首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Acoustic radiation force impulse (ARFI) imaging has been shown to be capable of imaging local myocardial stiffness changes throughout the cardiac cycle. Expanding on these results, the authors present experiments using cardiac ARFI imaging to visualize and quantify the propagation of mechanical stiffness during ventricular systole. In vivo ARFI images of the left ventricular free wall of two exposed canine hearts were acquired. Images were formed while the heart was externally paced by one of two electrodes positioned on the epicardial surface and either side of the imaging plane. Two-line M-mode ARFI images were acquired at a sampling frequency of 120 Hz while the heart was paced from an external stimulating electrode. Two-dimensional ARFI images were also acquired, and an average propagation velocity across the lateral field of view was calculated. Directions and speeds of myocardial stiffness propagation were measured and compared with the propagations derived from the local electrocardiogram (ECG), strain, and tissue velocity measurements estimated during systole. In all ARFI images, the direction of myocardial stiffness propagation was seen to be away from the stimulating electrode and occurred with similar velocity magnitudes in either direction. When compared with the local epicardial ECG, the mechanical stiffness waves were observed to travel in the same direction as the propagating electrical wave and with similar propagation velocities. In a comparison between ARFI, strain, and tissue velocity imaging, the three methods also yielded similar propagation velocities.  相似文献   

2.
Myocardial stiffness exhibits cyclic variations over the course of the cardiac cycle. These trends are closely tied to the electromechanical and hemodynamic changes in the heart. Characterization of dynamic myocardialstiffness can provide insights into the functional state of the myocardium, as well as allow for differentiation between the underlying physiologic mechanisms that lead to congestive heart failure. Previous work has revealed the potential of acoustic radiation force impulse (ARFI) imaging to capture temporal trends in myocardial stiffness in experimental preparations such as the Langendorff heart, as well as on animals in open-chest and intracardiac settings. This study was aimed at investigating the potential of ARFI to measure dynamic myocardial stiffness in human subjects, in a non-invasive manner through transthoracic imaging windows. ARFI imaging was performed on 12 healthy volunteers to track stiffness changes within the interventricular septum in parasternal long-axis and short-axis views. Myocardial stiffness dynamics over the cardiac cycle was quantified using five indices: stiffness ratio, rates of relaxation and contraction and time constants of relaxation and contraction. The yield of ARFI acquisitions was evaluated based on metrics of signal strength and tracking fidelity such as displacement signal-to-noise ratio, signal-to-clutter level, temporal coherence of speckle and spatial similarity within the region of excitation. These were quantified using the mean ARF-induced displacements over the cardiac cycle, the contrast between the myocardium and the cardiac chambers, the minimum correlation coefficients of radiofrequency signals and the correlation between displacement traces across simultaneously acquired azimuthal beams, respectively. Forty-one percent of ARFI acquisitions were determined to be “successful” using a mean ARF-induced displacement threshold of 1.5 μm. “Successful” acquisitions were found to have higher (i) signal-to-clutter levels, (ii) temporal coherence and (iii) spatial similarity compared with “unsuccessful” acquisitions. Median values of these three metrics, between the two groups, were measured to be 13.42dB versus 5.42dB, 0.988 versus 0.976 and 0.984 versus 0.849, respectively. Signal-to-clutter level, temporal coherence and spatial similarity were also found to correlate with each other. Across the cohort of healthy volunteers, the stiffness ratio measured was 2.74 ± 0.86; the rate of relaxation, 7.82 ± 4.69/s; and the rate of contraction, –7.31±3.79 /s. The time constant of relaxation was 35.90 ± 20.04ms, and that of contraction was 37.24 ± 19.85ms. ARFI-derived indices of myocardial stiffness were found to be similar in both views. These results indicate the feasibility of using ARFI to measure dynamic myocardial stiffness trends in a non-invasive manner and also highlightthe technical challenges of implementing this method in the transthoracic imaging environment.  相似文献   

