首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: G protein-coupled receptors (GPCRs) are the largest and most versatile group of cytomembrane receptors, comprising of approximately 300 non-sensory and druggable members. Traditional GPCR drug screening is based on radiometric competition binding assays, which are expensive and hazardous to human health. Furthermore, the paradox of high investment and low output, in terms of new drugs, highlights the need for more efficient and effective drug screening methods.

Areas covered: This review summarizes non-radioactive assays assessing the ligand–receptor binding including: the fluorescence polarization assay, the TR-FRET assay and the surface plasmon resonance assay. It also looks at non-radioactive assays that assess receptor activation and signaling including: second messenger-based assays and β-arrestin recruitment-based assays. This review also looks at assays based on cellular phenotypic change.

Expert opinion: GPCR signaling pathways look to be more complicated than previously thought. The existence of receptor allosteric sites and multireceptor downstream effectors restricts the traditional assay methods. The emergence of novel drug screening methods such as those for assessing β-arrestin recruitment and cellular phenotypic change may provide us with improved drug screening efficiency and effect.  相似文献   

2.
3.
G-protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic targets for a broad spectrum of diseases. The design and implementation of high-throughput GPCR assays that allow the cost-effective screening of large compound libraries to identify novel drug candidates are critical in early drug discovery. Early functional GPCR assays depend primarily on the measurement of G-protein-mediated 2nd messenger generation. Taking advantage of the continuously deepening understanding of GPCR signal transduction, many G-protein-independent pathways are utilized to detect the activity of GPCRs, and may provide additional information on functional selectivity of candidate compounds. With the combination of automated imaging systems and label-free detection systems, such assays are now suitable for high-throughput screening (HTS). In this review, we summarize the most widely used GPCR assays and recent advances in HTS technologies for GPCR drug discovery.  相似文献   

4.
ABSTRACT

Introduction: Combinatorial chemistry provides a cost-effective method for rapid discovery of drug hits/leads. The one-bead-one-compound (OBOC) library method is in principle ideally suited for this application, because it permits a large number of structurally diverse compounds to be rapidly synthesized and simultaneously screened for binding to a target of interest. However, application of OBOC libraries in drug discovery has encountered significant technical challenges.

Areas covered: This Special Report covers the challenges associated with first-generation OBOC libraries (difficulty in structural identification of non-peptidic hits, screening biases and high false positive rates, and poor scalability). It also covers the many strategies developed over the past two decades to overcome these challenges.

Expert opinion: With most of the technical challenges now overcome and the advent of powerful intracellular delivery technologies, OBOC libraries of metabolically stable and conformationally rigidified molecules (macrocyclic peptides and peptidomimetics, rigidified acyclic oligomers, and D-peptides) can be routinely synthesized and screened to discover initial hits against previously undruggable targets such as intracellular protein-protein interactions. On the other hand, further developments are still needed to expand the utility of the OBOC method to non-peptidic chemical scaffolds.  相似文献   

5.
Development of solubility screening methods in drug discovery   总被引:1,自引:0,他引:1  
We developed two methods for solubility screening of drug candidates in drug discovery. The first is a solution-precipitation (SP) method, in which the sample solutions are prepared by adding the drug solution in dimethylsulfoxide (DMSO) to buffers followed by filtering off the precipitate using 96-well filterplate. The second is a powder-dissolution (PD) method, in which the solid samples are dissolved to the buffer in the HPLC vial equipped with the filter membrane in the HPLC autosampler. An HPLC equipped with a photodiode array detector is used to measure the concentration of the sample solutions in both methods. The SP method was used for high throughput screening the solvating process of the candidates in aqueous solutions with lower sample consumption, and the PD method was used for screening both inter-molecular interaction in solid state and solvation in aqueous solution with more sample amount than that of SP method. Therefore, the solubility screening from early to final stage of lead optimization process would be successfully accomplished by using both methods complementarily.  相似文献   

