首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the importance of the two parts of the anterior cruciate ligament (ACL), the medial collateral ligament (MCL), and the posterior medial capsule (PMC) to translatory and spontaneous axial rotatory instability in 15 osteoligamentous knee preparations. Instability was recorded continuously from zero to 90 degrees of flexion with application of a constant force to the tibia. Isolated cutting of the ACL caused a moderate anterior translatory movement, which increased if the MCL was also cut. Transection also of the PMC resulted in an even larger range of anterior translatory movement. Combined lesions to the MCL and the PMC and the posterolateral part of the ACL did not cause such instability provided the anteromedial part of the ACL was intact.

Application of a valgus moment to specimens with injured ACL and medial structures induced a spontaneous anteromedial subluxation of the tibia in a semiflexed position. When flexion was increased to 70-80 degrees, a sudden reduction was observed  相似文献   

2.
We studied the importance of the two parts of the anterior cruciate ligament (ACL), the medial collateral ligament (MCL), and the posterior medial capsule (PMC) to translatory and spontaneous axial rotatory instability in 15 osteoligamentous knee preparations. Instability was recorded continuously from zero to 90 degrees of flexion with application of a constant force to the tibia. Isolated cutting of the ACL caused a moderate anterior translatory movement, which increased if the MCL was also cut. Transection also of the PMC resulted in an even larger range of anterior translatory movement. Combined lesions to the MCL and the PMC and the posterolateral part of the ACL did not cause such instability provided the anteromedial part of the ACL was intact. Application of a valgus moment to specimens with injured ACL and medial structures induced a spontaneous anteromedial subluxation of the tibia in a semiflexed position. When flexion was increased to 70-80 degrees, a sudden reduction was observed.  相似文献   

3.
《Acta orthopaedica》2013,84(5):426-429
We studied the importance of the two parts of the anterior cruciate ligament (ACL), the medial collateral ligament (MCL), and the posterior medial capsule (PMC) to translatory and spontaneous axial rotatory instability in 15 osteoligamentous knee preparations. Instability was recorded continuously from zero to 90 degrees of flexion with application of a constant force to the tibia. Isolated cutting of the ACL caused a moderate anterior translatory movement, which increased if the MCL was also cut. Transection also of the PMC resulted in an even larger range of anterior translatory movement. Combined lesions to the MCL and the PMC and the posterolateral part of the ACL did not cause such instability provided the anteromedial part of the ACL was intact.

Application of a valgus moment to specimens with injured ACL and medial structures induced a spontaneous anteromedial subluxation of the tibia in a semiflexed position. When flexion was increased to 70–80 degrees, a sudden reduction was observed  相似文献   

4.
The anterior cruciate ligament (ACL) can be anatomically divided into anteromedial (AM) and posterolateral (PL) bundles. Current ACL reconstruction techniques focus primarily on reproducing the AM bundle, but are insufficient in response to rotatory loads. The objective of this study was to determine the distribution of in situ force between the two bundles when the knee is subjected to anterior tibial and rotatory loads. Ten cadaveric knees (50+/-10 years) were tested using a robotic/universal force-moment sensor (UFS) testing system. Two external loading conditions were applied: a 134 N anterior tibial load at full knee extension and 15 degrees, 30 degrees, 60 degrees, and 90 degrees of flexion and a combined rotatory load of 10 Nm valgus and 5 Nm internal tibial torque at 15 degrees and 30 degrees of flexion. The resulting 6 degrees of freedom kinematics of the knee and the in situ forces in the ACL and its two bundles were determined. Under an anterior tibial load, the in situ force in the PL bundle was the highest at full extension (67+/-30 N) and decreased with increasing flexion. The in situ force in the AM bundle was lower than in the PL bundle at full extension, but increased with increasing flexion, reaching a maximum (90+/-17 N) at 60 degrees of flexion and then decreasing at 90 degrees. Under a combined rotatory load, the in situ force of the PL bundle was higher at 15 degrees (21+/-11 N) and lower at 30 degrees of flexion (14+/-6 N). The in situ force in the AM bundle was similar at 15 degrees and 30 degrees of knee flexion (30+/-15 vs. 35+/-16 N, respectively). Comparing these two external loading conditions demonstrated the importance of the PL bundle, especially when the knee is near full extension. These findings provide a better understanding of the function of the two bundles of the ACL and could serve as a basis for future considerations of surgical reconstruction in the replacement of the ACL.  相似文献   