3.
Acoustic Radiation Force Impulse (ARFI) imaging has been previously reported to portray normal anatomic structures and pathologies in ex vivo human prostates with good contrast and resolution. These findings were based on comparison with histological slides and McNeal's zonal anatomy. In ARFI images, the central zone (CZ) appears darker (smaller displacement) than other anatomic zones and prostate cancer (PCa) is darker than normal tissue in the peripheral zone (PZ). Since displacement amplitudes in ARFI images are determined by both the underlying tissue stiffness and the amplitude of acoustic radiation force that varies with acoustic attenuation, one question that arises is how the relative displacements in prostate ARFI images are related to the underlying prostatic tissue stiffness. In linear, isotropic elastic materials and in tissues that are relatively uniform in acoustic attenuation (e.g., liver), relative displacement in ARFI images has been shown to be correlated with underlying tissue stiffness. However, the prostate is known to be heterogeneous. Variations in acoustic attenuation of prostatic structures could confound the interpretation of ARFI images due to the associated variations in the applied acoustic radiation force. Therefore, in this study, co-registered three-dimensional (3D) ARFI datasets and quantitative shear wave elasticity imaging (SWEI) datasets were acquired in freshly-excised human prostates to investigate the relationship between displacement amplitudes in ARFI prostate images and the matched reconstructed shear moduli. The lateral time-to-peak (LTTP) algorithm was applied to the SWEI data to compute the shear-wave speed and reconstruct the shear moduli. Five types of prostatic tissue (PZ, CZ, transition zone (TZ) and benign prostatic hyperplasia (BPH), PCa and atrophy) were identified, whose shear moduli were quantified to be 4.1 +/- 0.8 kPa, 9.9 +/- 0.9 kPa, 4.8 +/- 0.6 kPa, 10.0 +/- 1.0 kPa and 8.0 kPa, respectively. Linear regression was performed to compare ARFI displacement amplitudes and the inverse of the corresponding reconstructed shear moduli at multiple depths. The results indicate an inverse relation between ARFI displacement amplitude and reconstructed shear modulus at all depths. These findings support the conclusion that ARFI prostate images portray underlying tissue stiffness variations.  相似文献   

4.
Acoustic Radiation Force Impulse (ARFI) imaging is a method for characterizing local variations in tissue mechanical properties. In this method, a single ultrasonic transducer array is used to both apply temporally short localized radiation forces within tissue and to track the resulting displacements through time. Images of tissue displacement immediately after force cessation, maximum tissue displacement, the time it takes for the tissue to reach its maximum displacement, and the recovery time constant of the tissue are generated from the ARFI data sets. The information in each of these images demonstrates good agreement with matched B-mode images. The study presented here was designed to evaluate the relationship between changes in these ARFI parameters with known tissue mechanical properties in vivo. Utilizing a modified Siemens Elegra scanner with a 75L40 transducer array, ARFI images of vastus medialis muscle were generated in three of the authors under four levels of activation (0, 5.7, 14.5, and 23.3 N-m). Four ARFI datasets were acquired for each loading condition. The observed trends were that displacement magnitude, the time it took for the tissue to reach its maximum displacement, and recovery time constant decreased with increasing load (i.e., increasing muscle stiffness). Significant differences were observed between load levels and subjects for all parameters (p<0.01). The results indicate that ARFI imaging may be capable of quantifying tissue stiffness in real-time measurements, although further investigation is required.  相似文献   

5.
A noninvasive method of characterizing myocardial stiffness could have significant implications in diagnosing cardiac disease. Acoustic radiation force (ARF)-driven techniques have demonstrated their ability to discern elastic properties of soft tissue. For the purpose of myocardial elasticity imaging, a novel ARF-based imaging technique, the displacement ratio rate (DRR) method, was developed to rank the relative stiffnesses of dynamically varying tissue. The basis and performance of this technique was demonstrated through numerical and phantom imaging results. This new method requires a relatively small temporal (<1 ms) and spatial (tenths of mm2) sampling window and appears to be independent of applied ARF magnitude. The DRR method was implemented in two in vivo canine studies, during which data were acquired through the full cardiac cycle by imaging directly on the exposed epicardium. These data were then compared with results obtained by acoustic radiation force impulse (ARFI) imaging and shear wave velocimetry, with the latter being used as the gold standard. Through the cardiac cycle, velocimetry results portray a range of shear wave velocities from 0.76-1.97 m/s, with the highest velocities observed during systole and the lowest observed during diastole. If a basic shear wave elasticity model is assumed, such a velocity result would suggest a period of increased stiffness during systole (when compared with diastole). Despite drawbacks of the DRR method (i.e., sensitivity to noise and limited stiffness range), its results predicted a similar cyclic stiffness variation to that offered by velocimetry while being insensitive to variations in applied radiation force.  相似文献   

