首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pro‐inflammatory cytokine‐mediated expression of cell surface adhesion molecules plays a key role in endothelial cell injury, leading to vascular inflammation and the development of many cerebrovascular diseases. Thus, antiinflammatory agents targeting these adhesion molecules may represent potential drugs for the prevention and treatment of cerebrovascular diseases. The present study explored the effects of tanshinone IIA (Tan IIA), an active ingredient present in the Salvia miltiorrhiza root, on the expression of cellular adhesion molecules in TNF‐α‐stimulated brain microvascular endothelial cells (BMVECs). Treatment with Tan IIA was found to suppress the expression of vascular cell adhesion molecule‐1 (VCAM‐1) and intercellular adhesion molecule‐1 (ICAM‐1), resulting in inhibition of TNF‐α‐induced adhesion of neutrophils to BMVECs in a dose‐dependent manner. In addition, Tan IIA significantly inhibited TNF‐α‐induced production of reactive oxygen species (ROS), which was accompanied by decreased malondialdehyde (MDA) levels. Treatment with Tan IIA also inhibited nuclear factor‐kappa B (NF‐κB) activation. Together, these results suggest that Tan IIA regulates TNF‐α‐induced expression of VCAM‐1 and ICAM‐1 through inhibition of NF‐κB activation and ROS generation in BMVECs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The synergistic anti‐inflammatory effect of quercetin and catechin was investigated using lipopolysaccharide (LPS)‐stimulated macrophage RAW 264.7 cells. Results showed that the combined treatment of quercetin with catechin synergistically attenuated LPS‐stimulated increase of some proinflammatory molecules, including nitric oxide, tumor necrosis factor α, interleukin‐1β, nitric oxide synthase, and cyclooxygenase‐2. Moreover, it exhibited significantly (p < 0.05) stronger inhibitory effect on nuclear translocation of nuclear factor‐κB (NF‐κB) by suppressing the phosphorylation of NF‐κB p65 and p50 submits and on the phosphorylation of ETS domain‐containing protein and c‐Jun N‐terminal kinase than any of quercetin or catechin alone. Besides, the cotreatment of quercetin with catechin significantly (p < 0.05) restored the impaired expression of toll‐like receptor 4, myeloid differentiation primary response gene 88, and some downstream effectors (IRAK1, TRAF6, and TAK1). These results suggest that quercetin and catechin possessed synergistic anti‐inflammatory effects, which may be attributed to their roles in suppressing the activation of TLR4–MyD88‐mediated NF‐κB and mitogen‐activated protein kinases signaling pathways.  相似文献   

3.
Astragaloside III (AS‐III) is a triterpenoid saponin contained in Astragali Radix and has potent anti‐inflammatory effects on vascular endothelial cells; however, underlying mechanisms are unclear. In this study, we provided the first piece of evidence that AS‐III induced phosphorylation of TNF‐α converting enzyme (TACE) at Thr735 and enhanced its sheddase activity. As a result, AS‐III reduced surface TNFR1 level and increased content of sTNFR1 in the culture media, leading to the inhibition of NF‐κB signaling pathway and attenuation of downstream cytokine gene expression. Furthermore, AS‐III induced TACE‐dependent epidermal growth factor receptor (EGFR) transactivation and activation of downstream ERK1/2 and AKT pathways. Finally, AS‐III induced activation of p38. Both TACE activation and EGFR transactivation induced by AS‐III were significantly inhibited by p38 inhibitor SB203580. Taken together, we concluded that AS‐III activates TACE‐dependent anti‐inflammatory and growth factor signaling in vascular endothelial cells in a p38‐dependent fashion, which may contribute to its cardiovascular protective effect.  相似文献   

4.
5.