5.
Using mercury gauges, we measured strains in vivo in the four major ligaments of the canine knee joint as the tibia was loaded in valgus or varus at fixed angles of knee flexion. Free axial rotation of the tibia on the femur was allowed. Forces up to 78.4 N were applied to the tibia, producing moments of approximately 9 N-m. We found that with valgus loading, significant strains were observed in the medial collateral ligament at extension. At 45 degrees of flexion, the medial collateral, posterior cruciate, and anterior cruciate were strained. At 90 degrees of flexion, all four ligaments were strained. With varus loading, significant strains were found in the lateral collateral and anterior cruciate at extension. The lateral collateral and anterior cruciate ligaments were strained at 45 degrees of flexion. At 90 degrees of flexion, the lateral collateral, anterior cruciate, and posterior cruciate ligaments were strained. With valgus loading, the tibia rotated internally and the degree of axial rotation increased with flexion. External rotation of the tibia resulted from varus loading, and was relatively constant through the range of flexion. Thus when axial rotation is allowed, stability of the knee in response to valgus and varus loads is maintained by the cruciates as well as the collaterals, and the role of the cruciates increases with flexion and axial rotation.  相似文献   

6.
This study assessed the importance of the anterior and posterior bundles of the medial collateral ligament in the elbow by measuring in situ strain in response to valgus loads at three positions of forearm rotation throughout a full arc of motion. Strain in the anterior bundle was significantly greater than in the posterior bundle and increased with more flexion. The anterior bundle developed strain at a lower flexion angle (30 degrees) than the posterior bundle (60 degrees). Strain ratio increased with load increase for all flexion angles. Forearm position minimally affected strain. These results indicate that the anterior bundle is important in resisting a valgus load, particularly in mid-flexion, while the importance of the posterior bundle increases as the elbow approaches full flexion.  相似文献   

7.
Ten fresh-frozen knees from cadavera were instrumented with a specially designed transducer that measures the force that the anterior cruciate ligament exerts on its tibial attachment. Specimens were subjected to tibial torque, anterior tibial force, and varus-valgus bending moment at selected angles of flexion of the knee ranging from 0 to 45 degrees. Section of the medial collateral ligament did not change the force generated in the anterior cruciate ligament by applied varus moment. When valgus moment was applied to the knee, force increased dramatically after section of the medial collateral ligament; the increases were greatest at 45 degrees of flexion. Section of the medial collateral ligament had variable effects on the force generated in the anterior cruciate ligament during internal rotation but dramatically increased that generated during external rotation; these increases were greatest at 45 degrees. Section of the medial collateral ligament increased mean total torsional laxity by 13 degrees (at 0 degrees of flexion) to 20 degrees (at 45 degrees of flexion). Application of an anteriorly directed force to the tibia of an intact knee increased the force generated in the anterior cruciate ligament; this increase was maximum near the mid-part of the range of tibial rotation and minimum with external rotation of the tibia. Section of the medial collateral ligament did not change the force generated in the anterior cruciate ligament by straight anterior tibial pull near the mid-part of the range of tibial rotation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The medial collateral ligament is one of the most frequently injured ligaments in the knee. Although the medial collateral ligament is known to provide a primary restraint to valgus and external rotations, details regarding its precise mechanical function are unknown. In this study, strain in the medial collateral ligament of eight knees from male cadavers was measured during valgus loading. A material testing machine was used to apply 10 cycles of varus and valgus rotation to limits of +/- 10.0 N-m at flexion angles of 0 degrees, 30 degrees, 60 degrees, and 90 degrees. A three-dimensional motion analysis system measured local tissue strain on the medial collateral ligament surface within 12 regions encompassing nearly the entire medial collateral ligament surface. Results indicated that strain is significantly different in different regions over the surface of the medial collateral ligament and that this distribution of strain changes with flexion angle and with the application of a valgus torque. Strain in the posterior and central portions of the medial collateral ligament generally decreased with increasing flexion angle, whereas strain in the anterior fibers remained relatively constant with changes in flexion angle. The highest strains in the medial collateral ligament were found at full extension on the posterior side of the medial collateral ligament near the femoral insertion. These data support clinical findings that suggest the femoral insertion is the most common location for medial collateral ligament injuries.  相似文献   