6.
We compared a quasi-static ultrasound elastography technique, referred to as electrode displacement elastography (EDE), with acoustic radiation force impulse imaging (ARFI) for monitoring microwave ablation (MWA) procedures on patients diagnosed with liver neoplasms. Forty-nine patients recruited to this study underwent EDE and ARFI with a Siemens Acuson S2000 system after an MWA procedure. On the basis of visualization results from two observers, the ablated region in ARFI images was recognizable on 20 patients on average in conjunction with B-mode imaging, whereas delineable ablation boundaries could be generated on 4 patients on average. With EDE, the ablated region was delineable on 40 patients on average, with less imaging depth dependence. Study of tissue-mimicking phantoms revealed that the ablation region dimensions measured on EDE and ARFI images were within 8%, whereas the image contrast and contrast-to-noise ratio with EDE was two to three times higher than that obtained with ARFI. This study indicated that EDE provided improved monitoring results for minimally invasive MWA in clinical procedures for liver cancer and metastases.  相似文献   

7.
Intracardiac echocardiography (ICE) has demonstrated utility in providing high-resolution cardiac ultrasound images for guidance of numerous catheter-based interventions, including radiofrequency ablations (RFA). However, the training of interventionalists and refinement of procedures involving intracardiac catheters is costly and time consuming due to necessary clinical and animal studies. As a result, research and development of ICE for other purposes is gradual and deliberate. Intracardiac acoustic radiation force impulse (ARFI) imaging has been demonstrated to be a suitable modality to monitor the progress of RFA procedures; however, a clinical protocol has been slow to develop due to the expense and demands of clinical experiments. We report on the development and use of an ex vivo heart model to evaluate ICE and intracardiac ARFI imaging. The ability of this model to provide clinically-relevant intracardiac imaging angles was investigated by inserting an intracardiac probe into the heart and imaging it from various positions and orientations. ARFI images of all four chambers also were formed. RFAs were also performed to create stiffer lesions within the right and left ventricles. Upon completion of the ablation, ARFI imaging was used to visualize the lesion and compared with images taken from pathology.The results show the ovine heart model to be a suitable apparatus for recreating several clinically-relevant intracardiac viewing angles of the heart. Also, the results indicate the potential of the heart model to be a valuable tool in the future development and refinement of a clinical protocol for intracardiac ARFI imaging based guidance and assessment of cardiac radiofrequency ablations.  相似文献   

8.
The most common mechanical measure of the heart integrates ventricular strain between end-diastole and end-systole in order to provide a measure of contraction. Here an approach is described for estimating a correlate to local passive mechanical properties. Passive strain is measured by estimating ventricular strain during atrial systole. During atrial systole the atria contract causing passive stretching in the ventricles from increased volume. This modification to traditional cardiac strain is here termed atrial kick induced strain (AKIS) imaging. AKIS imaging was evaluated in a canine ablation model of chronic infarct and a canine true chronic infarct model. AKIS images of ablation lesions were compared against acoustic radiation force impulse (ARFI) images and tissue blanching, and true chronic infarct AKIS images were compared against delayed enhanced-contrast magnetic resonance. AKIS images were made with 2-D and 3-D ultrasound data. In both studies, AKIS images and the comparison images show good qualitative agreement and good contrast and contrast-to-noise ratio.  相似文献   

9.
The goal of this work is to develop and characterize an integrated indenter-ARFI (acoustic radiation force impulse) imaging system. This system is capable of acquiring matched datasets of ARFI images and stiffness profiles from ex vivo tissue samples, which will facilitate correlation of ARFI images of tissue samples with independently-characterized material properties. For large and homogeneous samples, the indenter can be used to measure the Young's moduli by using Boussinesq's solution for a load on the surface ofa semi-infinite isotropic elastic medium. Experiments and finite element method (FEM) models were designed to determine the maximum indentation depth and minimum sample size for accurate modulus reconstruction using this solution. Applying these findings, indentation measurements were performed on three calibrated commercial tissue-mimicking phantoms and the results were in good agreement with the calibrated stiffness. For heterogeneous tissue samples, indentation can be used independently to characterize relative stiffness variation across the sample surface, which can then be used to validate the stiffness variation in registered ARFI images. Tests were performed on heterogeneous phantoms and freshly-excised colon cancer specimens to detect the relative stiffness and lesion sizes using the combined system. Normalized displacement curves across the lesion surface were calculated and compared. Good agreement ofthe lesion profiles was observed between indentation and ARFI imaging.  相似文献   