Hydroxy‐safflower yellow A (HSYA) is the major active component of safflower, a traditional Asia herbal medicine well known for its cardiovascular protective activities. The purpose of this study was to investigate the effect of HSYA on TNF‐α‐induced inflammatory responses in arterial endothelial cells (AECs) and to explore the mechanisms involved. The results showed that HSYA suppressed the up‐regulation of ICAM‐1 expression in TNF‐α‐stimulated AECs in a dose‐dependent manner. High concentration (120 μM) HSYA significantly inhibited the TNF‐α‐induced adhesion of RAW264.7 cells to AECs. HSYA blocked the TNFR1‐mediated phosphorylation and degradation of IκBα and also prevented the nuclear translocation of NF‐κB p65. Moreover, HSYA reduced the cell surface level of TNFR1 and increased the content of sTNFR1 in the culture media. TNF‐α processing inhibitor‐0 (TAPI‐0) prevented the HSYA inhibition of TNFR1‐induced IκBα degradation, implying the occurrence of TNFR1 shedding. Furthermore, HSYA induced phosphorylation of TNF‐α converting enzyme (TACE) at threonine 735, which is thought to be required for its activation. Conclusively, HSYA suppressed TNF‐α‐induced inflammatory responses in AECs, at least in part by inhibiting the TNFR1‐mediated classical NF‐κB pathway. TACE‐mediated TNFR1 shedding can be involved in this effect. Our study provides new evidence for the antiinflammatory and anti‐atherosclerotic effects of HSYA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Parkinson is the second common neurodegenerative disease. The characteristics of Parkinson's disease (PD) are the dopamin neurons loss caused by neuroinflammation responses. C alycosin, an isoflavone phytoestrogen isolated from Astragalus membranaceus, has multiple pharmacological activities, such as anti‐inflammation, anti‐tumor, and neuroprotective effects. However, it is unknown whether calycosin can mitigate PD symptoms. This study aims to explore whether calycosin can alleviate PD symptoms and the underlying mechanisms. PD was induced in mice by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) injection, and calycosin was given intracerebroventricularly to these mice. A cell model of nerve inflammation was established by BV2 microglia cells injected with lipopolysaccharide (LPS). The motor states were evaluated by stepping, whisker, and cylinder experiments. The states of dopaminergic neurons and microglia were detected by immunostainning of tyrosine hydroxylase and cluster of differentiation molecule 11b (CD11b). The expression levels of inflammatory factors were detected by qPCR. Toll‐like receptor (TLR)/nuclear factor kappa B (NF‐κB) and mitogen‐activated protein kinase (MAPK) pathways were investigated by western blot. We found that calycosin treatment mitigated the behavioral dysfunctions and inflammatory responses in MPTP‐induced PD mice. The TLR/NF‐κB and MAPK pathways in MPTP‐induced PD mice were inhibited by calycosin treatment, which was coincident with experiments in LPS‐induced BV2 cells. Above all, calycosin mitigates PD symptoms through TLR/NF‐κB and MAPK pathways in mice and cell lines.  相似文献   

7.
Dysfunction of the blood‐brain barrier (BBB) is a prerequisite for the pathogenesis of many cerebral diseases. Oxidative stress and inflammation are well‐known factors accounting for BBB injury. Panax notoginseng saponins (PNS), a clinical commonly used drug against cerebrovascular disease, possess efficient antioxidant and anti‐inflammatory activity. In the present study, the protective effects of PNS on lipopolysaccharide (LPS)‐insulted cerebral microvascular endothelial cells (bEnd.3) were assessed and the underlying mechanisms were investigated. The results showed that PNS mitigated the decrease of Trans‐Endothelial Electrical Resistance, increase of paracellular permeability, and loss of tight junction proteins in bEnd.3 BBB model. Meanwhile, PNS suppressed the THP‐1 monocytes adhesion on bEnd.3 monolayer. Moreover, PNS prevented the pro‐inflammatory cytokines secretion and reactive oxygen species generation in bEnd.3 cells stimulated with LPS. Mechanism investigations suggested that PNS promoted the Akt phosphorylation, activated Nrf2 antioxidant signaling, and inhibited the NF‐κB activation. All the effects of PNS could be abolished by PI3K inhibition at different levels. Taken together, these observations suggest that PNS may act as an extrinsic regulator that activates Nrf2 antioxidant defense system depending on PI3K/Akt and inhibits NF‐κB inflammatory signaling to attenuate LPS‐induced BBB disruption and monocytes adhesion on cerebral endothelial cells in vitro.  相似文献   

8.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by inflammation and proliferation of synovial tissues. Diosmetin is a bioflavonoid possessing an anti‐inflammatory property. Herein, we aimed to study the effects of diosmetin on the inflammation and proliferation of RA fibroblast‐like synoviocytes MH7A cells. MH7A cell proliferation was measured using cell counting kit‐8 assay. Cell apoptosis was examined using flow cytometry. The production of inflammatory cytokines including interleukin (IL)‐1β, IL‐6, IL‐8, and matrix metalloproteinase‐1 (MMP‐1) was measured using enzyme‐linked immunosorbent assay (ELISA). Results showed that diosmetin inhibited tumor necrosis factor‐α (TNF‐α)‐induced proliferation increase in MH7A cells in a dose‐dependent manner. Diosmetin treatment resulted in an increase in apoptotic rates and a reduction in TNF‐α‐induced production of IL‐1β, IL‐6, IL‐8, and MMP‐1 in MH7A cells. Furthermore, diosmetin inhibited TNF‐α‐induced activation of protein kinase B (Akt) and nuclear factor‐κB (NF‐κB) pathways in MH7A cells. Suppression of Akt or NF‐κB promoted apoptosis and inhibited TNF‐α‐induced proliferation increase and production of IL‐1β, IL‐6, IL‐8, and MMP‐1 in MH7A cells, and diosmetin treatment enhanced these effects. Taken together, these findings suggested that diosmetin exhibited anti‐proliferative and anti‐inflammatory effects via inhibiting the Akt and NF‐κB pathways in MH7A cells.  相似文献   

9.
