首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE; MIM 600513) has been associated with mutations in the genes coding for the alfa-4 (CHRNA4), beta-2 (CHRNB2), and alpha-2 (CHRNA2) subunits of the neuronal nicotinic acetylcholine receptor (nAChR) and for the corticotropin-releasing hormone (CRH). A four-generation ADNFLE family with six affected members was identified. All affected members presented the clinical characteristics of ADNFLE. Interictal awake and sleep EEG recordings showed no epileptiform abnormalities. Ictal video-EEG recordings showed focal seizures with frontal lobe semiology. Mutation analysis of the CHRNB2 gene revealed a c.859G>A transition (Val287Met) within the second transmembrane domain, identical to that previously described in a Scottish ADNFLE family. To our knowledge, this is the third family reported presenting a mutation in CHRNB2. The clinical phenotype appears similar to that described with mutations in CHRNA4, suggesting that mutations in these two subunits lead to similar functional alterations of the nAChR.  相似文献   

2.
3.
Mutations in nAChRs are found in a rare form of nocturnal frontal lobe epilepsy (ADNFLE). Previously, some nAChR mutations have been described that are associated with additional neurological features such as psychiatric disorders or cognitive defects. Here, we report a new CHRNB2 mutation located in transmembrane region 3 (M3), outside the known ADNFLE mutation cluster. The CHRNB2 mutation I312M, which occurred de novo in twins, markedly increases the receptor's sensitivity to acetylcholine. Phenotypically, the mutation is associated not only with typical ADNFLE, but also with distinct deficits in memory. The cognitive problems are most obvious in tasks requiring the organization and storage of verbal information.  相似文献   

4.
PURPOSE: Mutations in genes coding for the alpha 4 and beta 2 subunits of the neuronal nicotinic acetylcholine receptor receptor (CHRN) are known to cause autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Here we examined the phenotypes in two families, from the same ethnic and geographic backgrounds, with ADNFLE as a result of mutations in these two different subunits of CHRN. METHODS: All affected family members underwent a detailed clinical evaluation and review of available EEG, neuroimaging, and videotapes of seizures. The molecular study of family D is reported here; family S has a previously reported mutation in the beta 2 subunit of CHRN. RESULTS: A total of 16 individuals with ADNFLE were identified in the two families. In both families, seizure semiology, age at seizure onset, and the natural history of the seizure disorder was similar. Intrafamilial variation in terms of severity of epilepsy syndrome was present in both families. A significant number of individuals from each family had a history of psychological problems. The molecular study of family D revealed a Ser248Phe mutation in the alpha 4 subunit of CHRN. CONCLUSIONS: The epilepsy phenotype is not distinguishable in the two families who have ADNFLE as a result of mutations in genes coding for different CHRN subunits. This is likely to be due to the similar functional consequences of each mutation on the CHRN receptor.  相似文献   

5.
6.
Several lines of evidence suggest that nicotinic cholinergic dysfunction may contribute to the cognitive impairments in schizophrenia. The majority of high affinity nicotine binding sites in the human brain have been implicated in heteropentameric alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptors; therefore, these two neuronal nicotinic acetylcholine receptors genes (CHRNA4 and CHRNB2) are considered to be attractive candidate genes for the pathophysiology of schizophrenia. To represent these two genes in a gene-wide manner, we first evaluated the linkage disequilibrium structure using our own control samples. Thirteen SNPs (7 SNPs for CHRNA4 and 5 SNPs for CHRNB2) were selected as tagging SNPs. Using these tagging SNPs, we then conducted genetic association analysis of case-control samples (738 schizophrenia and 753 controls) in the Japanese population. No significant association was detected in the allele/genotype-wise or haplotype-wise analysis. Our results suggest that CHRNA4 and CHRNB2 do not play a major role in Japanese schizophrenia.  相似文献   

7.
The clustering and level of nicotinic acetylcholine receptor (n-AChR) in cultured mouse myotubes are negatively controlled by endogenous phospholipase A2 (PLA2) (Kimura et al., Int. J. Devl. Neurosci. 5, 127-133, 1987). The effects of PLA2-related metabolites, prostaglandins, leukotrienes and platelet-activating factor (PAF) were investigated using fluorescein isothiocyanate-alpha-bungarotoxin. Peak and total fluorescence within a cluster were used as indices of clustering and level of n-AChR, respectively. Prostaglandin E2 (PGE2, 1-10 microM) decreased both indices in a concentration-dependent manner. Aspirin and indomethacin, cyclooxygenase inhibitors, increased the indices at 1.0 microM and 10-30 nM, and decreased them at higher concentrations of 10-30 microM and 0.1-1 microM, respectively. Prostaglandin F2 alpha (PGF2 alpha, 1-10 microM), nordihydroguaiaretic acid (30 microM), a lipoxygenase inhibitor, and PAF (10 microM) had no effect. These results suggest that the control of endogenous PLA2 on the clustering and level of n-AChR is due to PGE2, but not to PGF2 alpha, leukotrienes or PAF.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号