFG mediates auditory deviance detection in case of low discriminability between a sensory memory trace and auditory input. This prefrontal mechanism might be part of top-down modulation of the deviance detection system in the STG.  相似文献   

8.
In a recent fMRI language comprehension study, we asked participants to listen to word-pairs and to make same/different judgments for regularly and irregularly inflected word forms [Tyler, L.K., Stamatakis, E.A., Post, B., Randall, B., Marslen-Wilson, W.D., in press. Temporal and frontal systems in speech comprehension: an fMRI study of past tense processing. Neuropsychologia, available online.]. We found that a fronto-temporal network, including the anterior cingulate cortex (ACC), left inferior frontal gyrus (LIFG), bilateral superior temporal gyrus (STG) and middle temporal gyrus (MTG), is preferentially activated for regularly inflected words. We report a complementary re-analysis of the data seeking to understand the behavior of this network in terms of inter-regional covariances, which are taken as an index of functional connectivity. We identified regions in which activity was predicted by ACC and LIFG activity, and critically, by the interaction between these two regions. Furthermore, we determined the extent to which these inter-regional correlations were influenced differentially by the experimental context (i.e. regularly or irregularly inflected words). We found that functional connectivity between LIFG and left MTG is positively modulated by activity in the ACC and that this effect is significantly greater for regulars than irregulars. These findings suggest a monitoring role for the ACC which, in the context of processing regular inflected words, is associated with greater engagement of an integrated fronto-temporal language system.  相似文献   

9.
Previous neurophysiological and neuroimaging studies have shown that a cortical network involving the inferior frontal gyrus (IFG), inferior parietal lobe (IPL) and cortical areas in and around the posterior superior temporal sulcus (pSTS) region is employed in action understanding by vision and audition. However, the brain regions that are involved in action understanding by touch are unknown. Lederman et al. (2007) recently demonstrated that humans can haptically recognize facial expressions of emotion (FEE) surprisingly well. Here, we report a functional magnetic resonance imaging (fMRI) study in which we test the hypothesis that the IFG, IPL and pSTS regions are involved in haptic, as well as visual, FEE identification. Twenty subjects haptically or visually identified facemasks with three different FEEs (disgust, neutral and happiness) and casts of shoes (shoes) of three different types. The left posterior middle temporal gyrus, IPL, IFG and bilateral precentral gyrus were activated by FEE identification relative to that of shoes, regardless of sensory modality. By contrast, an inferomedial part of the left superior parietal lobule was activated by haptic, but not visual, FEE identification. Other brain regions, including the lingual gyrus and superior frontal gyrus, were activated by visual identification of FEEs, relative to haptic identification of FEEs. These results suggest that haptic and visual FEE identification rely on distinct but overlapping neural substrates including the IFG, IPL and pSTS region.  相似文献   

10.
静息态fMRI观察遗忘型轻度认知障碍患者长-短程功能连接   总被引:2,自引:2,他引:0  
目的 分析遗忘型轻度认知障碍(aMCI)患者长、短程功能连接的变化。方法 采集37例aMCI患者(aMCI组)和40名认知功能正常志愿者(对照组)的静息态fMRI数据,以GRETNA软件自动计算完成全脑长程和短程功能连接,比较2组间差异。结果 与对照组比较,aMCI组长程功能连接减低的脑区主要位于双侧楔前叶/中后扣带回、右侧中央沟盖,长程功能连接增强的脑区主要分布于双侧中央前回、左侧颞极/颞中回、左侧直回、右侧眶内额上回、左侧眶内额下回;其短程功能连接减低脑区位于左侧岛叶,短程功能连接增强脑区主要包括左侧颞极/颞上回、左侧颞中回、左侧直回、左侧眶内额下回、右侧海马、右侧颞上回、右侧额中回、右侧辅助运动区及左侧中央后回/楔前叶。结论 aMCI组患者脑长、短程功能连接模式均有所改变,有助于理解aMCI患者脑网络改变的病理生理机制。  相似文献   

11.
Taking the perspective of somebody else (Theory of Mind; ToM) is an essential human ability depending on a large cerebral network comprising prefrontal and temporo-parietal regions. Recently, ToM was suggested to consist of two processes: (1) self-perspective inhibition and (2) belief reasoning. Moreover, it has been hypothesized that self-perspective inhibition may build upon basic motor response inhibition. This study tested both hypotheses for the first time using functional Magnetic Resonance Imaging (fMRI), through administering both a ToM and a stop-signal paradigm in the same subjects. Both self-perspective and motor response inhibition yielded bilateral inferior frontal gyrus (IFG) activation, suggesting a common inhibitory mechanism, while belief reasoning was mediated by the superior temporal gyrus (STG) and temporo-parietal junction (TPJ). Thus, we provide neurobiological evidence for a subdivision of ToM into self-perspective inhibition and belief reasoning. Furthermore, evidence for partially shared neural mechanisms for inhibition in complex social situations and basic motor response inhibition was found.  相似文献   