Acute pancreatitis is an inflammatory process originated in the pancreas; however, it often leads to systemic complications that affect distant organs. Acute respiratory distress syndrome is indeed the predominant cause of death in patients with severe acute pancreatitis. In this study, we aimed to delineate the ameliorative effect of dihydro‐resveratrol, a prominent analog of trans‐resveratrol, against acute pancreatitis‐associated lung injury and the underlying molecular actions. Acute pancreatitis was induced in rats with repetitive injections of cerulein (50 µg/kg/h) and a shot of lipopolysaccharide (7.5 mg/kg). By means of histological examination and biochemical assays, the severity of lung injury was assessed in the aspects of tissue damages, myeloperoxidase activity, and levels of pro‐inflammatory cytokines. When treated with dihydro‐resveratrol, pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening were significantly reduced in rats with acute pancreatitis. In addition, the production of pro‐inflammatory cytokines and the activity of myeloperoxidase in pulmonary tissues were notably repressed. Importantly, nuclear factor‐kappaB (NF‐κB) activation was attenuated. This study is the first to report the oral administration of dihydro‐resveratrol ameliorated acute pancreatitis‐associated lung injury via an inhibitory modulation of pro‐inflammatory response, which was associated with a suppression of the NF‐κB signaling pathway.Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) is a complex that regulates several hundreds of genes, including those involved in immunity and inflammation, survival, proliferation, and the negative feedback of NF‐κB signaling. Chelidonine, a major bioactive, isoquinoline alkaloid ingredient in Chelidonium majus, exhibits antiinflammatory pharmacological properties. However, its antiinflammatory molecular mechanisms remain unclear. In this work, we explored the effect of chelidonine on TNF‐induced NF‐κB activation in HCT116 cells. We found chelidonine inhibited the phosphorylation and degradation of the inhibitor of NF‐κB alpha and nuclear translocation of RELA. Furthermore, by inhibiting the activation of NF‐κB, chelidonine downregulated target genes involved in inflammation, proliferation, and apoptosis. Chelidonine also inhibited mitogen‐activated protein kinase pathway activation by blocking c‐Jun N‐terminal kinase and p38 phosphorylation. These results suggest that chelidonine may be a potential therapeutic agent against inflammatory diseases in which inhibition of NF‐κB activity plays an important role.  相似文献   

11.
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including vasodilatation and macrophage‐mediated immunity. Macrophages express inducible NO synthase (iNOS) and produce NO after lipopolysaccharide (LPS) stimulation. Gallotannins are water‐soluble polyphenols with wide‐ranging biological activities. Various chemical structures of gallotannins occurring in medicinal and food plants that are used worldwide showed several remarkable biological and pharmacological activities. In the present study, we examined the inhibitory effects of gallotannin 1,2,3,6‐tetra‐O‐galloyl‐β‐D‐allopyranose (GT24) isolated from Euphorbia jolkini on the LPS‐induced NO production and underlying mechanisms of action. GT24 dose‐dependently decreased LPS‐induced NO production and iNOS expression in J774A.1 macrophages. In addition, GT24 inhibited LPS‐induced activation of nuclear factor (NF)‐κB as indicated by inhibition of degradation of I‐κBα, nuclear translocation of NF‐κB, and NF‐κB dependent gene reporter assay. Our results suggest that GT24 possesses an inhibitory effect on the LPS‐induced inflammatory reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The aim of this study was to evaluate the mechanisms of cytotoxicity of the sesquiterpene lactone 13‐acetoxyrolandrolide, a nuclear factor kappa B (NF‐κB) inhibitor that was previously isolated from Rolandra fruticosa. The effects associated with the inhibition of the NF‐κB pathway included dose‐dependent inhibition of the NF‐κB subunit p65 (RelA) and inhibition of upstream mediators IKKβ and oncogenic Kirsten rat sarcoma (K‐Ras). The inhibitory concentration of 13‐acetoxyrolandrolide on K‐Ras was 7.7 µm . The downstream effects of the inhibition of NF‐κB activation were also investigated in vitro. After 24 h of treatment with 13‐acetoxyrolandrolide, the mitochondrial transmembrane potential was depolarized in human colon cancer (HT‐29) cells. The mitochondrial oxidative phosphorylation was also negatively affected, and reduced levels of nicotinamine adenine dinucleotide phosphate (NAD(P)H) were detected after 2 h of 13‐acetoxyrolandrolide exposure. Furthermore, the expression of the pro‐apoptotic protein caspase‐3 increased in a concentration‐dependent manner. Cell flow cytometry showed that 13‐acetoxyrolandrolide induced cell cycle arrest at G1, indicating that the treated cells had undergone caspase‐3‐mediated apoptosis, indicating negative effects on cancer cell proliferation. These results suggest that 13‐acetoxyrolandrolide inhibits NF‐κB and K‐Ras and promotes cell death mediated through the mitochondrial apoptotic pathway. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Astragaloside IV (AS‐IV) has been reported to possess anti‐metastasis activity in cancer cells. However, it is unknown whether AS‐IV could inhibit epithelial‐mesenchymal transition (EMT), a cellular de‐differentiation program that promotes metastasis, in cancer cells. The aim of this study was to study the effect and mechanism of AS‐IV on EMT in gastric cancer (GC) cells. The results showed that AS‐IV significantly inhibited cell viability, invasion, and migration of GC cells. The E‐cadherin to N‐cadherin switch and expression of Vimentin and metastasis‐related genes were induced by transforming growth factor β1 (TGF‐β1), whereas AS‐IV reversed the induction. In addition, AS‐IV inhibited TGF‐β1‐induced activation of PI3K/Akt/NF‐κB. Inhibition of the PI3K/Akt/NF‐κB pathway reversed TGF‐β1‐induced EMT. In conclusion, AS‐IV inhibited TGF‐β1‐induced EMT through inhibition of the PI3K/Akt/NF‐κB pathway in GC cells. AS‐IV might be an effective candidate for the treatment for GC.  相似文献   

16.
Gouania leptostachya DC. var. tonkinensis Pitard. Rhamnaceae is a traditional medicinal plant used in Thailand for treating various inflammatory symptoms. However, no systematic studies have been performed concerning the anti‐inflammatory effects or molecular mechanisms of this plant. The immunopharmacological activities of a methanol extract from the leaves and twigs of G. leptostachya (Gl‐ME) were elucidated based on the gastritis symptoms of mice treated with HCl/EtOH and the inflammatory responses, such as nitric oxide (NO) release and prostaglandin E2 (PGE2) production, from RAW264.7 cells and peritoneal macrophages. Moreover, inhibitory target molecules were also assessed. Gl‐ME dose‐dependently diminished the secretion of NO and PGE2 from LPS‐stimulated RAW264.7 cells and peritoneal macrophages. The gastritis lesions of HCl/EtOH‐treated mice were also attenuated after Gl‐ME treatment. The extract (50 and 300 µg/mL) clearly reduced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)‐2, nuclear translocation of p65/nuclear factor (NF)‐κB, phosphorylation of p65‐activating upstream enzymes, such as protein kinase B (AKT), inhibitor of κBα kinase (IKK), and inhibitor of κB (IκBα), and the enzymatic activity of Src. By HPLC analysis, one of the major components in the extract was revealed as resveratrol with NO and Src inhibitory activities. Moreover, this compound suppressed NO production and HCl/EtOH‐induced gastric symptoms. Therefore, these results suggest that Gl‐ME might be useful as an herbal anti‐inflammatory medicine through the inhibition of Src and NF‐κB activation pathways. The efficacy data of G. leptostachya also implies that this plant could be further tested to see whether it can be developed as potential anti‐inflammatory preparation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Tectorigenin has received attention due to its antiproliferation, anti‐inflammatory, and antioxidant activities. In this study, we investigated the effects of tectorigenin on lipopolysaccharide (LPS)/D‐galactosamine(D‐GalN)‐induced fulminant hepatic failure (FHF) in mice and LPS‐stimulated macrophages (RAW 264.7 cells). Pretreatment with tectorigenin significantly reduced the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), histological injury, apoptosis, and the mortality of FHF mice, by suppressing the production of inflammatory cytokines such as TNF‐α and IL‐6. Tectorigenin also suppressed the activation of the inflammatory response in LPS‐stimulated RAW 264.7 cells. Tectorigenin‐induced protection is mediated through its mitigation of TLR4 expression, inhibition of mitogen‐activated protein kinase (MAPK) and nuclear factor‐κB (NF‐κB) pathway activation, and promotion of autophagy in FHF mice and LPS‐stimulated RAW 264.7 cells. Therefore, tectorigenin has therapeutic potential for FHF in mice via the regulation of TLR4/MAPK and TLR4/NF‐κB pathways and autophagy.  相似文献   

18.