6.
7.
  1. Download : Download high-res image (130KB)
  2. Download : Download full-size image
  相似文献   

8.
Introduction: Calcium ions (Ca2+) serve as a second messenger or universal signal transducer implicated in the regulation of a wide range of physiological processes. A change in the concentration of intracellular Ca2+ is an important step in intracellular signal transduction. G protein-coupled receptors (GPCRs), the largest and most versatile group of cell surface receptors, transduce extracellular signals into intracellular responses via their coupling to heterotrimeric G proteins. Since Ca2+ plays a crucial role in GPCR-induced signaling, measurement of intracellular Ca2+ has attracted more and more attention in GPCR-targeted drug discovery.

Areas covered: This review focuses on the most popular functional assays measuring GPCRs-induced intracellular Ca2+ signaling. These include photoprotein-based, synthetic fluorescent indicator-based and genetically encoded calcium indicator (GECI)-based Ca2+ mobilization assays. A brief discussion of the design strategy of fluorescent probes in GPCR studies is also presented.

Expert opinion: GPCR-mediated intracellular signaling is multidimensional. There is an urgent need for the development of multiple-readout screening assays capable of simultaneous detection of biased signaling and screening of both agonists and antagonists in the same assay. It is also necessary to develop GECIs offering low cost and consistent assays suitable for investigating GPCR activation in vivo.  相似文献   

9.
Protein microarrays are evolving as useful tools for biopharmaceutical research. The differences in characteristics of individual proteins has made development challenging compared with DNA arrays. Nonetheless, significant advances have nontheless been made in developing protein microarray technology. Retention of function has been demonstrated for proteins belonging to various structural and functional classes after arraying. Focused arrays with small groups of proteins have been developed for a variety of applications, from biomarker validation to small molecule screening. Issues of protein stability as well as assay specificity and sensitivity, are being worked out for panels of arrayed proteins. The development of robust manufacturing methods has resulted in an increase in the number of commercially available protein array products. Quality control guidelines, which will also aid in accelerating development of the technology, are being established.  相似文献   

10.
ABSTRACT

Introduction: Fragment-based drug discovery can identify relatively simple compounds with low binding affinity due to fewer binding interactions with protein targets. FBDD reduces the library size and provides simpler starting points for subsequent chemical optimization of initial hits. A much greater proportion of chemical space can be sampled in fragment-based screening compared to larger molecules with typical molecular weights (MWs) of 250–500 g mol?1 used in high-throughput screening (HTS) libraries.

Areas covered: The authors cover the role of natural products in fragment-based drug discovery against parasitic disease targets. They review the approaches to develop fragment-based libraries either using natural products or natural product-like compounds. The authors present approaches to fragment-based drug discovery against parasitic diseases and compare these libraries with the 3D attributes of natural products.

Expert opinion: To effectively use the three-dimensional properties and the chemical diversity of natural products in fragment-based drug discovery against parasitic diseases, there needs to be a mind-shift. Library design, in the medicinal chemistry area, has acknowledged that escaping flat-land is very important to increase the chances of clinical success. Attempts to increase sp3 richness in fragment libraries are acknowledged. Sufficient low molecular weight natural products are known to create true natural product fragment libraries.  相似文献   

11.
12.
Introduction: Automated patch clamp (APC) devices have become commonplace in many industrial and academic labs. Their ease-of-use and flexibility have ensured that users can perform routine screening experiments and complex kinetic experiments on the same device without the need for months of training and experience. APC devices are being developed to increase throughput and flexibility.

Areas covered: Experimental options such as temperature control, internal solution exchange and current clamp have been available on some APC devices for some time, and are being introduced on other devices. A comprehensive review of the literature pertaining to these features for the Patchliner, QPatch and Qube and data for these features for the SyncroPatch 384/768PE, is given. In addition, novel features such as dynamic clamp on the Patchliner and light stimulation of action potentials using channelrhodosin-2 is discussed.