9.
The loads needed to elicit a positive pivot shift test in a knee with an anterior cruciate ligament (ACL) rupture have not been quantified. The coupled anterior tibial translation (ATT), coupled internal tibial rotation (ITR), and the in situ force in the ACL in response to a valgus torque, an inherent component of the pivot shift test, were measured in 10 human cadaveric knee specimens. Using a robotic/universal force-moment sensor testing system, valgus torques ranging from 0.0 to 10.0 Nm were applied in nine increments on the intact and ACL-deficient knee in flexion ranging from 0 degrees to 90 degrees. At 15 degrees of knee flexion, the coupled ATT and ITR were significantly increased in the ACL-deficient knee when compared to the intact knee. Coupled ATT increased a maximum of 291% (6.7 mm, p<0.05), while coupled ITR increased a maximum of 85% (5.1 degrees, p<0.05). At 30 degrees, the increases in coupled ATT and ITR were significant at valgus loads of 3.3 Nm and greater with a maximum increase in coupled ATT of 137% (6.3 mm, p<0.05) and a maximum increase in coupled ITR of 38% (3.6 degrees, p<0.05). At 45 degrees, coupled ATT increased significantly (maximum of 69%, 4.4 mm, p<0.05), but only at torques > or =6.7 Nm. The in situ force in the ACL was less than 20 N for all flexion angles when a torque between 3.3 and 5.0 Nm was applied. Low valgus torque elicited tibial subluxation in the ACL-deficient knee with low in situ ACL forces, similar to a positive pivot shift test. Thus, application of a valgus torque may be suitable to evaluate ACL-deficient and ACL-reconstructed knees, since subluxation can be achieved with minimal harm to the ACL graft. This work is important in understanding one load component needed for the pivot shift examination; further studies quantifying other load components are essential for better comprehension of the in vivo pivot shift examination.  相似文献   

10.
BACKGROUND: Partial resection of the posteromedial aspect of the olecranon in the treatment of valgus extension impingement osteophytosis is a well-described technique. It has been hypothesized that removal of the normal olecranon process, beyond the osteophytic margin, increases the strain in the anterior bundle of the medial collateral ligament. METHODS: We used an electromagnetic tracking device to investigate the strain in the anterior bundle of the medial collateral ligament as a function of increasing applied torque and posteromedial resections of the olecranon in seven cadaveric elbows. Applied torques under valgus stress consisted of hand weight, hand weight plus 1.75 Nm, and hand weight plus 3.5 Nm. Resections were conducted in sequential 3-mm increments, from 0 to 9 mm. We measured changes in the length of the anterior and posterior bands of the anterior bundle of the medial collateral ligament with strain gauges. The strains of the two bands were averaged, and the average was reported. RESULTS: The strain in the anterior bundle of the medial collateral ligament was found to increase with increasing flexion angle, valgus torque, and olecranon resection beyond 3 mm. In two elbows, the anterior bundle of the medial collateral ligament ruptured during testing following the 9-mm resection. There was a significant difference between the strain following the 6-mm resection and that following the 3-mm resection at 110 degrees of flexion with 3.5 Nm of added torque (p = 0.004). CONCLUSIONS: In this in vitro cadaver study, an increase in flexion angle, an increase in valgus torque, and resection of > or =6 mm led to an increase in strain in the anterior bundle of the medial collateral ligament. The non-uniform change in strain related to 3 mm of resection suggests that resections of the posteromedial aspect of the olecranon of >3 mm may jeopardize the function of the anterior bundle.  相似文献   

11.
This study tested the hypothesis that application of a valgus force necessary to create a complete medial collateral ligament (MCL) injury causes damage to the anterior cruciate ligament (ACL). Twelve cadaveric knees were used to measure concomitant loading and damage to the ACL in valgus knee loading sufficient to cause a grade III MCL injury. Displacement sensors were placed on the anteromedial bundle of the ACL and posterior oblique ligament to monitor tensile strain during creation of the MCL injury. A valgus moment was applied to knees flexed at 30 degrees, displacing the joint into valgus rotation beyond MCL rupture. Following valgus loading and MCL injury, femur-ACL-tibia specimens were tested to failure to compare ACL mechanical integrity to noninjured control specimens. Average ACL strength in MCL ruptured knees (1250 +/- 90 N) was statistically lower (P < or = .05) than that for control knees (2110 +/- 50 N). Strain measurements exhibited concomitant posterior oblique ligament strain during valgus loading, whereas ACL strain increased substantially only after MCL rupture. These data indicate that the ACL can be compromised in isolated grade III MCL injuries.  相似文献   