12.
Complex sentence processing is supported by a left-lateralized neural network including inferior frontal cortex and posterior superior temporal cortex. This study investigates the pattern of connectivity and information flow within this network. We used fMRI BOLD data derived from 12 healthy participants reported in an earlier study (Thompson, C. K., Den Ouden, D. B., Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b). Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia, 48(11), 3211-3227) to identify activation peaks associated with object-cleft over syntactically less complex subject-cleft processing. Directed Partial Correlation Analysis was conducted on time series extracted from participant-specific activation peaks and showed evidence of functional connectivity between four regions, linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal sulcus and anterior middle temporal gyrus. This pattern served as the basis for Dynamic Causal Modeling of networks with a driving input to posterior superior temporal cortex, which likely supports thematic role assignment, and networks with a driving input to inferior frontal cortex, a core region associated with syntactic computation. The optimal model was determined through both frequentist and Bayesian Model Selection and turned out to reflect a network with a primary drive from inferior frontal cortex and modulation of the connection between inferior frontal cortex and posterior superior temporal cortex by complex sentence processing. The winning model also showed a substantive role for a feedback mechanism from posterior superior temporal cortex back to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order analysis, supported by inferior frontal cortex, in an interactive relation with posterior superior temporal cortex, which supports verb argument structure processing.  相似文献   

13.
The analysis of auditory deviant events outside the focus of attention is a fundamental capacity of human information processing and has been studied in experiments on Mismatch Negativity (MMN) and the P3a component in evoked potential research. However, generators contributing to these components are still under discussion. Here we assessed cortical blood flow to auditory stimulation in three conditions. Six healthy subjects were presented with standard tones, frequency deviant tones (MMN condition), and complex novel sounds (Novelty condition), while attention was directed to a nondemanding visual task. Analysis of the MMN condition contrasted with thestandard condition revealed blood flow changes in the left and right superior temporal gyrus, right superior temporal sulcus and left inferior frontal gyrus. Complex novel sounds contrasted with the standard condition activated the left superior temporal gyrus and the left inferior and middle frontal gyrus. A small subcortical activation emerged in the left parahippocampal gyrus and an extended activation was found covering the right superior temporal gyrus. Novel sounds activated the right inferior frontal gyrus when controlling for deviance probability. In contrast to previous studies our results indicate a left hemisphere contribution to a frontotemporal network of auditory deviance processing. Our results provide further evidence for a contribution of the frontal cortex to the processing of auditory deviance outside the focus of directed attention.  相似文献   

14.
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.  相似文献   

15.
背景:平衡针治疗疾病疗效显著,但缺乏相关现代科学理论机制。目的:利用静息态脑功能成像技术探讨平衡针疗法的中枢作用机制。方法:纳入10例腰椎间盘突出腰腿痛患者及10例正常受试者,于平衡针针刺前后进行功能磁共振扫描,通过AFNI软件对与双侧杏仁核表现为显著联系的脑区进行功能连接分析,并对平衡针刺后腰椎间盘突出患者及正常受试者的脑功能连接的差异进行探讨。结果与结论:经平衡针治疗后10例腰椎间盘突出患者疼痛均有好转。脑功能连接分析显示腰椎间盘突出患者丘脑、脑干、腹前核、腹外侧核、额内侧回、额上回、额叶眶上回、额下回、颞上回、颞中回、海马回、扣带回、岛叶等脑区功能连接增强。正常受试者双侧颞中回、双侧眶上回、双侧尾状核头、双侧岛叶、左侧腹背侧核、双侧额上回、左侧额中回、前扣带回、右侧顶下小叶与杏仁核连接增强;双侧小脑齿状核、小脑蚓、左侧小脑坡、双侧舌回、左侧枕中回、右侧额上回、右侧中央前回、双侧顶下小叶、右侧顶上小叶、右侧中央后回与杏仁核连接下降。提示通过静息脑功能成像技术对杏仁核的研究有助于更深入理解平衡针灸治疗腰腿痛的中枢机制。  相似文献   

16.
Cortical regions engaged by sentence processing were mapped using functional MRI. The influence of input modality (spoken word vs. print input) and parsing difficulty (sentences containing subject-relative vs. object-relative clauses) was assessed. Auditory presentation was associated with pronounced activity at primary auditory cortex and across the superior temporal gyrus bilaterally. Printed sentences by contrast evoked major activity at several posterior sites in the left hemisphere, including the angular gyrus, supramarginal gyrus, and the fusiform gyrus in the occipitotemporal region. In addition, modality-independent regions were isolated, with greatest overlap seen in the inferior frontal gyrus (IFG). With respect to sentence complexity, object-relative sentences evoked heightened responses in comparison to subject-relative sentences at several left hemisphere sites, including IFG, the middle/superior temporal gyrus, and the angular gyrus. These sites showing modulation of activity as a function of sentence type, independent of input mode, arguably form the core of a cortical system essential to sentence parsing.  相似文献   