10.
The initial results from clinical trials investigating the utility of acoustic radiation force impulse (ARFI) imaging for use with radio-frequency ablation (RFA) procedures in the liver are presented. To date, data have been collected from 6 RFA procedures in 5 unique patients. Large displacement contrast was observed in ARFI images of both pre-ablation malignancies (mean 7.5 dB, range 5.7-11.9 dB) and post-ablation thermal lesions (mean 6.2 dB, range 5.1-7.5 dB). In general, ARFI images provided superior boundary definition of structures relative to the use of conventional sonography alone. Although further investigations are required, initial results are encouraging and demonstrate the clinical promise of the ARFI method for use in many stages of RFA procedures.  相似文献   

11.
Ultrasound-guided needle placement is widely used in the clinical setting, particularly for central venous catheter placement, tissue biopsy and regional anesthesia. Difficulties with ultrasound guidance in these areas often result from steep needle insertion angles and spatial offsets between the imaging plane and the needle. Acoustic Radiation Force Impulse (ARFI) imaging leads to improved needle visualization because it uses a standard diagnostic scanner to perform radiation force based elasticity imaging, creating a displacement map that displays tissue stiffness variations. The needle visualization in ARFI images is independent of needle-insertion angle and also extends needle visibility out of plane. Although ARFI images portray needles well, they often do not contain the usual B-mode landmarks. Therefore, a three-step segmentation algorithm has been developed to identify a needle in an ARFI image and overlay the needle prediction on a coregistered B-mode image. The steps are: (1) contrast enhancement by median filtration and Laplacian operator filtration, (2) noise suppression through displacement estimate correlation coefficient thresholding and (3) smoothing by removal of outliers and best-fit line prediction. The algorithm was applied to data sets from horizontal 18, 21 and 25 gauge needles between 0-4 mm offset in elevation from the transducer imaging plane and to 18G needles on the transducer axis (in plane) between 10 degrees and 35 degrees from the horizontal. Needle tips were visualized within 2 mm of their actual position for both horizontal needle orientations up to 1.5 mm offset in elevation from the transducer imaging plane and on-axis angled needles between 10 degrees-35 degrees above the horizontal orientation. We conclude that segmented ARFI images overlaid on matched B-mode images hold promise for improved needle visibility in many clinical applications.  相似文献   

12.
We present results of a pilot study of ex vivo and in vivo acoustic radiation force impulse (ARFI) imaging demonstrating measurements of the mechanical properties of the carotid and popliteal arteries. The results were obtained on a modified commercial scanner, providing coregistered B-mode and color Doppler images. 2D and 1D through time images are formed from the measurements of tissues' response to very brief and localized applications of radiation force. The images show good correlation with B-mode and, in ex vivo studies, pathology-based characterizations of vessel geometry and plaque stiffness. In vivo measurements of arterial response during both systole and diastole are presented. We address implementation issues and discuss potential applications of this new vascular imaging method.  相似文献   

13.
The ability of acoustic radiation force impulse (ARFI) imaging to visualize thermally- and chemically-induced lesions in soft tissues was investigated. Lesions were induced in freshly excised bovine liver samples. Chemical lesions were induced via the injection of formaldehyde and thermal lesions were created using a radiofrequency (RF) ablation system. Although conventional sonography was unable to visualize induced lesions, ARFI imaging was capable of monitoring lesion size and boundaries. Agreement was observed between lesion size in ARFI images and in results from pathology. The fact that ARFI imaging requires no additional equipment aside from that needed for conventional ultrasonic imaging makes it a promising modality for monitoring lesion development in situations where sonography is already involved as a guiding mechanism, such as in procedures requiring precise catheter placement.  相似文献   