12.
The purpose of this study was to evaluate the effect of the iliotibial band (ITB) on the kinematics of anterior cruciate ligament (ACL) intact and deficient knees and also on the in situ force in the ACL during a simulated pivot shift test. A combination of 10 N-m valgus and 5 N-m internal tibial torques was applied to 10 human cadaveric knees at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of flexion using a robotic/universal force-moment sensor testing system. ITB forces of 0, 22, 44, and 88 N were also applied. An 88 N ITB force significantly decreased coupled anterior tibial translation of ACL deficient knees by 32%-45% at high flexion angles, but did not have a significant effect at low flexion angles. Further, an 88 N ITB force significantly decreased in situ forces in the ACL at all flexion angles by 23%-40%. These results indicate that during the pivot shift test, the ITB can improve tibial reduction at high flexion angles while not affecting subluxation at low flexion angles. Additionally, the action of the ITB as an ACL agonist suggests that its use as an ACL graft might hinder knee stability in response to rotatory load.  相似文献   

13.
The goals of this study were to (a) evaluate the differential variable reluctance transducer as an instrument for measuring tissue strain in the anteromedial band of the anterior crudciate ligament, (b) develop a series of calibration curves (for simple states of knee loading) from which resultant force in the ligament could be estimated from measured strain levels in the anteromedial band of the ligament, and (c) study the effects of knee flexion angle and mode of applied loading on ouput from the transducer. Thirteen fresh-frozen cadaveric knee specimens underwent mechanical isolation of a bone cap containing the tibial insertion of the anterior cruciate ligament and attachment of a load cell to measure resultant force in the ligament. The transducer (with barbed prongs) was inserted into the anteromedial band of the anterior cruciate ligament to record local elongation of the instrumented fibers as resultant force was generated in the ligament. A series of calibration curves (anteromedial bundle strain versus resultant force in the anterior cruciate ligament) were determined at selected knee flexion angles as external loads were applied to the knee. During passive knee extension, strain readings did not always follow the pattern of resultant force in the ligament; erratic strain readings were often measured beyond 20° of flexion, where the anteromedial band was slack. For anterior tibial loading, the anteromedial band was a more active contributor to resultant ligament force beyond 45° of flexion and was less active near full extension; mean resultant forces in the range of 150–200 N produced strain levels on the order of 3–4%. The anteromedial band was also active during application of internal tibial torque; mean resultant forces on the order of 180–220 N produced strains on the order of 2%. Resultant forces generated by varus moment were relatively low, and the anteromedial band was not always strained. Mean coefficients of variation for resultant force in the ligament (five repeated measurements) ranged between 0.038 and 0.111. Mean coefficients of variation for five repeated placements of the strain transducer in the same site ranged from 0.209 to 0.342. Insertion and removal of this transducer at the anteromedial band produced observable damage to the ligament. In our study, repeatable measurements were possible only if both prongs of the transducer were sutured to the ligament fibers.  相似文献   

14.
Use of novel tissue engineering approaches to heal an injured anterior cruciate ligament (ACL) requires suture repair and/or augmentation to provide joint stability. We evaluated the effects of the location of suture augmentation at the femur and tibia in terms of joint stability using a goat model. Eight goat stifle joints were tested with augmentation sutures placed in two femoral tunnel locations: (1) anterior to, or (2) through the ACL footprint, and two tibial tunnel locations: (1) medial to, or (2) medial and lateral to the footprint. Using a robotic/universal force‐moment sensor testing system, the anterior tibial translation (ATT) and the corresponding in situ force carried by the sutures were obtained at 30°, 60°, and 90° of flexion in response to external loads. No significant differences were found between augmentation groups due to tunnel location in terms of ATT or the in situ forces carried by the sutures at all flexion angles tested. Similar results were found under 5 N m of varus–valgus torque. Under a 67 N anterior tibial load, the ATT was restored to within 3 mm of the intact joint following suture augmentation (p > 0.05). Suture augmentation, when placed close to the ACL insertion, could be helpful in providing initial joint stability to aid ACL healing in the goat model. Published by Wiley Periodicals, Inc. J Orthop Res 28:1373–1379, 2010  相似文献   