17.
目的 采用静息态fMRI技术观察肝性脑病(HE)患者双侧苍白与全脑网络连接的改变。方法 收集21例明显HE患者(OHE组)、22例轻微型HE患者(MHE组)及21名健康志愿者(HC组)行静息态fMRI,选择双侧苍白球作为种子点,利用种子体素相关性脑功能网络分析方法对数据进行处理并进行统计学分析。结果 3组间脑网络连接差异的脑区主要位于额叶、颞叶、双侧尾状核及顶叶(P均<0.05)。与HC组比较,OHE组右侧梭状回、右侧枕下回、左侧眶部额上回、右侧额中回等脑区连接减弱,在双侧尾状核、左三角部额下回、左海马旁回等脑区连接增强;MHE组双侧颞中回、左中央前回、左内侧额上回等脑区连接减弱;与MHE组比较,OHE组右梭状回、右侧楔前叶、右侧颞中回、右侧角回连接减弱,右侧颞下回、双侧尾状核连接增强(P均<0.05)。结论 OHE及MHE患者皮层与皮层下区域脑功能网络连接存在异常,HE患者认知功能障碍可能与功能网络连接改变有关。  相似文献   

18.
Functional near-infrared spectroscopy (fNIRS) was used to measure the prefrontal activity in joint attention experience. 16 healthy adults participated in the experiment in which 42 optical channels were fixed over the anterior prefrontal cortex (aPFC), dorsolateral prefrontal cortex (DLPFC), inferior frontal gyrus (IFG) and a small anterior portion of the superior temporal gyrus (STG). Video stimuli were used to engender joint or non-joint attention experience in observers. Cortical hemodynamic response and functional connectivity were measured and averaged across all subjects for each stimulus condition. Our data showed the activation in joint attention located in the aPFC and DLPFC bilaterally, but dominantly in the left hemisphere. This observation, together with the previous findings on infants and children, provides a clear developmental scenario on the prefrontal activation associated with joint attention process. In the case of non-joint attention condition, only a small region of the right DLPFC was activated. Functional connectivity was observed to be enhanced, but differently in joint and non-joint attention condition.OCIS codes: (170.2655) Functional monitoring and imaging, (170.3880) Medical and biological imaging, (170.5380) Physiology  相似文献   

19.
Himmelbach M  Erb M  Karnath HO 《NeuroImage》2006,32(4):1747-1759
Inspecting the visual environment, humans typically direct their attention across space by means of voluntary saccadic eye movements. Neuroimaging studies in healthy subjects have identified the superior parietal cortex and intraparietal sulcus as important structures involved in visual search. However, in apparent contrast, spatial disturbance of free exploration typically is observed after damage of brain structures located far more ventrally. Lesion studies in such patients disclosed the inferior parietal lobule (IPL) and temporo-parietal junction (TPJ), the superior temporal gyrus (STG) and insula, as well as the inferior frontal gyrus (IFG) of the right hemisphere. Here we used functional magnetic resonance imaging to investigate the involvement of these areas in active visual exploration in the intact brain. We conducted a region of interest analysis comparing free visual exploration of a dense stimulus array with the execution of stepwise horizontal and vertical saccades. The comparison of BOLD responses revealed significant signal increases during exploration in TPJ, STG, and IFG. This result calls for a reappraisal of the previous thinking on the function of these areas in visual search processes. In agreement with lesion studies, the data suggest that these areas are part of the network involved in human spatial orienting and exploration. The IPL dorsally of TPJ seem to be of minor importance for free visual exploration as these areas appear to be equally involved in the execution of spatially predetermined saccades.  相似文献   

20.
目的 运用fMRI评价复发-缓解型多发性硬化(RRMS)患者静息状态下双侧壳核与全脑功能连接的改变。方法 以20例RRMS患者(RRMS组)及20名健康志愿者(正常对照组)的双侧壳核为ROI进行全脑功能连接分析,并观察其与临床评估参数之间的相关性。结果 与正常对照组相比,RRMS组左侧壳核功能连接增强区域包括左侧额中回、右侧额下回、左侧顶下小叶,减弱区域包括双侧边缘叶、左侧海马旁回、左侧颞中回;右侧壳核功能连接减弱区域包括左侧额上回、左侧颞下回、左侧边缘叶;双侧壳核异常功能连接区域与病程及扩展残疾量表评分、进步式听觉累加测试评分之间均未见明显相关性(P均>0.05)。结论 RRMS患者壳核与全脑功能连接存在异常,其功能连接改变可能是临床常见运动及认知功能障碍的原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号