Expert opinion: APC devices will continue to play an important role in drug discovery. The instruments will be continually developed to meet the needs of HTS laboratories and for basic research. The use of stem cells and recordings in current clamp mode will increase, as will the development of complex add-ons such as dynamic clamp and optical stimulation on high throughput devices.  相似文献   


13.
The use of deep machine learning (ML) in protein structure prediction has made it possible to easily access a large number of annotated conformations that can potentially compensate for missing experimental structures in structure-based drug discovery (SBDD). However, it is still unclear whether the accuracy of these predicted conformations is sufficient for screening chemical compounds that will effectively interact with a protein target for pharmacological purposes. In this opinion article, we examine the potential benefits and limitations of using state-annotated conformations for ultra-large library screening (ULLS) in light of the growing size of ultra-large libraries (ULLs). We believe that targeting different conformational states of common drug targets like G-protein-coupled receptors (GPCRs), which can regulate human physiology by switching between different conformations, can offer multiple advantages.  相似文献   

14.
Introduction: The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds.

Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules.

Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.  相似文献   

15.
Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization. Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors. Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes. Here, we review key concepts and specific features of small-molecule-protein docking methods, highlight selected applications and discuss recent advances that aim to address the acknowledged limitations of established approaches.  相似文献   

16.
Fujioka M  Omori N 《Drug discovery today》2012,17(19-20):1133-1138
Therapeutic effects through G protein-coupled receptors (GPCRs) are promoted by a full agonist, partial agonist, neutral antagonist or inverse agonist. Dramatic change of function such as from a neutral antagonist to a full agonist with minimal variation of ligand structure is a phenomenon that medicinal chemists often encounter. This is also influenced by a change of assay format. The subtle nature of structure-function relationships is difficult to grasp unless carefully considered from both chemistry and assay perspectives. In this article we discuss the subtle aspects of GPCR drug discovery from the medicinal chemistry perspective.  相似文献   

17.
An estimated 50% of currently marketed drugs target G protein-coupled receptors (GPCRs) for a wide variety of indications, including central nervous system (CNS) disorders. Although drug discovery efforts have focused on GPCRs, less than 10% of GPCRs are currently used as drug targets. Thus, GPCRs continue to represent a significant opportunity for future CNS drug development. Identifying the molecular targets of psychoactive compounds may result in the elucidation of novel targets for CNS drug discovery. This commentary will describe discovery-based approaches and provide several recent examples of novel ligand-receptor interactions discovered through systematic screening of the 'receptorome'.  相似文献   

18.
Gliomas and medulloblastomas are the most common primary brain tumors in adults and children, respectively. Although the standard of care for gliomas may have evolved slightly over the last 50 years, the clinical outcome of this disease remains unchanged. Therefore, further research to improve the treatment modalities is urgently needed. An important step forward is the use of genetically and histologically accurate mouse glioma models that mimic the human tumors in their native microenvironment in order to fully understand the biology and mechanistic causes of this disease. Such strategy will help us to identify novel targets for therapies and use these models for preclinical testing.  相似文献   

19.
20.
With the influx of targets generated by genomics and proteomics initiatives, a new drug discovery paradigm is emerging. Many companies are setting up target family platforms that tackle multiple targets and therapeutic areas simultaneously. Virtual screening (VS) techniques are a fundamental component of such platforms for in silico filtering of compound collections and prioritization of chemistry and screening efforts. At the heart of these, structure-based docking and scoring methods are especially effective in identifying bioactive molecules if the structure of a target is available. As structural genomics maps the structural space of the proteome, these techniques are expected to become commonplace. In light of this, an overview of the latest developments in VS methodology is given here. In particular, emphasis is placed on those techniques adaptable to high-throughput VS in parallel drug discovery platforms. The first examples of docking across multiple targets have already appeared in the literature and will be reviewed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号