15.
The anterior cruciate ligament has a complex fiber anatomy and is not considered to be a uniform structure. Current anterior cruciate ligament reconstructions succeed in stabilizing the knee, but they neither fully restore normal knee kinematics nor reproduce normal ligament, function. To improve the outcome of the reconstruction, it may be necessary to reproduce the complex function of the intact anterior cruciate ligament in the replacement graft. We examined the in situ forces in nine human anterior cruciate ligaments as well as the force distribution between the anteromedial and posterolateral bundles of the ligament in response to applied anterioi tibial loads ranging from 22 to 110 N at knee flexion angles of 0–90°. The analysis was performed using a robotic manipulator in conjunction with a universal force-moment sensor. The in situ forces were determined with no device attached to the ligament, while the knee was permitted to move freely in response to the applied loads. We found that the in situ forces in the anterior cruciate ligament ranged from 12.8 ± 7.3 N under 22 N of anterior tibial load applied at 90° of knee flexion to 110.6 ± 14.8 N under 110 N of applied load at 15° of flexion. The magnitude of the in situ force in the posterolateral bundle was larger than that in the anteromedial bundle at knee flexion angles between 0 and 45°, reaching a maximum of 75.2 ± 18.3 N at 15° of knee flexion under an anterior tibial load of 110 N. The magnitude of the in situ force in the posterolateral bundle was significantly affected by knee flexion angle and anterior tibial load in a fashion remarkably similar to that seen in the anterior cruciate ligament. The magnitude of the in situ force in the anteromedial bundle, in contrast, remained relatively constant, not changing with flexion angle. Significant differences in the direction of the in situ force between the anteromedial bundle and the posterolateral bundle were found only at flexion angles of 0 and 60° and only under applied anterior tibial loads greater than 66 N. We have demonstrated the nonuniformity of the anterior cruciate ligament under unconstrained anterior tibial loads. Our data further suggest that in order for the anterior cruciate ligament replacement graft to reproduce the in situ forces of the normal anterior cruciate ligament, reconstruction techniques should take into account the role of the posterolateral bundle in addition to that of the anteromedial bundle.  相似文献   

16.
Background  The knowledge of in vivo anterior cruciate ligament (ACL) deformation is fundamental for understanding ACL injury mechanisms and for improving surgical reconstruction of the injured ACL. This study investigated the relative elongation of the ACL when the knee is subject to no load (<10 N) and then to full body weight (axial tibial load) at various flexion angles using a combined dual fluoroscopic and magnetic resonance imaging (MRI) technique. Methods  Nine healthy subjects were scanned with MRI and imaged when one knee was subject to no load and then to full body weight using a dual fluoroscopic system (0°–45° flexion angles). The ACL was analyzed using three models: a single central bundle; an anteromedial and posterolateral (double functional) bundle; and multiple (eight) surface fiber bundles. Results  The anteromedial bundle had a peak relative elongation of 4.4% ± 3.4% at 30° and that of the posterolateral bundle was 5.9% ± 3.4% at 15°. The ACL surface fiber bundles at the posterior portion of the ACL were shorter in length than those at the anterior portion. However, the peak relative elongation of one posterolateral fiber bundle reached more than 13% whereas one anteromedial fiber bundle reached a peak relative elongation of only about 3% at 30° of flexion by increasing the axial tibial load from no load to full body weight. Conclusions  The data quantitatively demonstrated that under external loading the ACL experiences nonhomogeneous elongation, with the posterior fiber bundles stretching more than the anterior fiber bundles.  相似文献   

17.
The clinical diagnosis of a partial tear of the anterior cruciate ligament (ACL) is still subject to debate. Little is known about the contribution of each ACL bundle during the Lachman test. We investigated this using six fresh-frozen cadaveric lower limbs. Screws were placed in the femora and tibiae as fixed landmarks for digitisation of the bone positions. The femur was secured horizontally in a clamp. A metal hook was screwed to the tibial tubercle and used to apply a load of 150?N directed anteroposteriorly to the tibia to simulate the Lachman test. The knees then received constant axial compression and 3D knee kinematic data were collected by digitising the screw head positions in 30° flexion under each test condition. Measurements of tibial translation and rotation were made, first with the ACL intact, then after sequential cutting of the ACL bundles, and finally after complete division of the ACL. Two-way analysis of variance analysis was performed. During the Lachman test, in all knees and in all test conditions, lateral tibial translation exceeded that on the medial side. With an intact ACL, both anterior and lateral tibial landmarks translated significantly more than those on the medial side (p < 0.001). With sequential division of the ACL bundles, selective cutting of the posterolateral bundle (PLB) did not increase translation of any landmark compared with when the ACL remained intact. Cutting the anteromedial bundle (AMB) resulted in an increased anterior translation of all landmarks. Compared to the intact ACL, when the ACL was fully transected a significant increase in anterior translation of all landmarks occurred (p < 0.001). However, anterior tibial translation was almost identical after AMB or complete ACL division. We found that the AMB confers its most significant contribution to tibial translation during the Lachman test, whereas the PLB has a negligible effect on anterior translation. Section of the PLB had a greater effect on increasing the internal rotation of the tibia than the AMB. However, its contribution of a mean of 2.8° amplitude remains low. The clinical relevance of our investigation suggests that, based on anterior tibial translation only, one cannot distinguish between a full ACL and an isolated AMB tear. Isolated PLB tears cannot be detected solely by the Lachman test, as this bundle probably contributes more resistance to the pivot shift.  相似文献   