14.
The clinical viability of a method of acoustic remote palpation, capable of imaging local variations in the mechanical properties of soft tissue using acoustic radiation force impulse (ARFI) imaging, is investigated in vivo. In this method, focused ultrasound (US) is used to apply localized radiation force to small volumes of tissue (2 mm(3)) for short durations (less than 1 ms) and the resulting tissue displacements are mapped using ultrasonic correlation-based methods. The tissue displacements are inversely proportional to the stiffness of the tissue and, thus, a stiffer region of tissue exhibits smaller displacements than a more compliant region. Due to the short duration of the force application, this method provides information about the mechanical impulse response of the tissue, which reflects variations in tissue viscoelastic characteristics. In this paper, experimental results are presented demonstrating that displacements on the order of 10 microm can be generated and detected in soft tissues in vivo using a single transducer on a modified diagnostic US scanner. Differences in the magnitude of displacement and the transient response of tissue are correlated with tissue structures in matched B-mode images. The results comprise the first in vivo ARFI images, and support the clinical feasibility of a radiation force-based remote palpation imaging system.  相似文献   

15.
The evaluation of lesions in the gastrointestinal (GI) tract using ultrasound can suffer from poor contrast between healthy and diseased tissue. Acoustic Radiation Force Impulse (ARFI) imaging provides information about the mechanical properties of tissue using brief, high-intensity, focused ultrasound to generate radiation force and ultrasonic correlation-based methods to track the resulting tissue displacement. Using conventional linear arrays, ARFI imaging has shown improved contrast over B-mode images when applied to solid masses in the breast and liver. The purpose of this work is to (1) investigate the potential for ARFI imaging to provide improvements over conventional B-mode imaging of GI lesions and (2) demonstrate that ARFI imaging can be performed with an endocavity probe. ARFI images of an adenocarcinoma of the gastroesophageal (GE) junction, status-post chemotherapy and radiation treatment, demonstrate better contrast between healthy and fibrotic/malignant tissue than standard B-mode images. ARFI images of healthy gastric, esophageal, and colonic tissue specimens differentiate normal anatomic tissue layers (i.e., mucosal, muscularis and adventitial layers), as confirmed by histologic evaluation. ARFI imaging of ex vivo colon and small bowel tumors portray interesting contrast and structure that are not as well defined in B-mode images. An endocavity probe created ARFI images to a depth of over 2 cm in tissue-mimicking phantoms, with maximum displacements of 4 microm. These findings support the clinical feasibility of endocavity ARFI imaging to guide diagnosis and staging of disease processes in the GI tract.  相似文献   

16.
Reliably detecting prostate cancer (PCa) has been a challenge for current imaging modalities. Acoustic radiation force impulse (ARFI) imaging is an elasticity imaging method that uses remotely generated, focused acoustic beams to probe tissue stiffness. A previous study on excised human prostates demonstrated ARFI images portray various prostatic structures and has the potential to guide prostate needle biopsy with improved sampling accuracy. The goal of this study is to demonstrate the feasibility of ARFI imaging to portray internal structures and PCa in the human prostate in vivo. Custom ARFI imaging sequences were designed and implemented using a modified Siemens Antares scanner with a three-dimensional (3-D) wobbler, end-firing, trans-cavity transducer, EV9F4. Nineteen patients were consented and imaged immediately preceding surgical prostatectomy. Pathologies and anatomic structures were identified in histologic slides by a pathologist blinded to ARFI data and were then registered with structures found in ARFI images. The results demonstrated that when PCa is visible, it generally appears as bilaterally asymmetric stiff structures; benign prostatic hyperplasia (BPH) appears heterogeneous with a nodular texture; the verumontanum and ejaculatory ducts appears softer compared with surrounding tissue, which form a unique ‘V’ shape; and the boundary of the transitional zone (TZ) forms a stiff rim separating the TZ from the peripheral zone (PZ). These characteristic appearances of prostatic structures are consistent with those found in our previous study of prostate ARFI imaging on excised human prostates. Compared with the matched B-mode images, ARFI images, in general, portray prostate structures with higher contrast. With the end-firing transducer used for this study, ARFI depth penetration was limited to 22 mm. Image contrast and resolution were decreased as compared with the previous ex vivo study due to the small transducer aperture. Even with these limitations, this study suggests ARFI imaging holds promise for guidance of targeted prostate needle biopsy and focal therapy, as well as aiding assessment of changes during watchful waiting/active surveillance.  相似文献   