Several bamboo species have been used in traditional medicine for the treatment of inflammatory conditions. The present study evaluates the in vitro anti‐inflammatory properties of the traditionally used bamboo species Phyllostachys nigra (Lodd.) Munro and Sasa veitchii (Carr.) Rehder to explore their future research opportunities and therapeutic potential as anti‐inflammatory agents. The extracts were evaluated for their potential inhibitory activity at the level of NF‐κB‐induced gene expression and suppression of cyclooxygenase (COX)‐1 and COX‐2 enzyme activities, representative pharmacological targets for the anti‐inflammatory action of glucocorticoids and non‐steroidal anti‐inflammatory drugs, respectively. The activity of P. nigra (Lodd.) Munro and S. veitchii (Carr.) Rehder was compared with bamboo species without traditional anti‐inflammatory indications. High‐performance liquid chromatography with diode‐array detection and liquid chromatography–tandem mass spectrometry analyses were performed to phytochemically characterize the extracts. P. nigra (Lodd.) Munro leaf extract potently inhibited NF‐κB‐induced gene expression, while S. veitchii (Carr.) Rehder leaf extract exerted a selective COX‐2 inhibition. The crude extracts consistently showed a more potent bioactivity than the solid phase extraction fractions. P. nigra (Lodd.) Munro and S. veitchii (Carr.) Rehder both exert anti‐inflammatory properties, but act via a different molecular mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Vascular inflammation is involved in the initiation and progression of vascular diseases including atherosclerosis. While conducting in vitro screening of 600 medicinal plant extracts, an aqueous extract of Thuja orientalis (ATO) was found to exhibit antiinflammatory activity in human umbilical vein endothelial cells (HUVEC). In the current study, the antiinflammatory activity of ATO and possible mechanisms for this were investigated in HUVEC. Preincubation with ATO (20 μg/mL) suppressed tumor necrosis factor‐α (TNF‐α)‐induced expression of adhesion molecules including intercellular adhesion molecule‐1 (ICAM‐1), vascular cell adhesion molecule‐1 (VCAM‐1) and E‐selectin at both the protein and mRNA levels. ATO also inhibited U937 monocyte adhesion to HUVEC stimulated by TNF‐α. In addition, ATO attenuated TNF‐α‐induced p65 NF‐κB translocation into the nucleus and phosphorylation of IκB‐α. Furthermore, ATO significantly inhibited TNF‐α‐induced intracellular reactive oxygen species (ROS) production. Overall, the present data suggest that ATO can suppress TNF‐α‐induced vascular inflammatory processes, possibly via inhibition of ROS and NF‐κB activation, in HUVEC. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Macrophage activation plays a central role in neoatherosclerosis and in‐stent restenosis after percutaneous coronary intervention (PCI). Galectin‐3, mainly expressed on macrophages, is an important regulator of inflammation. This study aimed to investigate the effects of berberine (BBR) on oxidized low‐density lipoprotein (ox‐LDL)‐induced macrophage activation and galectin‐3 expression and their underlying mechanisms. THP‐1‐derived macrophages were pretreated with BBR prior to stimulation with ox‐LDL. Galectin‐3 expression was measured by real‐time PCR, Western blotting, and confocal microscopy. Macrophage activation was assessed by lipid accumulation, expression of inflammatory cytokines, and CD11b and CD86. Plasma galectin‐3 levels were measured in patients undergoing PCI at baseline and after BBR treatment for 3 months. BBR suppressed ox‐LDL‐induced upregulation of galectin‐3 and macrophage activation. Overexpression of galectin‐3 intervened the inhibitory effect of BBR on macrophage activation. BBR activated phospho‐AMPK and inhibited phospho‐NF‐κB p65 nuclear translocation. AMPK inhibition and NF‐κB activation abolished the inhibitory effects of BBR on galectin‐3 expression and macrophage activation. Combination of BBR and rosuvastatin exerted greater effects than BBR or rosuvastatin alone. However, BBR treatment did not further reduce plasma galectin‐3 after PCI in patients receiving standard therapy. In conclusion, BBR alleviates ox‐LDL‐induced macrophage activation by downregulating galectin‐3 via the NF‐κB and AMPK signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号