18.
This article describes a new arthroscopic technique to study the anterior cruciate ligament (ACL) in vivo. A Hall effect strain transducer (HEST) is inserted arthroscopically into the anterior medial band (AMB) of the ACL. The strain is calculated from HEST displacement data. This method determines a reference length of the AMB when it becomes taut and load bearing. Data from HEST implantation in five patients with normal ACLs are reported. The HEST was implanted in the AMB with patients under local anesthesia. Strain was calculated during anterior-posterior shear testing and isometric quadriceps contractions at 30 and 90 degrees of knee flexion. The results demonstrate that this technique is safe and reliable. Lachman testing (anterior shear testing at 30 degrees) caused significantly higher strain in comparison to the drawer tests (anterior shear testing at 90 degrees). A significant increase in strain occurred during isometric quadriceps contraction when the knee was flexed at 30 degrees. No significant change in strain was measured, however, during isometric quadriceps contraction at 90 degrees of flexion. These results confirm previous studies showing that the Lachman test is a more sensitive clinical method for evaluating the AMB. They suggest that isometric quadriceps activity at 90 degrees of knee flexion can be prescribed for rehabilitation without risk of increased strain of the AMB.  相似文献   

19.
Six knees from cadavers were tested for change in stability after release of the medial collateral ligament with posterior cruciate-retaining and substituting total knee replacements. Load deformation curves of the joint were recorded in full extension and 30 degrees, 60 degrees, and 90 degrees flexion under a 10 N-m varus and valgus torque, 1.5 N-m internal and external rotational torque, and a 35 N anterior and posterior force to test stability in each knee. The intact specimen and posterior cruciate ligament-retaining total joint replacement were tested for baseline comparisons. The superficial medial collateral ligament was released, followed by release of the posterior cruciate ligament. The knee then was converted to a posterior-stabilized implant. After medial collateral ligament release, valgus laxity was statistically significantly greater at 30 degrees, 60 degrees, and 90 degrees flexion after posterior cruciate ligament sacrifice than it was when the posterior cruciate ligament was retained. The posterior-stabilizing post added little to varus and valgus stability. Small, but significant, differences were seen in internal and external rotation before and after posterior cruciate ligament sacrifice. The posterior-stabilized total knee arthroplasty was even more rotationally constrained in full extension than the knee with intact medial collateral ligament and posterior cruciate ligament.  相似文献   

20.
Resultant forces in the posterior cruciate ligament were measured under paired combinations of posterior tibial force, internal and external tibial torque, and varus and valgus moment. The force generated in the ligament from a straight 100 N posterior tibial force was highly sensitive to the angle of knee flexion. For example, at 90 of flexion the mean resultant force in the posterior cruciate ligament was 112% of the applied posterior tibial force, whereas at 0°, only 16% of the applied posterior force was measured in the ligament. When the tibia was preloaded by 10 Nm of external torque, only 9–13% of the 100 N posterior tibial force was transmitted to the posterior cruciate ligament at flexion angles less than 60° at 90° of flexion, 61% was carried by the ligament. This “off-loading” of the posterior cruciate ligament also occurred when the tibia was preloaded by 10 Nm or internal torque, but only at knee flexion angles between 20 and 40°. The addition of 10 Nm of valgus moment to a knee loaded by a 100 N posterior tibial force increased the mean force in the posterior cruciate ligament at all flexion angles except hyperextension: this represents a common and potentially dangerous loading combination. The addition of 10 Nm of varus moment to a knee loaded by a 100 N posterior tibial force increased the mean force in the posterior cruciate ligament at all flexion angles except hyperextension; this represents a common and potentially dangerous loading combination. The addition of 10 Nm of varus moment to a knee loaded by a 100 N posterior tibial force decreased the mean force in the ligament between 10 and 70° of flexion. External tibial torque (alone or combined with varus or valgus moment) was not an important loading mechanism in the posterior cruciate ligament. The application of internal torque plus varus moment at 90° of flexion produced the greatest posterior cruciate ligament forces in our study and represented the only potential injury mechanism that did not involve posterior tibial force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号