17.
The feasibility of utilizing acoustic radiation force impulse (ARFI) imaging to assess the mechanical properties of abdominal tissues was investigated. The thermal safety of the technique was also evaluated through the use of finite element method models. ARFI imaging was shown to be capable of imaging abdominal tissues at clinically realistic depths. Correspondence between anatomical structures in B-mode and ARFI images was observed. ARFI images showed similar tumor contrast when compared with B-mode images of ex vivo abdominal cancers. Finite element method models and in vitro measurements confirmed the thermal safety of ARFI imaging at depth. ARFI imaging is inexpensive, safe and convenient and is a promising modality for use in abdominal imaging.  相似文献   

18.
Atherosclerotic disease in the carotid artery is a risk factor for stroke. The susceptibility of atherosclerotic plaque to rupture, however, is challenging to determine by any imaging method. In this study, acoustic radiation force impulse (ARFI) imaging is applied to atherosclerotic disease in the carotid artery to determine the feasibility of using ARFI to noninvasively characterize carotid plaques. ARFI imaging is a useful method for characterizing the local mechanical properties of tissue and is complementary to B-mode imaging. ARFI imaging can readily distinguish between stiff and soft regions of tissue. High-resolution images of both homogeneous and heterogeneous plaques were observed. Homogeneous plaques were indistinguishable in stiffness from vascular tissue. However, they showed thicknesses much greater than normal vascular tissue. In heterogeneous plaques, large and small soft regions were observed, with the smallest observed soft region having a diameter of 0.5 mm. A stiff cap was observed covering the large soft tissue region, with the cap thickness ranging from 0.7–1.3 mm. (E-mail: jeremy.dahl@duke.edu)  相似文献   

19.
It has been challenging for clinicians using current imaging modalities to visualize internal structures and detect lesions inside human prostates. Lack of contrast among prostatic tissues and high false positive or negative detection rates of prostate lesions have limited the use of current imaging modalities in the diagnosis of prostate cancer. In this study, acoustic radiation force impulse (ARFI) imaging is introduced to visualize the anatomical and abnormal structures in freshly excised human prostates. A modified Siemens Antares ultrasound scanner (Siemens Medical Solutions USA Inc., Malvern, PA) and a Siemens VF10-5 linear array were used to acquire ARFI images. The transducer was attached to a three-dimensional (3-D) translation stage, which was programmed to automate volumetric data acquisition. A depth dependent gain (DDG) method was developed and applied to 3-D ARFI datasets to compensate for the displacement gradients associated with spatially varying radiation force magnitudes as a function of depth. Nine human prostate specimens were collected and imaged immediately after surgical excision. Prostate anatomical structures such as seminal vesicles, ejaculatory ducts, peripheral zone, central zone, transition zone and verumontanum were visualized with high spatial resolution and in good agreement with McNeal's zonal anatomy. The characteristic appearance of prostate pathologies, such as prostate cancerous lesions, benign prostatic hyperplasia, calcified tissues and atrophy were identified in ARFI images based upon correlation with the corresponding histologic slides. This study demonstrates that ARFI imaging can be used to visualize internal structures and detecting suspicious lesions in the prostate and appears promising for image guidance of prostate biopsy. (E-mail:liang.zhai@duke.edu)  相似文献   

20.
In this study, acoustic radiation force impulse (ARFI) and shear wave elasticity imaging (SWEI) were applied to the skin to investigate the feasibility of their use in assessing sclerotic skin diseases. Our motivation was to develop a non-invasive imaging technology with real-time feedback of sclerotic skin disease diagnosis. This paper shows representative results from an ongoing study, recruiting patients with and without sclerosis. The stiffness of the imaged site was evaluated using two metrics: mean ARFI displacement magnitude and bulk shear wave speed inside the region of interest (ROI). In a subject with localized graft versus host disease (GVHD), the mean ARFI displacement inside sclerotic skin was 61% lower (p < 0.01) and shear wave speed 128% higher (p < 0.005) compared to those in normal skin—indicating stiffer mechanical properties in the sclerotic skin. This trend persisted through disease types. We conclude ARFI and SWEI can successfully differentiate sclerotic lesions from normal dermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号